A Strip-Till One-Pass System as a Component of Conservation Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Design and Performance of Field Experiments
- Management of crop residue after previous crop harvesting;
- Surface soil runoff, soil loss on a slope;
- Soil structure and glomalin content;
- Number and mass of earthworms, total bacteria and fungi count;
- Spatial differentiation of soil moisture and soil water reserve during sowing and seedling emergence;
- Labour input, fuel consumption, and CO2 emissions.
2.2.1. Experiment 1
- Conventional technology (CT) with mouldboard ploughing turning over plant residues (with wheat as the subsequent crop);
- Strip-till one-pass method ST-OP 36 (with wheat as the subsequent crop),
- Strip-till one-pass method ST-OP 72 (with maize as the subsequent crop).
2.2.2. Experiment 2
2.2.3. Experiment 3
- -
- YPS with soil extract (incubation for 5 days at 26 °C) added to evaluate total bacteria count;
- -
- The Martin medium with 30 μg mL−1 streptomycin added to evaluate the filamentous fungi (incubation for 5 days at 25 °C).
2.2.4. Experiment 4
2.3. Data Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
3.4. Experiment 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Available online: http://www.fao.org/conservation-agriculture/en/ (accessed on 10 August 2020).
- Powlson, D.S.; Bhogal, A.; Chambers, B.J.; Coleman, K.; Macdonald, A.J.; Goulding, K.W.T.; Whitmore, A.P. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agric. Ecosyst. Environ. 2012, 146, 23–33. [Google Scholar] [CrossRef]
- Soltanabadi, M.H.; Miranzadeh, M.; Karimi, M.; Varnamkhasti, M.G.; Hemmat, A. Effect of subsoiling in condition of strip tillage on soil properties and sunflower yield. J. Agric. Technol. 2008, 4, 11–19. [Google Scholar]
- Khursheed, S.; Simmons, C.; Wani, S.A.; Ali, T.; Raina, S.K.; Najar, G.R. Conservation tillage: Impacts on soil physical conditions—An overview. Adv. Plants Agric. Res. 2019, 9, 342–346. [Google Scholar]
- Xin, S.; Zhu, A.; Zhang, J.; Yang, W.; Xin, X.; Zhang, X. Changes in soil organic carbon and aggregate stability after conversion to conservation tillage for seven years in the Huang-Huai-Hai Plain of China. J. Integr. Agric. 2015, 4, 1202–1211. [Google Scholar]
- Song, K.; Zheng, X.; Lv, W.; Qin, Q.; Sun, L.; Zhang, H.; Xue, Y. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Sci. Rep. 2019, 9, 4586. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Han, G.; Zhang, Q. Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an Erodible Region in Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 3809. [Google Scholar] [CrossRef] [Green Version]
- Chalise, D.; Kumar, L.; Sharma, R.; Kristiansen, P. Assessing the impacts of tillage and mulch on soil erosion and corn yield. Agronomy 2020, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Morrison, J.E., Jr. Strip tillage for “no-till” row crop production. Appl. Eng. Agric. 2002, 18, 277–284. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of noninversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Townsend, T.J.; Ramsden, S.J.; Wilson, P. How do we cultivate in England? Tillage practices in crop production systems. Soil Use Manag. 2016, 32, 106–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, J.E., Jr.; Sanabria, J. One-pass and two-pass spring strip tillage for conservation row-cropping in adhesive clay soils. Trans. ASABE 2002, 45, 1263–1270. [Google Scholar] [CrossRef]
- Benincasa, P.; Zorzi, A.; Panella, F.; Tosti, G.; Trevini, M. Strip tillage and sowing: Is precision planting indispensable in silage maize? Int. J. Plant Prod. 2017, 11, 577–588. [Google Scholar]
- Idowu, O.J.; Sultana, S.; Darapuneni, M.; Beck, L.; Steiner, R. Short-term conservation tillage effects on corn silage yield and soil quality in an irrigated, arid agroecosystem. Agronomy 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Gałęzewski, L.; Piekarczyk, M.; Jaskulski, D. Strip-till technology—A method for uniformity in the emergence and plant growth of winter rapeseed (Brassica napus L.) in different environmental conditions of Northern Poland. Ital. J. Agron. 2018, 13, 94–199. [Google Scholar] [CrossRef]
- Wenninger, E.J.; Vogt, J.R.; Lojewski, J.; Neher, O.T.; Morishita, D.W.; Daku, K.E. Effects of strip tillage in sugar beet on density and richness of predatory Arthropods. Environ. Entomol. 2020, 49, 33–48. [Google Scholar] [CrossRef]
