Dissecting the Contribution of Environmental Influences, Plant Phenology, and Disease Resistance to Improving Genomic Predictions for Fusarium Head Blight Resistance in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Experiments
2.2. FHB Severity Correction Methods
2.2.1. Method-1: Residual Method
2.2.2. Method-2: Feature Selection
2.3. Field Trials Analysis
2.4. Genomic Predictions
2.4.1. Genotypic Data
2.4.2. Validation Schemes
2.4.3. GS Models
3. Results
3.1. Phenotypic Values
3.2. Trait Correlations and Variable Selection
3.3. Phenotypic Selection
3.4. Genomic Selection
3.4.1. Single Trials
3.4.2. Combined Trials
- The poor performance of models exclusively trained with lines from the 2017 trial was improved and, more specifically, genomic predictions based on AU-2 scores resulted in performances averaging PA = 0.18 and 0.36 for the ST and MT models’ versions, respectively, versus models based on AU-1 scores PA = 0.15 and 0.38, and models based on AUDPC-raw scores PA = 0.13 and 0.38.
- The only scenario where the type of FHB severity score represented significant differences in PA was when 2015 and 2017 trials were combined to train the single trait GS model, leading to the following order according to their PA: AU-2 > AU-1, AU-R.
- The highest PA rates for the ST.GS models were obtained when the TS was combined with lines from the three previous trials regardless of the type of severity score, while for their MT.GS model versions, the most successful cases were models trained with the merge of lines from 2016 and 2017 trials. Across all scenarios in consideration, the relative increments in PA of MT.GS models averaged 3.1, 2.6, and 2.1 folds for the AU-R, AU-1, and AU-2, respectively, from their single trait model versions.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, G.; Su, Z.; Cai, J. Wheat Resistance to Fusarium Head Blight. Can. J. Plant Pathol. 2018, 40, 336–346. [Google Scholar] [CrossRef]
- Mesterházy, A. Breeding Wheat for Fusarium Head Blight Resistance in Europe. In Fusarium Head Blight of Wheat and Barley; Leonard, K.J., Bushnell, W.R., Eds.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2003. [Google Scholar]
- van Eeuwijk, F.A.; Mesterhazy, A.; Kling, C.I.; Ruckenbauer, P.; Saur, L.; Bürstmayr, H.; Lemmens, M.; Keizer, L.C.P.; Maurin, N.; Snijders, C.H.A. Assessing Non-Specificity of Resistance in Wheat to Head Blight Caused by Inoculation with European Strains of Fusarium culmorum, F. graminearum and F. nivale Using a Multiplicative Model for Interaction. Theor. Appl. Genet. 1995, 90, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium Ear Blight (Scab) in Small Grain Cereals—A Review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Larkin, D.L.; Lozada, D.N.; Mason, R.E. Genomic Selection—Considerations for Successful Implementation in Wheat Breeding Programs. Agronomy 2019, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Fabre, F.; Rocher, F.; Alouane, T.; Langin, T.; Bonhomme, L. Searching for FHB Resistances in Bread Wheat: Susceptibility at the Crossroad. Front. Plant Sci. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Dahl, B.; Wilson, W.W. Risk Premiums Due to Fusarium Head Blight (FHB) in Wheat and Barley. Agric. Syst. 2018, 162, 145–153. [Google Scholar] [CrossRef]
