Monitoring Grassland Management Effects on Soil Organic Carbon—A Matter of Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling and Geostatistical Analyses
2.3. Physicochemical Soil Analyses
3. Results
3.1. SOC Concentrations and Bulk Density
3.2. SOC Stocks and Spatial Patterns
3.3. Pedological Soil Parameters in 3-ha Plots Showing Contrasted Response (SOC Gain or Loss) to Similar Treatment
4. Discussion
4.1. Grassland Management Effects on SOC Storage
4.1.1. Cropland Versus Grassland
4.1.2. Management of Temporary Grassland
4.2. The Importance of Scale for Assessing Management Effects on SOC Storage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- IPCC. Fifth Assessment Report WG1; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glo. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning agriculture and climate policy. Nat. Clim. Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Sanderman, J.; Heng, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. National Acad. Sci. 2017, 114, 9575–9580. [Google Scholar] [CrossRef] [Green Version]
- FAO. 2016. Available online: www.fao.org/climate-change (accessed on 23 January 2020).
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nat. Cell Biol. 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F.; Franzluebbers, A.; Chabbi, A. Grassland–Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality. Environ. Manag. 2015, 56, 1065–1077. [Google Scholar] [CrossRef]
- Stahl, C.; Fontaine, S.; Klumpp, K.; Picon-Cochard, C.; Grise, M.M.; Dezécache, C.; Ponchant, L.; Freycon, V.; Blanc, L.; Bonal, D.; et al. Continuous soil carbon storage of old permanent pastures in Amazonia. Glob. Chang. Biol. 2017, 23, 3382–3392. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Chang. Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Crème, A.; Ngo, P.; Velásquez, G.; Mora, M.; Chabbi, A. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J. Soil Sci. Plant Nutr. 2015, 15, 353–371. [Google Scholar] [CrossRef] [Green Version]
- European Commission. CAP Explained: Direct Payments for Farmers 2015–2020; Publications Office of the EU: Luxembourg, 2017. [Google Scholar]
- Acharya, B.S.; Rasmussen, J.; Eriksen, J. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agric. Ecosyst. Environ. 2012, 153, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Crème, A.; Rumpel, C.; Le Roux, X.; Romian, A.; Lan, T.; Chabbi, A. Fertilised ley grassland has a legacy effect on soil organic matter quantity and quality and microbial activities favourable to C sequestration. Soil Biol. Biochem. 2018, 122, 203–210. [Google Scholar] [CrossRef]
- Richardson, A.E.; Kirkby, C.A.; Banerjee, S.; Kirkegaard, J.A. The inorganic nutrient cost of building soil carbon. Carbon Manag. 2014, 5, 265–268. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Van Kessel, C.; Hungate, B.; Oenema, O.; Powlson, D.S.; Van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkby, C.; Richardson, A.E.; Wade, L.J.; Passioura, J.B.; Batten, G.D.; Blanchard, C.; Kirkegaard, J.A. Nutrient availability limits carbon sequestration in arable soils. Soil Biol. Biochem. 2014, 68, 402–409. [Google Scholar] [CrossRef]