- Jaskulska, I.; Gałązka, A.; Jaskulski, D. Strip-till as a means of decreasing spatial variability of winter barley within a field scale. Acta Agric. Scand. B-SP 2019, 69, 516–527. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal tillage as innovative element of the technology of growing winter wheat: A field experiment under low rainfall conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.G.; Schaefer, D. Assessment of soil phosphorus and potassium following RTK-guided broadcast and deep-band placement in strip-till and no-till. Soil Sci. Soc. Am. J. 2012, 76, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Davis, A.S.; Ewing, P.M.; Grandy, A.S.; Kane, D.A.; Koide, R.T.; Mortensen, D.A.; Smith, R.G.; Snapp, S.S.; Spokas, K.A.; et al. A comparison of soil hydrothermal properties in zonal and uniform tillage systems across the US Corn Belt. Geoderma 2016, 273, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaeekoloor, R. Soil characteristics at the in-row and inter-row zones after strip-tillage. Afr. J. Agric. Res. 2011, 6, 6598–6603. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Gaida, A.M.; Przewloka, B.; Gawryjolek, K. Changes in soil quality associated with tillage system applied. Int. Agrophys. 2013, 27, 133–141. [Google Scholar]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage intensity effects on soil structure indicators—A US Meta-Analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, F.G.; Sorensen, B.A.; Villamil, M.B. A comparison of soil properties after five years of no-till and strip-till. Agron. J. 2015, 107, 1339–1346. [Google Scholar] [CrossRef]
- Madejón, E.; Murillo, J.; Moreno, F.; López, M.; Arrue, J.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 2009, 105, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.J.; Lin, S.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of conservation tillage on topsoil microbial metabolic characteristics and organic carbon within aggregates under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system in Central China. PLoS ONE 2016, 11, e0146145. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; Oliveira, T.F.; Roger-Estrade, J. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Chan, K.Y. An overview of some tillage impacts on earthworm population abundance and diversity—Implications for functioning in soils. Soil Tillage Res. 2001, 57, 179–191. [Google Scholar] [CrossRef]
- Janos, D.P.; Garamszegi, S.; Beltran, B. Glomalin extraction and measurement. Soil Biol. Biochem. 2008, 40, 728–739. [Google Scholar]
- Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Wright, S.F.; Nichols, K.A. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Pollut. 2004, 130, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Vlček, V.; Pohanka, M. Glomalin—An interesting protein part of the soil organic matter. Soil Water Res. 2020, 15, 67–74. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, A.; Pandey, V.; Singh, N. Contribution of glomalin to dissolved organic carbon under different land uses and seasonality in dry tropics. J. Environ. Manag. 2017, 192, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Starr, J.L.; Paltineanu, I.C. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 1999, 63, 1825–1829. [Google Scholar] [CrossRef]
- Preger, A.C.; Rillig, M.C.; Johns, A.R.; Du Preez, C.C.; Lobe, I.; Amelung, W. Losses of glomalin-related soil protein under prolonged arable cropping: A chronosequence study in sandy soils of the South African Highveld. Soil Biol. Biochem. 2007, 39, 445–453. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Wang, H.; Nie, S.; Liang, Z. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Sci. Total Environ. 2017, 581, 657–665. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Gozubuyuk, Z.; Sahin, U.; Celik, A. Operational and yield performances and fuel-related CO2 emissions under different tillage-sowing practices in a rainfed crop rotation. Int. J. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Giacomo, G.; Stefano, B.; Angelo, F.; Fabio, B.; Riccardo, M. Measurements of soil carbon dioxide emissions from two maize agroecosystems at harvest under different tillage conditions. Sci. World J. 2014, 2014, 141345. [Google Scholar] [CrossRef] [Green Version]
- WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; IUSS Working Group WRB; FAO: Rome, Italy, 2004. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Gałęzewski, L.; Breza-Boruta, B.; Dębska, B.; Lemanowicz, J. Soil properties after eight years of the use of strip-till one-pass technology. Agronomy 2020, 10, 1596. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundand and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- American Petroleum Institute. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Natural Gas Industry. 2009. Available online: https://www.api.org/~/media/files/ehs/climate-change/2009_ghg_compendium.ashx (accessed on 17 April 2020).
