Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fresh-Cut Lettuce: Material and Handling
2.2. Fresh-Cut Lettuce: Determinations
2.3. Baby Leaves (Spinach and Rocket): Material and Handling
2.4. Baby Leaves (Spinach and Rocket): Determinations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fresh-Cut Lettuce
3.2. Baby Leaves (Spinach and Rocket)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Manson, J.E.; Lee, I.M.; Cole, S.R.; Hennekens, C.H.; Willett, W.C.; Buring, J.E. Fruit and vegetable intake and risk of cardiovascular disease: The Women’s Health Study. Am. J. Clin. Nutr. 2000, 72, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Sánchez, A.; Luna, M.C.; Selma, M.V.; Tudela, J.A.; Abad, J.; Gil, M.I. Baby-leaf and multi-leaf of green and red lettuces are suitable raw materials for the fresh-cut industry. Postharvest Biol. Technol. 2012, 63, 1–10. [Google Scholar] [CrossRef]
- Ragaert, P.; Verbeke, W.; Devlieghere, F.; Debevere, J. Consumer perception and choice of minimally processed vegetables and packaged fruits. Food Qual. Prefer. 2004, 15, 259–270. [Google Scholar] [CrossRef]
- Pandrangi, S.; LaBorde, L.F. Retention of folate, carotenoids, and other quality characteristics in commercially packaged fresh spinach. J. Food Sci. 2004, 69, C702–C707. [Google Scholar] [CrossRef]
- Ares, G.; Martinez, I.; Lareo, C.; Lema, P. Failure criteria based on consumers’ rejection to determine the sensory shelf life of minimally processed lettuce. Postharvest Biol. Technol. 2008, 49, 255–259. [Google Scholar] [CrossRef]
- Wang, C.Y. Leafy, floral and succulent vegetables. In Postharvest Physiology and Pathology of Vegetables, 2nd ed.; Bartz, J.A., Brecht, J.K., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2003; pp. 599–623. [Google Scholar]
- Hodges, D.M.; Toivonen, P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol. Technol. 2008, 48, 155–162. [Google Scholar] [CrossRef]
- King, A.D.; Magnuson, J.A.; Torok, T.; Goodman, N. Microbial flora and storage quality of partially processed lettuce. J. Food Sci. 1991, 56, 459–461. [Google Scholar] [CrossRef]
- Jacxsens, L.; Devlieghere, F.; Debevere, J. Temperature dependence of shelf life as affected by microbial proliferation and sensory quality of equilibrium modified atmosphere packaged fresh produce. Postharvest Biol. Technol. 2002, 26, 59–73. [Google Scholar] [CrossRef]
- Rico, D.; Martin-Diana, A.B.; Barry-Ryan, C.; Frias, J.M.; Henehan, G.T.M.; Barat, J.M. Optimization of steamer jet-injection to extend the shelf life of fresh-cut lettuce. Postharvest Biol. Technol. 2008, 48, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Harrison, A.D.; McKellar, R.; Young, J.C.; Odumeru, J.; Piyasena, P.; Lu, X.; Mercer, D.G.; Karr, S. Determination of acceptability and shelf life of ready-to-use lettuce by digital image analysis. Food Res. Int. 2004, 37, 875–881. [Google Scholar] [CrossRef]
- Pereyra, L.; Roura, S.I.; del Valle, C.E. Phenylalanine ammonia lyase activity in minimally processed Romaine lettuce. LWT Food Sci. Technol. 2005, 38, 67–72. [Google Scholar] [CrossRef]