- Schipper, L.A.; Parfitt, R.; Fraser, S.; Littler, R.; Baisden, W.; Ross, C.W. Soil order and grazing management effects on changes in soil C and N in New Zealand pastures. Agric. Ecosyst. Environ. 2014, 184, 67–75. [Google Scholar] [CrossRef]
- INRA. Quelle Contribution de l’agriculture Française à la Réduction des Émissions de Gaz à Effet de Serre? INRA: Paris, France, 2013. [Google Scholar]
- McSherry, M.E.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. In Clays and Clay Minerals: Proceedings of the Seventh National Conference; Elsevier: Amsterdam, The Netherlands, 1960; pp. 317–327. [Google Scholar]
- Klumpp, K.; Fontaine, S.; Attard, E.; Le Roux, X.; Gleixner, G.; Soussana, J.-F. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J. Ecol. 2009, 97, 876–885. [Google Scholar] [CrossRef]
- Gilmullina, A.; Rumpel, C.; Blagodatskaya, E.; Chabbi, A. Management of grasslands by mowing versus grazing—Impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. 2020, 156, 103701. [Google Scholar] [CrossRef]
- Chabbi, A.; Kögel-Knabner, I.; Rumpel, C. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol. Biochem. 2009, 41, 256–261. [Google Scholar] [CrossRef]
- Moni, C.; Chabbi, A.; Nunan, N.; Rumpel, C.; Chenu, C. Spatial dependance of organic carbon–metal relationships: A multi-scale statistical analysis, from horizon to field. Geoderma 2010, 158, 120–127. [Google Scholar] [CrossRef]
- Senapati, N.; Chabbi, A.; Smith, P. Modelling daily to seasonal carbon fluxes and annual net ecosystem carbon balance of cereal grain-cropland using DailyDayCent: A model data comparison. Agric. Ecosyst. Environ. 2018, 252, 159–177. [Google Scholar] [CrossRef]
- Mathieu, C.; Pieltain, F. Analyse Physique des Sols: Méthodes Choisies; Tec & Doc Lavoisier: Washington, DC, USA, 1998. [Google Scholar]
- Pebesma, E.; Duin, R.N.M.; Burrough, P.A. Mapping sea bird densities over the North Sea: Spatially aggregated estimates and temporal changes. Environmetrics 2005, 16, 573–587. [Google Scholar] [CrossRef]
- Orton, T.; Pringle, M.; Page, K.L.; Dalal, R.C.; Bishop, T. Spatial prediction of soil organic carbon stock using a linear model of coregionalisation. Geoderma 2014, 230–231, 119–130. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Pebesma, E. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Kreyszig, E. Solution Manual 9th Edition Advanced Engineering; 2011; ISBN 978-0-470-91361-1. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjX3svDmt7tAhVFfd4KHVjXDE0QFjABegQIBBAC&url=http%3A%2F%2Fwww.icivil-hu.com%2FCivil-team%2F2nd%2FApplied%2Fsolution_manual_of_advanced_engineering_mathematics_by_erwin_kreyszig_9th_edition.pdf&usg=AOvVaw0RHZswAyar7Zh81zMjlwNn (accessed on 21 December 2020).