- TIBCO Software INC. Data analysis software system, version 12. In Statistica; TIBCO Software INC: Palo Alto, CA, USA, 2017; Available online: http://statistica.io (accessed on 15 January 2019).
- Porwollik, V.; Rolinski, S.; Heinke, J.; Müller, C. Generating a rule-based global gridded tillage dataset. Earth Syst. Sci. Data 2019, 11, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Maximising the Yield of Biomass from Residues of Agricultural Crops and Biomass from Forestry. Final Report. 2016. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/Ecofys%20-%20Final_%20report_%20EC_max%20yield%20biomass%20residues%2020151214.pdf (accessed on 20 October 2020).
- Mairhofer, F.; Barta, N.; Euteneuer, P.; Schuster, J.; Bauer, A.; Gronauer, A. Influence of tillage depth of a cultivator on the incorporation of crop residues of winter barley in a chernozem soil. Die Bodenkult. 2019, 70, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhang, L.; Xia, Z.; Xu, W.; Xia, L.; Liang, Y.; Xia, D. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Adv. Civ. Eng. 2019, 2019, 7043428. [Google Scholar] [CrossRef]
- Wang, L.; Dalabay, N.; Lu, P.; Wu, F. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall. Soil Tillage Res. 2017, 166, 147–156. [Google Scholar] [CrossRef]
- Chowaniak, M.; Głąb, T.; Klima, K.; Niemiec, M.; Zaleski, T.; Zuzek, D. Effect of tillage and crop management on runoff, soil erosion, and organic carbon loss. Soil Use Manag. 2020. [Google Scholar] [CrossRef]
- Laufer, D.; Loibl, B.; Märländer, B.; Koch, H.J. Soil erosion and surface run-off under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Tillage Res. 2016, 162, 1–7. [Google Scholar] [CrossRef]
- Scopel, E.; Da Silva, F.A.M.; Corbeels, M.; Affholder, F.; Maraux, F. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 2004, 24, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Scopel, E.; Findeling, A.; Chavez Guerra, E.; Corbeels, M. Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron. Sustain. Dev. 2005, 25, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H.; Qi, H. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Douelle, A.; Kwaw-Mensah, D. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J. Soil Water Conserv. 2014, 69, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Chotte, J.L. Importance of Microorganisms for Soil Aggregation. In Microorganisms in Soils: Roles in Genesis and Functions; Varma, A., Buscot, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; p. 3. [Google Scholar]
- Hallam, J.; Hodson, M.E. Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biol. Fertil. Soils 2020, 56, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Hallam, J.; Berdeni, D.; Grayson, R.; Guest, E.J.; Holden, J.; Lappage, M.G.; Prendergast-Miller, M.T.; Robinson, D.A.; Turner, A.; Leake, J.R.; et al. Effect of earthworms on soil physico-hydraulic and chemical properties, herbage production, and wheat growth on arable land converted to ley. Sci. Total Environ. 2020, 713, 136491. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004, 84, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Kuśmierek-Tomaszewska, R.; Dudek, S.; Żarski, J.; Januszewska-Klapa, K. Temporal variability of drought in field crops in the region of Kujawsko-Pomorskie, Poland. Res. Rural Dev. 2018, 2, 62–68. [Google Scholar]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris L.) in a moderate climate. Agronomy 2020, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Managing soil water to improve rainfed agriculture in India. J. Sustain. Agric. 2008, 32, 51–75. [Google Scholar] [CrossRef]
- Balwinder-Singh; Eberbach, P.L.; Humphreys, E.; Kukal, S.S. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agric. Water Manag. 2011, 9, 1847–1855. [Google Scholar] [CrossRef]
- Pramanik, P.; Bandyopadhyay, K.K.; Bhaduri, D.; Bhattacharyya, R.; Aggarwal, P. Effect of mulch on soil thermal regimes—A review. Int. J. Agric. Environ. Biotechnol. 2015, 8, 645–658. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Nakamura, K. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in Central Japan. Int. Soil Water Conserv. Res. 2017, 5, 302–308. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Mahdi, M.; Kaisi, A.; Wang, Q.; Zhang, M.; Li, Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Nemček-Korenkova, L.; Urík, M. Soil moisture and its effect on bulk density and porosity of intact aggregates of three Mollic soils. Indian J. Agric. Sci. 2012, 82, 172–176. [Google Scholar]
- Cociu, A. Tillage system effects on input efficiency of winter wheat, maize and soybean in rotation. Rom. Agric. Res. 2010, 27, 81–89. [Google Scholar]
- Šarauskis, E.; Buragiene, S.; Romaneckas, K.; Sakalauskas, A.; Jasinskas, A.; Vaiciukevicius, E.; Karayel, D. Working time, fuel consumption and economic analysis of different tillage and sowing systems in Lithuania. Eng. Rural Dev. 2012, 11, 52–59. [Google Scholar]
Month | Year | ||||
---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | |
Air temperature (°C) | |||||
January | 1.1 | −3.3 | −2.6 | 0.8 | −0.7 |
February | 0.1 | 2.5 | −0.5 | −3.2 | 2.6 |
March | 4.1 | 33.0 | 5.4 | −0.2 | 5.4 |
April | 7.6 | 8.3 | 6.8 | 12.0 | 9.3 |
May | 12.4 | 14.7 | 13.4 | 16.9 | 12.1 |
June | 15.6 | 17.7 | 16.8 | 18.4 | 21.9 |
July | 18.5 | 18.3 | 17.7 | 20.5 | 18.6 |
August | 21.0 | 16.4 | 17.7 | 19.9 | 19.7 |
September | 13.8 | 14.3 | 13.0 | 15.6 | 13.5 |
October | 6.4 | 6.3 | 10.1 | 9.8 | 9.8 |
November | 4.8 | 2.5 | 4.5 | 4.5 | 5.5 |
December | 3.7 | 1.4 | 2.0 | 2.0 | 2.7 |
Average | 9.1 | 11.0 | 8.7 | 9.8 | 10.0 |
Precipitation (mm) | |||||
January | 33.2 | 20.3 | 14.5 | 46.3 | 32.6 |
February | 8.9 | 19.0 | 30.3 | 5.8 | 18.1 |
March | 35.7 | 23.2 | 27.5 | 16.4 | 28.8 |
April | 15.6 | 28.7 | 40.8 | 40.4 | 1.5 |
May | 21.6 | 51.4 | 56.3 | 14.2 | 89.2 |
June | 33.0 | 98.1 | 54.3 | 26.4 | 17.7 |
July | 50.4 | 133.8 | 118.9 | 86.0 | 22.4 |
August | 20.3 | 55.3 | 126.1 | 23.7 | 37.7 |
September | 52.4 | 19.4 | 78.4 | 17.0 | 98.5 |
October | 20.9 | 116.3 | 106.8 | 34.1 | 35.9 |
November | 37.0 | 41.7 | 30.5 | 7.2 | 69.6 |