- Saltveit, M.E. Wound induced changes in phenolic metabolism and tissue browning are altered by heat-shock. Postharvest Biol. Technol. 2000, 21, 61–69. [Google Scholar] [CrossRef]
- Lopez-Galvez, G.; Saltveit, M.; Cantwell, M. The visual quality of minimally processed lettuces stored in air or controlled atmosphere with emphasis on romaine and iceberg types. Postharvest Biol. Technol. 1996, 8, 179–190. [Google Scholar] [CrossRef]
- Teng, Z.; Luo, Y.; Bornhorst, E.R.; Zhou, B.; Simko, I.; Trouth, F. Identification of romaine lettuce (Lactuca sativa var. longifolia) Cultivars with reduced browning discoloration for fresh-cut processing. Postharvest Biol. Technol. 1996, 156, 110931. [Google Scholar] [CrossRef]
- Roura, S.I.; Pereyra, L.; del Valle, C.E. Phenylalanine ammonia lyase activity in fresh cut lettuce subjected to the combined action of heat mild shocks and chemical additives. LWT Food Sci. Technol. 2008, 41, 919–924. [Google Scholar] [CrossRef]
- Wills, R.H.B.; Li, Y. Use of arginine to inhibit browning on fresh cut apple and lettuce. Postharvest Biol. Technol. 2016, 113, 66–68. [Google Scholar] [CrossRef]
- Rogers, G.; Titley, M.; Giggins, B.; Bauer, B.; Poyton, R.; Kocks, A.; McAuliffe, T.; Le Budd, J. Postharvest Improvement in Iceberg and Cos Lettuce to Extent Shelf Life for Fresh Cut Salads; Project Number: VX03092; Applied Horticultural Research: Eveleigh, Australia, 2006. [Google Scholar]
- Tudela, J.A.; Marin, A.; Martinez-Sanchez, A.; Luna, M.C.; Gil, M.I. Preharvest and postharvest factors related to off-odours of fresh-cut iceberg lettuce. Postharvest Biol. Technol. 2013, 86, 463–471. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Toivonen, P.M.A.; Delaquis, P.J. Effect of wash water temperature and chlorination on phenolic metabolism and browning of stored iceberg lettuce photosynthetic and vascular tissues. J. Agric. Food Chem. 2002, 50, 4503–4511. [Google Scholar] [CrossRef]
- Martinez-Sanchez, A.; Lozano-Pastor, P.; Artes-Hernandez, F.; Artes, F.; Aguayo, E. Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage. Postharvest Biol. Technol. 2019, 155, 310–319. [Google Scholar] [CrossRef]
- Tudela, J.A.; Marin, A.; Garrido, Y.; Cantwell, M.; Medina-Martinez, M.-S.; Gil, M.I. Off-odour development in modified atmosphere packaged baby spinach is an unresolved problem. Postharvest Biol. Technol. 2013, 75, 75–85. [Google Scholar] [CrossRef]
- Conte, A.; Conversa, G.; Scrocco, C.; Brescia, I.; Laverse, J.; Eliba, A.; Nobile, M.A.D. Influence of growing periods on the quality of baby spinach leaves at harvest and during storage as minimally processed produce. Postharvest Biol. Technol. 2008, 50, 190–196. [Google Scholar] [CrossRef]
- Pandjaitan, N.; Howard, L.R.; Morelock, T.; Gil, M.I. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J. Agric. Food Chem. 2005, 53, 8618–8623. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, G.J.J.; Rothwell, S.D.; Taylor, G. End of day harvest extends shelf life. HortScience 2005, 40, 1431–1435. [Google Scholar] [CrossRef]