- Parfitt, R.L.; Whitton, J.S.; Theng, B.K.G. Surface reactivity of a horizons towards polar compounds estimated from water adsorption and water content. Soil Res. 2001, 39, 1105. [Google Scholar] [CrossRef]
- Theng, B.K.G.; Ristori, G.G.; Santi, C.A.; Percival, H.J. An improved method for determining the specific surface areas of topsoils with varied organic matter content, texture and clay mineral composition. Eur. J. Soil Sci. 1999, 50, 309–316. [Google Scholar] [CrossRef]
- Tamm, O. Eine Methode zur Bestim mung der anorganischen Komponenten des Gelkomplexes im Boden. Meddel Statens Skogsforsoksanst 1922, 19, 385–404. [Google Scholar]
- Mehra, O.P. Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate. Clays Clay Miner. 1958, 7, 317–327. [Google Scholar] [CrossRef]
- Gauch, H.G. Multivariate Analysis in Community Ecology; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Arrouays, D.; Balesdent, J.; Germon, J.C.; Jayet, P.A.; Soussana, J.F.; Stengel, P. Increasing Carbon Stocks in French Agricultural Soils? INRA: Paris, France, 2002. [Google Scholar]
- Senapati, N.; Chabbi, A.; Gastal, F.; Smith, P.; Mascher, N.; Loubet, B.; Cellier, P.; Naisse, C. Net carbon storage measured in a mowed and grazed temperate sown grassland shows potential for carbon sequestration under grazed system. Carbon Manag. 2014, 5, 131–144. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Bruce, J. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ. Sci. Policy 1999, 2, 177–185. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Paustian, K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 2005, 72, 87–121. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate pledges. Nat. Cell Biol. 2018, 564, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, N.; Yu, Q.; Wang, R.; Zhang, Y.; Gao, Y.; Yu, G. Enhancement of Carbon Sequestration in Soil in the Temperature Grasslands of Northern China by Addition of Nitrogen and Phosphorus. PLoS ONE 2013, 8, e77241. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhou, X.; Luo, Y.; Yang, Y.; Fang, C.; Chen, J.; Li, B. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agric. Ecosyst. Environ. 2011, 140, 234–244. [Google Scholar] [CrossRef]
- Sochorová, L.; Jansa, J.; Verbruggen, E.; Hejcman, M.; Schellberg, J.; Kiers, E.T.; Johnson, N.C. Long-term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric. Ecosyst. Environ. 2016, 220, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Zopf, D.; Greiner, B.; Geerts, R.; Korvaar, H.; Thumm, U.; Don, A.; Heidkamp, A.; Flessa, H. Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agric. Ecosyst. Environ. 2018, 265, 144–155. [Google Scholar] [CrossRef]
- Bergstrom, D.W.; Monreal, C.M.; Jacques, E.S. Spatial dependence of soil organic carbon mass and its relationship to soil series and topography. Can. J. Soil Sci. 2001, 81, 53–62. [Google Scholar] [CrossRef]