- Wilson, W.; Dahl, B.; Nganje, W. Economic Costs of Fusarium Head Blight, Scab and Deoxynivalenol. World Mycotoxin J. 2018, 11, 291–302. [Google Scholar] [CrossRef]
- Beres, B.L.; Brûlé-Babel, A.L.; Ye, Z.; Graf, R.J.; Turkington, T.K.; Harding, M.W.; Kutcher, H.R.; Hooker, D.C. Exploring Genotype × Environment × Management Synergies to Manage Fusarium Head Blight in Wheat. Can. J. Plant Pathol. 2018, 40, 179–188. [Google Scholar] [CrossRef]
- Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, Genetics and Genomics for Better Control of Disastrous Wheat Fusarium Head Blight. Theor. Appl. Genet. 2020, 133, 1541–1568. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium Head Blight Resistance in Wheat—Progress and Challenges. Plant Breed. 2019, 139, 429–454. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, L.; Zhang, W.; Yang, L.; Zhu, W.; Li, J.; Liu, Y.; Tong, H.; Fu, L.; Liu, J.; et al. Genome-Wide Association Analysis of Fusarium Head Blight Resistance in Chinese Elite Wheat Lines. Front. Plant Sci. 2020, 11, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venske, E.; dos Santos, R.S.; Farias, D.D.R.; Rother, V.; da Maia, L.C.; Pegoraro, C.; Costa de Oliveira, A. Meta-Analysis of the QTLome of Fusarium Head Blight Resistance in Bread Wheat: Refining the Current Puzzle. Front. Plant Sci. 2019, 10, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Hall, M.D.; Griffey, C.A.; McKendry, A.L. Meta-Analysis of QTL Associated with Fusarium Head Blight Resistance in Wheat. Crop Sci. 2009, 49, 1955–1968. [Google Scholar] [CrossRef]
- Bernardo, A.; Bai, G.; Yu, J.; Kolb, F.; Bockus, W.; Dong, Y. Registration of Near-Isogenic Winter Wheat Germplasm Contrasting in Fhb1 for Fusarium Head Blight Resistance. J. Plant Regist. 2014, 8, 106–108. [Google Scholar] [CrossRef]
- Anderson, J.A.; Wiersma, J.J.; Linkert, G.L.; Kolmer, J.A.; Jin, Y.; Dill-Macky, R.; Wiersma, J.V.; Hareland, G.A. Registration of ‘Sabin’ Wheat. J. Plant Regist. 2012, 6, 174–179. [Google Scholar] [CrossRef]
- Brown-Guedira, G.; Griffey, C.; Kolb, F.; McKendry, A.; Murphy, J.P.; Van Sanford, D. Breeding Fhb-Resistant Soft Winter Wheat: Progress and Prospects. In Cereal Research Communications; Akadémiai Kiadó: Budapest, Hungary, 2008; Volume 36, pp. 31–35. [Google Scholar] [CrossRef]
- Randhawa, H.S.; Asif, M.; Pozniak, C.; Clarke, J.M.; Graf, R.J.; Fox, S.L.; Humphreys, D.G.; Knox, R.E.; DePauw, R.M.; Singh, A.K.; et al. Application of Molecular Markers to Wheat Breeding in Canada. Plant Breed. 2013, 132, 458–471. [Google Scholar] [CrossRef]
- Xie, G.Q.; Zhang, M.C.; Chakraborty, S.; Liu, C.J. The Effect of 3BS Locus of Sumai 3 on Fusarium Head Blight Resistance in Australian Wheats. Aust. J. Exp. Agric. 2007, 47, 603–607. [Google Scholar] [CrossRef]