- Klein, C. Grow Your Own Vegetable; Octobus Publishing Group (Royal Horticultural Society): London, UK, 2007; p. 224. [Google Scholar]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 300. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.K.D.; Joblling, J.J.; Rogers, G.S. Influence of storage temperature on the seasonal shelf life of perennial wall rocket and annual garden rocket. Int. J. Veg. Sci. 2013, 19, 83–95. [Google Scholar] [CrossRef]
- Koukounaras, A.; Siomos, A.S.; Sfakiotakis, E. 1-Methylcyclopropene prevents ethylene induced yellowing of rocket leaves. Postharvest Biol. Technol. 2006, 41, 109–111. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Elia, A. Post-harvest performance of ready-to-eat wild rocket salad as affected by growing period, soilless cultivation system and genotype. Postharvest Biol. Technol. 2019, 156, 110909. [Google Scholar] [CrossRef]
- Ke, D.; Saltveit, M.E. Effects of calcium and auxin on russet spotting and phenylalanine ammonia-lyase activity in iceberg lettuce. HortScience 1986, 21, 1169–1171. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Ahvenainen, R. New approaches in improving the shelf life of minimally processed fruit and vegetables. Trends Food Sci. Technol. 1996, 7, 179–187. [Google Scholar] [CrossRef]
- Cantos, E.; Espin, J.C.; Tomas-Barberan, F.A. Effect of wounding on phenolic enzymes in six minimally processed lettuce cultivars upon storage. J. Agric. Food Chem. 2001, 49, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Allende, A.; Aguayo, E.; Artes, F. Microbial and sensory quality of commercial fresh processed red lettuce throughout the production chain and shelf life. Int. J. Food Microb. 2004, 91, 109–117. [Google Scholar] [CrossRef]
- Varoquaux, P.; Mazollier, J.; Albagnac, G. The influence of raw material characteristics on the storage life of fresh-cut butterhead lettuce. Postharvest Biol. Technol. 1996, 9, 127–139. [Google Scholar] [CrossRef]
- Peiser, G.; Lopez-Galvez, G.; Cantwell, M.I.; Saltveit, M.E. Phenylalanine ammonia-lyase inhibitors browning of cut lettuce. Postharvest Biol. Technol. 1998, 14, 171–177. [Google Scholar] [CrossRef]
- Tudela, J.A.; Hernandez, N.; Perez-Vicente, A.; Gil, M.I. Growing season climates affect quality of fresh-cut lettuce. Postharvest Biol. Technol. 2017, 123, 60–68. [Google Scholar] [CrossRef]
- Toivonen, P.M.A.; Hodges, D.M. Abiotic stress in harvested fruits and vegetables, abiotic stress in plants—Mechanisms and adaptations. In Abiotic Stress in Plants—Mechanisms and Adaptations; Shanker, A.K., Venkateswaelu, B., Eds.; InTech: Rijeka, Croatia, 2011; pp. 39–58. [Google Scholar]
Sampling | Spinach | Rocket | Greenhouse | Average T (°C) Spinach/Rocket | Days with Sunshine (%) Spinach/Rocket | ||||
---|---|---|---|---|---|---|---|---|---|
1st – 18/3/19 | √ | √ | Plastic | 9.7 | / | 11.6 | 76.9 | / | 69.2 |
2nd – 2/5/19 | √ | √ | Plastic | 14.4 | / | 15.9 | 45.5 | / | 85.7 |
3rd – 3/6/19 | √ | √ | Shade | 20.1 | / | 19.8 | 66.7 | / | 66.7 |
4th – 22/7/19 | - | √ | Shade | - | / | 25.7 | - | / | 88.9 |
5th – 6/9/19 | - | √ | Shade | - | / | 26.9 | - | / | 100 |
6th – 28/9/19 | √ | √ | Shade | 24.0 | / | 23.7 | 95.5 | / | 91.3 |