- VandenBygaart, A.J.; Angers, D.A. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can. J. Soil Sci. 2006, 86, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Lal, R. The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons. Adv. Agron. 2005, 88, 35–66. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant. Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatté, C. Atmosphere-soil carbon transfer as a function of soil depth. Nat. Cell Biol. 2018, 559, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, G.; Bolinder, M.A.; Kirchmann, H.; Kätterer, T. Organic carbon stocks in topsoil and subsoil in long-term ley and cereal monoculture rotations. Biol. Fertil. Soils 2018, 54, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Strey, S.; Boy, J.; Strey, R.; Weber, O.; Guggenberger, G. Response of soil organic carbon to land-use change in central Brazil: A large-scale comparison of Ferralsols and Acrisols. Plant. Soil 2016, 408, 327–342. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; Von Lützow, M.; Marin-Spiotta, E.; Van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Zhang, C.; McGrath, D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 2004, 119, 261–275. [Google Scholar] [CrossRef]
- Percival, H.J.; Parfitt, R.L.; Scott, N.A. Factors controlling soil carbon levels in New Zealand grasslands: Is clay content important? Soil Sci. Soc. Am. J. 2000, 64, 1623–1630. [Google Scholar] [CrossRef]
- Chen, S.; Martin, M.P.; Saby, N.P.A.; Walter, C.; Angers, D.A.; Arrouays, D. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total. Environ. 2018, 630, 389–400. [Google Scholar] [CrossRef]
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil organic carbon stocks in Laos: Spatial variations and controlling factors. Glob. Chang. Biol. 2010, 16, 1380–1393. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Spörlein, P.; Geuss, U.; Hangen, E.; Reischl, A.; Schilling, B.; Angst, G.; van Lützow, M.; Kögel-Knabner, I. Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany). Geoderma Reg. 2014, 1, 67–78. [Google Scholar] [CrossRef]
- Mayes, M.; Marin-Spiotta, E.; Szymanski, L.; Erdoğan, M.A.; Ozdoğan, M.; Clayton, M. Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey. Geoderma 2014, 232–234, 517–527. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Von Lützow, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Kögel-Knabner, I. Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil Tillage Res. 2015, 146, 296–302. [Google Scholar] [CrossRef]
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Small Plot | |||||||||||
CCC | Continuous cropping | Maize | Wheat | Barley | Maize | Wheat | Barley | Maize | Wheat | Barley | Maize |
CGC | TG fertilized, 3 years | Maize | Wheat | Barley | Grassland N+ | Maize | Wheat | Barley | |||
GGC | TG fertilized, 6 years | Grassland N+ | Maize | Wheat | Barley | ||||||
GGC n- | TG unfertilized, 6 years | Grassland N− | Maize | Wheat | Barley | ||||||
GGG | Continuous grassland | Grassland N+ | |||||||||
Big Plot | |||||||||||
GGCb | TG fertilized, 6 years | Grassland N+ | Maize | Wheat | Barley | ||||||
GGCp | TG fertilized, 6 years, pastured | Grassland N+ | Maize | Wheat | Barley | ||||||