- Steiner, B.; Buerstmayr, M.; Michel, S.; Schweiger, W.; Lemmens, M.; Buerstmayr, H. Breeding Strategies and Advances in Line Selection for Fusarium Head Blight Resistance in Wheat. Trop. Plant Pathol. 2017, 42, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Covarrubias-Pazaran, G.; Schlautman, B.; Diaz-Garcia, L.; Grygleski, E.; Polashock, J.; Johnson-Cicalese, J.; Vorsa, N.; Iorizzo, M.; Zalapa, J. Multivariate GBLUP Improves Accuracy of Genomic Selection for Yield and Fruit Weight in Biparental Populations of Vaccinium Macrocarpon Ait. Front. Plant Sci. 2018, 9, 1310. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Jannink, J.-L. Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy. Genetics 2012, 192, 1513–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgueño, J.; de los Campos, G.; Weigel, K.; Crossa, J. Genomic Prediction of Breeding Values When Modeling Genotype × Environment Interaction Using Pedigree and Dense Molecular Markers. Crop Sci. 2012, 52, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.B.; Dias, K.O.G.; Ferreira, D.F.; Brown, P.J. Efficiency of Multi-Trait, Indirect, and Trait-Assisted Genomic Selection for Improvement of Biomass Sorghum. Theor. Appl. Genet. 2018, 131, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, S.; Ametz, C.; Gungor, H.; Akgöl, B.; Epure, D.; Grausgruber, H.; Löschenberger, F.; Buerstmayr, H. Genomic Assisted Selection for Enhancing Line Breeding: Merging Genomic and Phenotypic Selection in Winter Wheat Breeding Programs with Preliminary Yield Trials. Theor. Appl. Genet. 2017, 130, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Amores, J.; Michel, S.; Miedaner, T.; Longin, C.F.H.; Buerstmayr, H. Genomic Predictions for Fusarium Head Blight Resistance in a Diverse Durum Wheat Panel: An Effective Incorporation of Plant Height and Heading Date as Covariates. Euphytica 2020, 216, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.J.; Sarti-Dvorjak, D.; Brown-Guedira, G.; Dong, Y.; Baik, B.-K.; Van Sanford, D.A. Identifying Rare FHB-Resistant Segregants in Intransigent Backcross and F2 Winter Wheat Populations. Front. Microbiol. 2016, 7, 277. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Leng, Y.; Chao, S.; Xu, S.S.; Zhong, S. Molecular Mapping of QTL for Fusarium Head Blight Resistance Introgressed into Durum Wheat. Theor. Appl. Genet. 2018, 131, 1939–1951. [Google Scholar] [CrossRef]
- Gervais, L.; Dedryver, F.; Morlais, J.-Y.; Bodusseau, V.; Negre, S.; Bilous, M.; Groos, C.; Trottet, M. Mapping of Quantitative Trait Loci for Field Resistance to Fusarium Head Blight in an European Winter Wheat. Theor. Appl. Genet. 2003, 106, 961–970. [Google Scholar] [CrossRef]
- Paillard, S.; Schnurbusch, T.; Tiwari, R.; Messmer, M.; Winzeler, M.; Keller, B.; Schachermayr, G. QTL Analysis of Resistance to Fusarium Head Blight in Swiss Winter Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004, 109, 323–332. [Google Scholar] [CrossRef]
- Schmolke, M.; Zimmermann, G.; Buerstmayr, H.; Schweizer, G.; Miedaner, T.; Korzun, V.; Ebmeyer, E.; Hartl, L. Molecular Mapping of Fusarium Head Blight Resistance in the Winter Wheat Population Dream/Lynx. Theor. Appl. Genet. 2005, 111, 747–756. [Google Scholar] [CrossRef]
- Yi, X.; Cheng, J.; Jiang, Z.; Hu, W.; Bie, T.; Gao, D.; Li, D.; Wu, R.; Li, Y.; Chen, S.; et al. Genetic Analysis of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line C615 Using Traditional and Conditional QTL Mapping. Front. Plant Sci. 2018, 9, 573. [Google Scholar] [CrossRef] [PubMed]