December | 24.4 | 42.7 | 38.8 | 50.3 | 21.1 |
Sum | 353.4 | 649.9 | 723.2 | 367.8 | 473.1 |
Crop | Previous Crop | Conventional—CT | ST-OP 36 | ST-OP 72 | ||||
---|---|---|---|---|---|---|---|---|
t ha−1 | % | t ha−1 | % | t ha−1 | % | t ha−1 | % | |
Winter wheat | 9.07 a | 100 | 0.37 d | 4.1 | 5.79 c | 63.8 | 6.89 b | 76.0 |
Winter barley | 8.16 a | 100 | 0.30 d | 3.7 | 5.34 c | 65.4 | 6.30 b | 77.2 |
Spring barley | 5.61 a | 100 | 0.18 c | 3.2 | 3.88 b | 69.2 | 4.25 b | 75.7 |
Soybean | 5.31 a | 100 | 0.17 d | 3.2 | 3.35 c | 63.0 | 4.15 b | 78.2 |
Winter rape | 8.94 a | 100 | 0.37 d | 4.1 | 5.61 c | 62.7 | 6.83 b | 76.4 |
Sunflower | 10.23 a | 100 | 0.55 c | 5.4 | 7.64 b | 74.7 | 8.15 b | 79.7 |
Maize | 15.65 a | 100 | 0.83 d | 5.3 | 10.96 c | 70.0 | 12.83 b | 82.0 |
Soil Aggregates | Unit | Conventional (CT) | Reduced (RT) | Strip-Till One-Pass (ST-OP) |
---|---|---|---|---|
Aggregate size distribution (ASD) | ||||
<0.25 mm | % | 11.3 | 9.5 | 10.2 |
0.25–0.50 mm | % | 11.1 | 11.2 | 10.8 |
0.50–1.0 mm | % | 13.4 | 10.7 | 11.0 |
1.0–2.0 mm | % | 12.0 | 12.7 | 11.8 |
2.0–3.0 mm | % | 14.1 | 15.1 | 14.0 |
3.0–5.0 mm | % | 16.6 | 17.2 | 16.5 |
5.0–7.0 mm | % | 13.7 | 14.2 | 13.4 |
7.0–10.0 mm | % | 7.8 | 9.4 | 12.3 |
CV | % | 20.8 | 22.5 | 16.6 |
Mean weight diameter (MWD) | mm | 2.84 b | 3.04 a | 3.17 a |
Soil aggregate stability index (SAS) | ||||
0.25–2.0 mm | % | 52.4 b | 63.5 a | 65.1 a |
2.0–10.0 mm | % | 41.3 c | 49.6 b | 53.2 a |
Property | Unit | Conventional (CT) | Reduced (RT) | Strip-Till One-Pass (ST-OP) |
---|---|---|---|---|
Glomalin (EEGRSP) | g kg−1 | 0.85 b | 0.89 ab | 0.93 a |
Earthworms | no m−2 | 23.4 c | 39.7 b | 75.1 a |
Earthworms | g m−2 | 19.8 c | 45.2 b | 96.7 a |
Bacteria | 106 cfu g−1 | 25.4 c | 28.5 b | 32.3 a |
Filamentous fungi | 104 cfu g−1 | 27.9 c | 40.6 b | 60.6 a |
Crop | Unit | Conventional (CT) | Strip-Till One-Pass (ST-OP) |
---|---|---|---|
labor input | |||
Winter barley | min ha−1 | 142 a | 28 b |
Maize | min ha−1 | 175 a | 23 b |
fuel consumption | |||
Winter barley | L ha−1 | 49.7 a | 13.8 b |
Maize | L ha−1 | 58.0 a | 12.2 b |
CO2 emissions | |||
Winter barley | kg ha−1 | 136.7 a | 38.0 b |
Maize | kg ha−1 | 159.5 a | 33.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Wojewódzki, P. A Strip-Till One-Pass System as a Component of Conservation Agriculture. Agronomy 2020, 10, 2015. https://doi.org/10.3390/agronomy10122015
Jaskulska I, Romaneckas K, Jaskulski D, Wojewódzki P. A Strip-Till One-Pass System as a Component of Conservation Agriculture. Agronomy. 2020; 10(12):2015. https://doi.org/10.3390/agronomy10122015
Chicago/Turabian StyleJaskulska, Iwona, Kestutis Romaneckas, Dariusz Jaskulski, and Piotr Wojewódzki. 2020. "A Strip-Till One-Pass System as a Component of Conservation Agriculture" Agronomy 10, no. 12: 2015. https://doi.org/10.3390/agronomy10122015
APA StyleJaskulska, I., Romaneckas, K., Jaskulski, D., & Wojewódzki, P. (2020). A Strip-Till One-Pass System as a Component of Conservation Agriculture. Agronomy, 10(12), 2015. https://doi.org/10.3390/agronomy10122015