GGGb | Continuous grassland | Grassland N+ | |||||||||
GGGp | Continuous grassland, pastured | Grassland N+ |
Carbon | Nitrogen | Bulk Density | |||||
---|---|---|---|---|---|---|---|
mg g−1 | mg g−1 | g cm−3 | |||||
2005 | 2014 | 2005 | 2014 | 2005 | 2016 | ||
0–30 cm | Min | 7.61 | 7.96 | 0.76 | 0.83 | 1.26 | 1.40 |
Max | 16.91 | 19.15 | 1.70 | 1.91 | 1.47 | 1.65 | |
Average | 10.83 | 11.20 | 1.13 | 1.15 | 1.40 | 1.51 | |
Std | 1.54 | 1.70 | 0.15 | 0.17 | 0.06 | 0.05 | |
30–60 cm | Min | 2.26 | 2.56 | 0.36 | 0.33 | 1.37 | n.d. |
Max | 10.90 | 9.49 | 1.15 | 5.42 | 1.62 | n.d. | |
Average | 5.09 | 5.09 | 0.63 | 0.58 | 1.48 | n.d. | |
Std | 1.44 | 1.07 | 0.13 | 0.23 | 0.06 | n.d. | |
60–90 cm | Min | 1.62 | 1.59 | 0.33 | 0.17 | 1.48 | n.d. |
Max | 7.56 | 6.22 | 0.73 | 0.65 | 1.62 | n.d. | |
Average | 3.28 | 3.17 | 0.50 | 0.40 | 1.55 | n.d. | |
Std | 0.78 | 0.69 | 0.07 | 0.07 | 0.04 | n.d. |
0–30 cm | 30–60 cm | 60–90 cm | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC Stock | ΔC | Dynamic | SOC Stock | ΔC | Dynamic | SOC Stock | ΔC | Dynamic | |||||||||||||||||
2005 | 2014 | (9 y−1) | 2005 | 2014 | (9 y−1) | (y−1) | 2005 | 2014 | (9 y−1) | (y−1) | |||||||||||||||
t.ha−1 | SD | t.ha−1 | SD | t.ha−1 | SD | ‰ | t.ha−1 | SD | t.ha−1 | SD | t.ha−1 | SD | ‰ | t.ha−1 | SD | t.ha−1 | SD | t.ha−1 | SD | ‰ | |||||
CCC | 48.2 | 0.1 | 45.0 | 0.1 | −3.3 *** | 0.6 | −7.5h | 21.5 | 0.2 | 21.6 | 0.2 | 0.2 | 0.7 | 0.8d | 14.6 | 0.1 | 14.2 | 0.1 | −0.4 | 0.4 | −3.4e | ||||
CGC | 47.2 | 0.1 | 46.5 | 0.1 | −0.7 | 0.5 | −1.7g | 21.8 | 0.2 | 21.9 | 0.2 | 0.1 | 0.7 | 0.7d | 15.4 | 0.1 | 14.6 | 0.1 | −0.8 * | 0.4 | −6.1g | ||||
GGC | 49.8 | 0.1 | 50.5 | 0.1 | 0.8 | 0.6 | 1.7c | 23.0 | 0.2 | 24.3 | 0.2 | 1.3 | 0.8 | 6.2b | 15.3 | 0.1 | 15.9 | 0.1 | 0.6 | 0.4 | 4.2c | ||||
GGCn- | 46.7 | 0.1 | 46.5 | 0.1 | −0.2 | 0.5 | −0.4f | 20.7 | 0.2 | 21.6 | 0.2 | 0.9 | 0.7 | 4.6b | 14.6 | 0.1 | 13.8 | 0.1 | −0.7 | 0.4 | −5.6f | ||||
GGG | 47.2 | 0.1 | 52.1 | 0.1 | 4.9 *** | 0.5 | 11.6a | 23.9 | 0.2 | 23.3 | 0.2 | −0.6 | 0.7 | −2.8e | 15.9 | 0.1 | 15.0 | 0.1 | −0.9 * | 0.4 | −6.5g | ||||
GGCb | 53.8 | 0.3 | 54.3 | 0.2 | 0.6 | 1.4 | 1.2d | 23,4 | 0.5 | 22.7 | 0.3 | −0.7 | 1.7 | −3.3f | 14.1 | 0.3 | 15.0 | 0.2 | 0.9 | 0.8 | 7.0b | ||||
GGCp | 61.4 | 0.4 | 57.1 | 0.2 | −4.3 ** | 1.7 | −7.9i | 19.1 | 0.5 | 19.9 | 0.3 | 0.8 | 1.4 | 4.7c | 14.2 | 0.3 | 13.5 | 0.2 | −0.8 | 0.9 | −5.9g | ||||
GGGb | 54.9 | 0.3 | 55.1 | 0.2 | 0.2 | 1.4 | 0.4e | 20.6 | 0.5 | 19.9 | 0.3 | −0.7 | 1.6 | −3.7f | 13.9 | 0.3 | 14.2 | 0.2 | 0.3 | 0.9 | 2.0d | ||||
GGGp | 62.2 | 0.4 | 64.0 | 0.2 | 1.8 | 1.8 | 3.2b | 21.0 | 0.5 | 23.7 | 0.3 | 2.7 | 1.7 | 14.2a | 14.7 | 0.3 | 15.9 | 0.2 | 1.2 | 1.0 | 9.0a |
SOC Stock | ΔC | Dynamic | |||||
---|---|---|---|---|---|---|---|
2005 | 2014 | (9 y−1) | (y−1) | ||||
t.ha−1 | SD | t.ha−1 | SD | t.ha−1 | SD | ‰ | |
CCC | 84.8 | 0.3 | 81.3 | 0.2 | −3.5 ** | 1.3 | −4.6h |
CGC | 85.1 | 0.2 | 83.7 | 0.2 | −1.4 | 1.2 | −1.9g |
GGC | 88.7 | 0.3 | 91.2 | 0.2 | 2.5 | 1.3 | 3.1c |