- Emrich, K.; Wilde, F.; Miedaner, T.; Piepho, H.P. REML Approach for Adjusting the Fusarium Head Blight Rating to a Phenological Date in Inoculated Selection Experiments of Wheat. Theor. Appl. Genet. 2008, 117, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Longin, C.F.H. Genetic Variation for Resistance to Fusarium Head Blight in Winter Durum Material. Crop Pasture Sci. 2013, 65, 46–51. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Lemmens, M.; Schmolke, M.; Zimmermann, G.; Hartl, L.; Mascher, F.; Trottet, M.; Gosman, N.E.; Nicholson, P. Multi-Environment Evaluation of Level and Stability of FHB Resistance among Parental Lines and Selected Offspring Derived from Several European Winter Wheat Mapping Populations. Plant Breed. 2008, 127, 325–332. [Google Scholar] [CrossRef]
- Kriss, A.B.; Paul, P.A.; Madden, L.V. Relationship between Yearly Fluctuations in Fusarium Head Blight Intensity and Environmental Variables: A Window-Pane Analysis. Phytopathology 2010, 100, 784–797. [Google Scholar] [CrossRef]
- Andersen, A.L. The Development of Gibberella-Zeae Headblight of Wheat. Phytopathology 1948, 38, 595–611. [Google Scholar]
- Doohan, F.M.; Brennan, J.; Cooke, B.M. Influence of Climatic Factors on Fusarium Species Pathogenic to Cereals. In Epidemiology of Mycotoxin Producing Fungi; Springer: Dordrecht, The Netherlands, 2003; pp. 755–768. [Google Scholar] [CrossRef]
- Sutton, J.C. Epidemiology of Wheat Head Blight and Maize Ear Rot Caused by Fusarium graminearum. Can. J. Plant Pathol. 1982, 4, 195–209. [Google Scholar] [CrossRef]
- Parry, D.W.; Pettitt, T.R.; Jenkinson, P.; Lees, A.K. The Cereal Fusarium Complex. Ecol. Plant Pathog. 1994, 44, 301–320. [Google Scholar]
- Clear, R.M.; Patrick, S.K. Fusarium Head Blight Pathogens Isolated from Fusarium-Damaged Kernels of Wheat in Western Canada, 1993 to 1998. Can. J. Plant Pathol. 2000, 22, 51–60. [Google Scholar] [CrossRef]
- Brennan, J.M.; Fagan, B.; Van Maanen, A.; Cooke, B.M.; Doohan, F.M. Studies on in Vitro Growth and Pathogenicity of European Fusarium Fungi. Eur. J. Plant Pathol. 2003, 109, 577–587. [Google Scholar] [CrossRef]
- Pettitt, T.R.; Parry, D.W.; Polley, R.W. Effect of Temperature on the Incidence of Nodal Foot Rot Symptoms in Winter Wheat Crops in England and Wales Caused by Fusarium Culmorum and Microdochium Nivale. Agric. For. Meteorol. 1996, 79, 233–242. [Google Scholar] [CrossRef]
- West, J.S.; Holdgate, S.; Townsend, J.A.; Edwards, S.G.; Jennings, P.; Fitt, B.D.L. Impacts of Changing Climate and Agronomic Factors on Fusarium Ear Blight of Wheat in the UK. Fungal Ecol. 2012, 5, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Paulitz, T.C. Diurnal Release of Ascospores by Gibberella Zeae in Inoculated Wheat Plots. Plant Dis. 1996, 80, 674–678. [Google Scholar] [CrossRef]
- Dufault, N.S.; De Wolf, E.D.; Lipps, P.E.; Madden, L.V. Role of Temperature and Moisture in the Production and Maturation of Gibberella Zeae Perithecia. Plant Dis. 2006, 90, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.; Woods, S.M.; Kromer, U. Germination of Ascospores of Gibberella Zeae after Exposure to Various Levels of Relative Humidity and Temperature. Phytopathology 2008, 98, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Simón, M.R.; Worland, A.J.; Struik, P.C. Influence of Plant Height and Heading Date on the Expression of the Resistance to Septoria Tritici Blotch in Near Isogenic Lines of Wheat. Crop Sci. 2004, 44, 2078–2085. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Huber, K.; Heckmann, J.; Steiner, B.; Nelson, J.C.; Buerstmayr, H. Mapping of QTL for Fusarium Head Blight Resistance and Morphological and Developmental Traits in Three Backcross Populations Derived from Triticum dicoccum × Triticum durum. Theor. Appl. Genet. 2012, 125, 1751–1765. [Google Scholar] [CrossRef] [Green Version]