7th – 1/11/19 | √ | √ | Shade | 19.3 | / | 19.5 | 90.0 | / | 87.5 |
DF z | MS y | %TV x | ||
---|---|---|---|---|
Cultivar (A) | 5 | 7.24 | *** | 7.97 |
Leaf Position (B) | 1 | 2.75 | *** | 3.03 |
Piece on the Leaf (C) | 3 | 59.79 | *** | 65.88 |
A x B | 5 | 10.07 | *** | 11.09 |
A x C | 15 | 1.40 | *** | 1.55 |
B x C | 3 | 2.00 | *** | 2.20 |
A x B x C | 15 | 7.07 | *** | 7.79 |
Error | 96 | 0.44 |
Source of Variance | DF z | 0 Day | 2nd Day | 4th Day | 7th Day | ||||
---|---|---|---|---|---|---|---|---|---|
MS y | %TV x | MS y | %TV x | MS y | %TV x | MS y | %TV x | ||
Leaf Position (A) | 1 | 0.0117 *** | 84.8 | 0.0032 | 4.6 | 0.0216 | 28.0 | 0.0002 | 0.8 |
Piece Position (B) | 1 | 0.0016 * | 11.6 | 0.0461 * | 65.8 | 0.0448 * | 58.0 | 0.0233 ** | 90.0 |
A x B | 1 | 0.0002 | 1.5 | 0.0162 | 23.1 | 0.0032 | 4.1 | 0.0008 | 3.1 |
Error | 8 | 0.0003 | - | 0.0046 | - | 0.0076 | - | 0.0016 | - |
Source of Variance | DF z | 2nd Day | 4th Day | 7th Day | |||
---|---|---|---|---|---|---|---|
MS y | %TV x | MS y | %TV x | MS y | %TV x | ||
Leaf Position (A) | 1 | 0.083 | 25.0 | 1.333 | 16.0 | 0.021 | 1.0 |
Piece Position (B) | 1 | 0.083 | 25.0 | 5.333 ** | 64.0 | 1.688 * | 81.8 |
A x B | 1 | 0.083 | 25.0 | 1.333 | 16.0 | 0.188 | 9.1 |
Error | 8 | 0.083 | - | 0.333 | - | 0.167 | - |
Sampling | Storage (Days at 4 °C) | ||||
---|---|---|---|---|---|
0 | 4 | 7 | 10 | 12 | |
1st | 124.2 b | 124.1 ab | 124.3 a | 124.5 a | 124.0 a |
2nd | 124.1 b | 123.6 b | 123.7 ab | 123.4 ab | 122.3 b |
3rd | 122.1 c | 122.3 c | 122.9 bc | 122.3 bc | 119.8 c |
6th | 123.6 b | 123.9 ab | 122.5 c | 121.6 c | 122.6 b |
7th | 125.1 a | 124.4 a | 123.7 ab | 123.7 a | 123.2 ab |
Sampling | Storage (Days at 4 °C) | ||||
---|---|---|---|---|---|
0 | 4 | 7 | 10 | 12 | |
1st | 125.9 a | 125.8 a | 125.4 a | 124.5 a | 124.4 a |
2nd | 124.8 b | 124.1 b | 124.0 b | 123.8 ab | 122.2 b |
3rd | 124.7 b | 123.3 bc | 124.0 b | 122.3 c | 121.8 b |
4th | 123.8 c | 123.2 c | 123.0 cd | 122.8 c | 121.8 b |
5th | 123.8 c | 123.7 bc | 123.5 bcd | 122.5 c | 122.0 b |
6th | 124.2 bc | 123.5 bc | 122.9 d | 122.4 c | 122.4 b |
7th | 124.8 b | 123.7 bc | 123.8 bc | 123.0 bc | 122.0 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukounaras, A.; Bantis, F.; Karatolos, N.; Melissas, C.; Vezyroglou, A. Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables. Agronomy 2020, 10, 172. https://doi.org/10.3390/agronomy10020172
Koukounaras A, Bantis F, Karatolos N, Melissas C, Vezyroglou A. Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables. Agronomy. 2020; 10(2):172. https://doi.org/10.3390/agronomy10020172
Chicago/Turabian StyleKoukounaras, Athanasios, Filippos Bantis, Nikolaos Karatolos, Christos Melissas, and Antonios Vezyroglou. 2020. "Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables" Agronomy 10, no. 2: 172. https://doi.org/10.3390/agronomy10020172
APA StyleKoukounaras, A., Bantis, F., Karatolos, N., Melissas, C., & Vezyroglou, A. (2020). Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables. Agronomy, 10(2), 172. https://doi.org/10.3390/agronomy10020172