GGCn- | 82.7 | 0.6 | 82.6 | 0.4 | −0.1 | 1.0 | −0.2e |
GGG | 87.8 | 0.2 | 91.0 | 0.2 | 3.2 * | 1.3 | 4b |
GGCb | 91.8 | 0.2 | 92.4 | 0.2 | 0.7 | 3.5 | 0.8d |
GGCp | 95.5 | 0.7 | 91.1 | 0.4 | −4.3 | 3.3 | −5.1i |
GGGb | 90.3 | 0.7 | 89.4 | 0.4 | −0.8 | 4.0 | −1f |
GGGp | 98.5 | 0.7 | 103.9 | 0.4 | 5.4 | 3.6 | 6.1a |
Clay (<2 µm) g kg−1 | Fine Silt (2–20 µm) g kg−1 | Coarse Silt (20–50 µm) g kg−1 | Fine Sand (50–200 µm) g kg−1 | Coarse Sand (200–2000 µm) g kg−1 | Sio g 100 g−1 | Alo g 100 g−1 | Feo g 100 g−1 | Si g 100 g−1 | Al g 100 g−1 | Fe g 100 g−1 | SSA m2 g−1 | Resistivity (0–50 cm) ohm m−1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GGCb | 202.7 a | 373.8 a | 271.5 a | 66.0 a | 86.0 a,b | 0.0218 a | 0.114 a | 0.297 a | 0.0678 a | 0.332 a | 2.901 a | 36.78 a | 134.5 a |
GGCp | 181.3 a | 383.0 a | 299.2 a | 73.7 a | 62.8 b | 0.0208 a | 0.108 a | 0.291 a | 0.0670 a | 0.290 a | 2.337 a | 35.57 a | 83.2 b |
GGGb | 193.5 a | 367.5 a | 283.8 a | 68.8 a | 86.3 a,b | 0.0218 a | 0.115 a | 0.293 a | 0.0705 a | 0.334 a | 2.973 a | 35.48 a | 79.3 b |
GGGp | 188.3 a | 359.2 a | 283.7 a | 69.2 a | 99.7 a | 0.019 a | 0.118 a | 0.315 a | 0.0652 a | 0.333 a | 2.895 a | 36.72 a | 91.5 b |
C gain | 197.8 a’ | 357.4 b’ | 274.6 b’ | 67.4 a’ | 102.8 a’ | 0.0224 a’ | 0.121 a’ | 0.312 a’ | 0.0745 a’ | 0.354 a’ | 3.240 a’ | 37.91 a’ | 100.2 a’ |
C loss | 187.7 a’ | 378.9 a’ | 290.5 a’ | 70.6 a’ | 72.3 b’ | 0.0200 a’ | 0.110 b’ | 0.291 a’ | 0.0634 a’ | 0.303 b’ | 2.499 b’ | 35.08 a’ | 95.3 a’ |
Soil Organic Carbon | SOC Stock Change | |||
---|---|---|---|---|
2005 | 2014 | |||
t ha−1 | t ha−1 | ha−1 9 y−1 | ‰ y−1 | |
GGCb | 53.37 c | 54.34 b | 0.97 a | 2.010 a |
GGCp | 61.60 a,b | 57.16 b | −4.45 b | −7.98 b |
GGGb | 55.71 b,c | 55.52 b | −0.19 a | 0.86 a |
GGGp | 62.70 a | 64.92 a | 2.22 a | 4.36 a |
C gain | 53.37 b’ | 57.70 a’ | 4.33 a’ | 8.87 a’ |
C loss | 61.33 a’ | 58.15 a’ | −3.17 b’ | −5.59 b’ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crème, A.; Rumpel, C.; Malone, S.L.; Saby, N.P.A.; Vaudour, E.; Decau, M.-L.; Chabbi, A. Monitoring Grassland Management Effects on Soil Organic Carbon—A Matter of Scale. Agronomy 2020, 10, 2016. https://doi.org/10.3390/agronomy10122016
Crème A, Rumpel C, Malone SL, Saby NPA, Vaudour E, Decau M-L, Chabbi A. Monitoring Grassland Management Effects on Soil Organic Carbon—A Matter of Scale. Agronomy. 2020; 10(12):2016. https://doi.org/10.3390/agronomy10122016
Chicago/Turabian StyleCrème, Alexandra, Cornelia Rumpel, Sparkle L. Malone, Nicolas P. A. Saby, Emmanuelle Vaudour, Marie-Laure Decau, and Abad Chabbi. 2020. "Monitoring Grassland Management Effects on Soil Organic Carbon—A Matter of Scale" Agronomy 10, no. 12: 2016. https://doi.org/10.3390/agronomy10122016
APA StyleCrème, A., Rumpel, C., Malone, S. L., Saby, N. P. A., Vaudour, E., Decau, M. -L., & Chabbi, A. (2020). Monitoring Grassland Management Effects on Soil Organic Carbon—A Matter of Scale. Agronomy, 10(12), 2016. https://doi.org/10.3390/agronomy10122016