- Steiner, B.; Buerstmayr, M.; Wagner, C.; Danler, A.; Eshonkulov, B.; Ehn, M.; Buerstmayr, H. Fine-Mapping of the Fusarium Head Blight Resistance QTL Qfhs.Ifa-5A Identifies Two Resistance QTL Associated with Anther Extrusion. Theor. Appl. Genet. 2019, 132, 2039–2053. [Google Scholar] [CrossRef] [Green Version]
- Skinnes, H.; Semagn, K.; Tarkegne, Y.; Marøy, A.G.; Bjørnstad, Å. The Inheritance of Anther Extrusion in Hexaploid Wheat and Its Relationship to Fusarium Head Blight Resistance and Deoxynivalenol Content. Plant Breed. 2010, 129, 149–155. [Google Scholar] [CrossRef]
- Lu, Q.; Lillemo, M.; Skinnes, H.; He, X.; Shi, J.; Ji, F.; Dong, Y.; Bjørnstad, Å. Anther Extrusion and Plant Height Are Associated with Type I Resistance to Fusarium Head Blight in Bread Wheat Line “Shanghai-3/Catbird”. Theor. Appl. Genet. 2013, 126, 317–334. [Google Scholar] [CrossRef]
- He, X.; Singh, P.K.; Dreisigacker, S.; Singh, S.; Lillemo, M.; Duveiller, E. Dwarfing Genes Rht-B1b and Rht-D1b Are Associated with Both Type I FHB Susceptibility and Low Anther Extrusion in Two Bread Wheat Populations. PLoS ONE 2016, 11, e0162499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Lillemo, M.; Shi, J.; Wu, J.; Bjørnstad, Å.; Belova, T.; Dreisigacker, S.; Duveiller, E.; Singh, P. QTL Characterization of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line Soru#1. PLoS ONE 2016, 11, e0158052. [Google Scholar] [CrossRef]
- Xu, K.; He, X.; Dreisigacker, S.; He, Z.; Singh, P.K. Anther Extrusion and Its Association with Fusarium Head Blight in CIMMYT Wheat Germplasm. Agronomy 2019, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Buerstmayr, M.; Buerstmayr, H. Comparative Mapping of Quantitative Trait Loci for Fusarium Head Blight Resistance and Anther Retention in the Winter Wheat Population Capo × Arina. Theor. Appl. Genet. 2015, 128, 1519–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buerstmayr, M.; Buerstmayr, H. The Semidwarfing Alleles Rht-D1b and Rht-B1b Show Marked Differences in Their Associations with Anther-Retention in Wheat Heads and with Fusarium Head Blight Susceptibility. Phytopathology 2016, 106, 1544–1552. [Google Scholar] [CrossRef] [Green Version]
- Strange, R.N.; Deramo, A.; Smith, H. Virulence Enhancement of Fusarium Graminearum by Choline and Betaine and of Botrytis Cinerea by Other Constituents of Wheat Germ. Trans. Br. Mycol. Soc. 1978, 70, 201–207. [Google Scholar] [CrossRef]
- Zhang, Q. Preliminary Study on Identification Method of Wheat Resistant to Scab in Breeding Process. Seed 1982, 2, 19–22. [Google Scholar] [CrossRef]
- Taylor, M. Incorporation of Fusarium Head Blight Resistance into European Winter Wheat Breeding Programmes. In Proceedings of the 2nd Int Symp Fusarium Head Blight: Incorporating the 8th European Fusarium Seminar, Orlando, FL, USA, 11–15 December 2004; pp. 11–15. [Google Scholar]
- Veturi, Y.; Kump, K.; Walsh, E.; Ott, O.; Poland, J.; Kolkman, J.M.; Balint-Kurti, P.J.; Holland, J.B.; Wisser, R.J. Multivariate Mixed Linear Model Analysis of Longitudinal Data: An Information-Rich Statistical Technique for Analyzing Plant Disease Resistance. Phytopathology 2012, 102, 1016–1025. [Google Scholar] [CrossRef]
- Lovell, D.J.; Powers, S.J.; Welham, S.J.; Parker, S.R. A Perspective on the Measurement of Time in Plant Disease Epidemiology. Plant Pathol. 2004, 53, 705–712. [Google Scholar] [CrossRef]
- Hansel, H. Yield Potential of Barley Corrected for Disease Infection by Regression Residuals. Plant Breed. 2001, 120, 223–226. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shriknage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piepho, H.P.; Möhring, J. Computing Heritability and Selection Response from Unbalanced Plant Breeding Trials. Genetics 2007, 177, 1881–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Chromosomal Location, and Population Dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Arruda, M.; Brown, P.J.; Lipka, A.E.; Krill, A.M.; Thurber, C.; Kolb, F.L. Genomic Selection for Predicting Fusarium Head Blight Resistance in a Wheat Breeding Program. Plant Genome 2015, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Miedaner, T.; Sieber, A.-N.; Desaint, H.; Buerstmayr, H.; Longin, C.F.H.; Würschum, T. The Potential of Genomic-Assisted Breeding to Improve Fusarium Head Blight Resistance in Winter Durum Wheat. Plant Breed. 2017, 136, 610–619. [Google Scholar] [CrossRef]
- Arruda, M.; Lipka, A.E.; Brown, P.J.; Krill, A.M.; Thurber, C.; Brown-Guedira, G.; Dong, Y.; Foresman, B.J.; Kolb, F.L. Comparing Genomic Selection and Marker-Assisted Selection for Fusarium Head Blight Resistance in Wheat (Triticum aestivum L.). Mol. Breed. 2016, 36, 84. [Google Scholar] [CrossRef]
- De Wolf, E.D.; Madden, L.V.; Lipps, P.E. Risk Assessment Models for Wheat Fusarium Head Blight Epidemics Based on Within-Season Weather Data. Phytopathology 2003, 93, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.A.; Molineros, J.E.; Paul, P.A.; Willyerd, K.T.; Madden, L.V.; De Wolf, E.D. Predicting Fusarium Head Blight Epidemics with Weather-Driven Pre- and Post-Anthesis Logistic Regression Models. Phytopathology 2013, 103, 906–919. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. Effects of Environmental Conditions on the Development of Fusarium Ear Blight. In Epidemiology of Mycotoxin Producing Fungi; Springer: Dordrecht, The Netherlands, 2003; pp. 683–689. [Google Scholar] [CrossRef]
- Oyeyemi, G.M.; Ogunjobi, E.O.; Folorunsho, A.I. On Performance of Shrinkage Methods—A Monte Carlo Study. Int. J. Stat. Appl. 2015, 5, 72–76. [Google Scholar] [CrossRef]
- Lacey, J.; Bateman, G.L.; Mirocha, C.J. Effects of Infection Time and Moisture on Development of Ear Blight and Deoxynivalenol Production by Fusarium Spp. in Wheat. Ann. Appl. Biol. 1999, 134, 277–283. [Google Scholar] [CrossRef]
- Windels, C.E. Economic and Social Impacts of Fusarium Head Blight: Changing Farms and Rural Communities in the Northern Great Plains. In Phytopathology; The American Phytopathological Society: Saint Paul, MN, USA, 1999; pp. 17–21. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.A.; De Wolf, E.D.; Paul, P.A.; Madden, L.V. Functional Data Analysis of Weather Variables Linked to Fusarium Head Blight Epidemics in the United States. Phytopathology 2019, 109, 96–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herter, C.P.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Würschum, T.; Miedaner, T. Accuracy of Within- and among-Family Genomic Prediction for Fusarium Head Blight and Septoria Tritici Blotch in Winter Wheat. Theor. Appl. Genet. 2019, 132, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gowda, M.; Longin, F.H.; Würschum, T.; Ranc, N.; Reif, J.C. Impact of Selective Genotyping in the Training Population on Accuracy and Bias of Genomic Selection. Theor. Appl. Genet. 2012, 125, 707–713. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Dekkers, J.C.M. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Schulthess, A.W.; Mirdita, V.; Zhao, Y.; Korzun, V.; Bothe, R.; Ebmeyer, E.; Reif, J.C.; Jiang, Y. Genomic Selection in a Commercial Winter Wheat Population. Theor. Appl. Genet. 2016, 129, 641–651. [Google Scholar] [CrossRef]
- Sallam, A.H.; Smith, K.P. Genomic Selection Performs Similarly to Phenotypic Selection in Barley. Crop Sci. 2016, 56, 2871–2881. [Google Scholar] [CrossRef]
- Michel, S.; Ametz, C.; Gungor, H.; Epure, D.; Grausgruber, H.; Löschenberger, F.; Buerstmayr, H. Genomic Selection across Multiple Breeding Cycles in Applied Bread Wheat Breeding. Theor. Appl. Genet. 2016, 129, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- Hofheinz, N.; Borchardt, D.; Weissleder, K.; Frisch, M. Genome-Based Prediction of Test Cross Performance in Two Subsequent Breeding Cycles. Theor. Appl. Genet. 2012, 125, 1639–1645. [Google Scholar] [CrossRef]
- Steiner, B.; Michel, S.; Maccaferri, M.; Lemmens, M.; Tuberosa, R.; Buerstmayr, H. Exploring and Exploiting the Genetic Variation of Fusarium Head Blight Resistance for Genomic-Assisted Breeding in the Elite Durum Wheat Gene Pool. Theor. Appl. Genet. 2018, 132, 969–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulthess, A.W.; Zhao, Y.; Friedrich, C.; Longin, H.; Reif, J.C. Advantages and Limitations of Multiple-trait Genomic Prediction for Fusarium Head Blight Severity in Hybrid Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2017, 131, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Rutkoski, J.; Benson, J.; Jia, Y.; Brown-Guedira, G.; Jannink, J.-L.; Sorrells, M. Evaluation of Genomic Prediction Methods for Fusarium Head Blight Resistance in Wheat. Plant Genome J. 2012, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Larkin, D.L.; Holder, A.L.; Mason, R.E.; Moon, D.E.; Brown-Guedira, G.; Price, P.P.; Harrison, S.A.; Dong, Y. Genome-wide Analysis and Prediction of Fusarium Head Blight Resistance in Soft Red Winter Wheat. Crop Sci. 2020, 60, 2882–2900. [Google Scholar] [CrossRef]
- Calus, M.P.L.; Veerkamp, R.F. Accuracy of Multi-Trait Genomic Selection Using Different Methods. Genet. Sel. Evol. 2011, 43, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, G.; Zhao, F.; Wang, Y.; Zhang, Y.; Du, L.; Su, G. Comparison of Single-Trait and Multiple-Trait Genomic Prediction Models. BMC Genet. 2014, 15, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait 1 | h2 | H2 | σ2g2 | σ2gt3 | σ2e4 | Min | Mean | Max | |
---|---|---|---|---|---|---|---|---|---|
Training Sets | AU-R | 0.837 | 0.675 | 88.63 | 30.66 | 0.17 | 16.35 | 83.36 | |
AU-1 | 0.824 | 0.624 | 80.18 | 32.31 | 0.17 | 19.83 | 83.36 | ||
AU-2 | 0.816 | 0.606 | 76.27 | 32.33 | 0.17 | 20.22 | 83.36 | ||
FT | 0.823 | 0.602 | 5.01 | 1.10 | 12.00 | 29.58 | 40.00 | ||
AR | 0.772 | 0.746 | 322.99 | 187.98 | 0.00 | 51.82 | 100.00 | ||
Validation Sets | AU-R | 0.735 | 0.751 | 111.62 | 122.66 | 50.23 | 0.67 | 16.49 | 86.67 |
AU-1 | 0.769 | 0.765 | 119.56 | 121.82 | 49.89 | 0.67 | 18.18 | 86.67 | |
AU-2 | 0.757 | 0.759 | 116.62 | 122.46 | 51.11 | 0.67 | 18.08 | 86.67 | |
FT | 0.914 | 0.939 | 4.52 | 0.202 | 0.81 | 12.00 | 29.11 | 39.00 | |
AR | 0.862 | 0.869 | 331.12 | 20.75 | 162.90 | 0.00 | 50.66 | 100.00 |
Training Sets | n | Method-1 | Method-2 | Repeatability | |||||
---|---|---|---|---|---|---|---|---|---|
R2 | AIC | Features Selected | R2 | AIC | AU-R 1 | AU-1 2 | AU-2 3 | ||
2015 | 317 | 0.26 | −34.56 | FT, ATT02, ATT14 | 0.32 | −59.66 | 0.84 | 0.83 | 0.82 |
2016 | 270 | 0.07 | 148.20 | - | - | - | 0.87 | 0.86 | 0.86 |
2017 | 266 | 0.20 | −35.40 | ATT04, ATT07, ATT22 | 0.21 | −39.20 | 0.79 | 0.75 | 0.75 |
Validation Sets | n | Method-1 | Method-2 | Phenotypic Selection | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | AIC | Features Selected | R2 | AIC | AU-R | AU-1 | AU-2 | |||
15-OV1 | 62 | 0.34 | −22.13 | ATT04, ATT14 | 0.36 | −23.40 | 0.57 B | 0.59 A | 0.59 A | DS 1 |
16-OV1 | 62 | 0.09 | 46.34 | - | - | - | 0.55 A | 0.51 B | 0.51 B | IS 2 |
16-OV2 | 64 | 0.09 | 45.17 | - | - | - | 0.74 B | 0.77 A | 0.77 A | DS |
17-OV2 | 64 | 0.01 | 19.86 | FT | - | - | 0.38 B | 0.39 B | 0.40 A | IS |
17-OV3 | 36 | 0.01 | −30.98 | FT | - | - | 0.18 C | 0.51 B | 0.55 A | DS |
18-OV3 | 36 | 0.52 | −32.24 | ATT04 | 0.59 | −38.50 | 0.58 A | 0.31 B | 0.29 C | IS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Amores, J.; Michel, S.; Löschenberger, F.; Buerstmayr, H. Dissecting the Contribution of Environmental Influences, Plant Phenology, and Disease Resistance to Improving Genomic Predictions for Fusarium Head Blight Resistance in Wheat. Agronomy 2020, 10, 2008. https://doi.org/10.3390/agronomy10122008
Moreno-Amores J, Michel S, Löschenberger F, Buerstmayr H. Dissecting the Contribution of Environmental Influences, Plant Phenology, and Disease Resistance to Improving Genomic Predictions for Fusarium Head Blight Resistance in Wheat. Agronomy. 2020; 10(12):2008. https://doi.org/10.3390/agronomy10122008
Chicago/Turabian StyleMoreno-Amores, Jose, Sebastian Michel, Franziska Löschenberger, and Hermann Buerstmayr. 2020. "Dissecting the Contribution of Environmental Influences, Plant Phenology, and Disease Resistance to Improving Genomic Predictions for Fusarium Head Blight Resistance in Wheat" Agronomy 10, no. 12: 2008. https://doi.org/10.3390/agronomy10122008
APA StyleMoreno-Amores, J., Michel, S., Löschenberger, F., & Buerstmayr, H. (2020). Dissecting the Contribution of Environmental Influences, Plant Phenology, and Disease Resistance to Improving Genomic Predictions for Fusarium Head Blight Resistance in Wheat. Agronomy, 10(12), 2008. https://doi.org/10.3390/agronomy10122008