Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Weight Loss (%)
3.2. Firmness (N)
3.3. Decay (%)
3.4. TSS, Acidity, and TSS: Acid Ratio
3.5. Ascorbic Acid (Vitamin C)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ziegler, L.W.; Wolfe, H.S. Citrus Growing in Florida; University of Florida Press: Gainesville, FL, USA, 1961; p. 248. [Google Scholar]
- Morse, P.C., Jr. “History, Propagation and Distribution of the Murcott (Smith Tangerine)”; Florida Tangerine Cooperative: Gainesville, FL, USA, 1957. [Google Scholar]
- Futch, S.H.; Jackson, L.K. Murcott (Honey Tangerine); The Horticultural Sciences Department Series HS174; UF/IFAS Extension: Gainesville, FL, USA, 2003; p. 2. [Google Scholar]
- Hodgson, R.W. Horticultural varieties of citrus. In The Citrus Industry, 2nd ed.; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California Press: Berkeley, CA, USA, 1967; Volume I, History, World Distribution, Botany, and Varieties; pp. 431–592. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAO Statistics; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 1 December 2019).
- Samra, N.R.; Shalan, A.M.; Eltair, B.T. Efficacy of different edible coatings in improving “Murcott tangor” fruit qualities during chilled and ambient storage. J. Plant Prod. Mansoura Univ. 2014, 5, 1283–1302. [Google Scholar]
- Nunes, M.C.N. Impact of environmental conditions on fruit and vegetable quality. Stewart Postharvest Rev. 2008, 4, 1–14. [Google Scholar]
- Burns, J.K.; Baldwin, E.A. Glycosidase activities in grapefruit flavedo, albedo and juice vesicles during maturation and senescence. Physiol. Plant. 1994, 90, 37–44. [Google Scholar] [CrossRef]
- Alam-Eldein, S.M.; Rouseff, R.L.; Albrigo, L.G. Characterization of citrus peel maturation to reduce postharvest storage problems in Florida. Int. J. Agric. Food Res. 2017, 6, 1–19. [Google Scholar]
- Liu, F.W. Development and Application of Citrus Storage Technologies with Concurrent Consideration of Fruit Quality Preservation, Energy Use, and Costs. In Proceedings of the AARDO Workshop on Technology on Reducing Post-harvest Losses and Maintaining Quality of Fruits and Vegetables, Taipei, Taiwan, 3–9 October 2010; pp. 26–47. [Google Scholar]
- Kader, A.A. Postharvest technology of horticultural crops. Ethiop. J. Appl. Sci. Technol. 2013, 1, 1–8. [Google Scholar]
- Abdelal, H.R. Acetyl salicylic acid as a promising fungicide for controlling certain fungi. Egypt. J. Phytopathol. 1983, 13, 19–22. [Google Scholar]
- Vazirimehr, M.R.; Rigi, K. Effect of salicylic acid in agriculture. Int. J. Plant Anim. Environ. Sci. 2014, 4, 291–296. [Google Scholar]
- Barakat, M.R.; Mohsen, A.T.; Mohamed, A.A. Effect of some natural oils and salicylic acid on fruit quality of Valencia orange during storage. J. Hort. Sci. Ornamen. Plants. 2015, 7, 66–70. [Google Scholar]
- Lolaei, A.; Kaviani, B.; Rezaei, M.A.; Raad, M.K.; Mohammad, R. Effect of pre- and postharvest treatment of salicylic acid on ripening of fruit and overall quality of strawberry (Fragaria ananasa Duch cv. Camarosa) fruit. Ann. Biol. Res. 2012, 3, 4680–4684. [Google Scholar]
- Tareen, M.J.; Abbasi, N.A.; Hafiz, I.A. Effect of salicylic acid treatments on storage life of peach fruits cv. ‘Flordaking’. Pak. J. Bot. 2012, 44, 119–124. [Google Scholar]
- Awad, R.M. Effect of post-harvest salicylic acid treatments on fruit quality of peach cv. “Florda prince” during cold storage. Aust. J. Basic Appl. Sci. 2013, 7, 920–927. [Google Scholar]
- Zhu, F.; Chen, J.; Xiao, X.; Zhang, M.; Yun, Z.; Zeng, Y.; Xu, J.; Cheng, Y.; Deng, X. Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chem. 2016, 207, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Singh, Z.; Khan, A.S.; Iqbal, Z. Preharvest applications of salicylic acid maintain the rind textural properties and reduce fruit rot and chilling injury of Sweet orange during cold storage. Pak. J. Agric. Sci. 2013, 50, 559–569. [Google Scholar]
- Reis, R.S.; Vale, E.M.; Heringer, A.S.; Al, E. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J. Proteomics 2016, 130, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Mustafavi, S.H.; Badi, H.N.; Sekara, A.; Al, E. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol. Plant. 2018, 40, 102. [Google Scholar] [CrossRef]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Sawhney, R.K.; Tiburcio, A.F.; Altabella, T.; Galston, A.W. Polyamines in plants: An overview. J. Cell Mol. Biol. 2003, 2, 1–12. [Google Scholar]
- Xu, C.; Wu, X.; Zhang, H. Impact of D-Arg on drought resistance and endogenous polyamines in mycorrhizal Pinus massoniana. J. Nanjing For. Univ. 2009, 33, 019–023. [Google Scholar]
- Masson, P.H.; Takahashi, T.; Angelini, R. Molecular mechanisms underlying polyamine functions in plants. Front. Plant Sci. 2017, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Aguilar, G.A.; Zacarias, L.; Perez-Amador, M.A.; Carbonell, J.; Lafuente, M.T. Polyamine content and chilling susceptibility are affected by seasonal changes in temperature and by conditioning temperature in cold-stored ‘Fortune’ mandarin fruit. Physiol. Plant. 2000, 108, 140–146. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q. Effects of polyamines and salicylic acid on postharvest storage of ‘Ponkan’ mandarin. Acta Hort. 2004, 632, 317–320. [Google Scholar] [CrossRef]
- Martinez-Romero, D.; Valero, D.; Serrano, M.; Martinez-Sanchez, F.; Riquelme, F. Effects of post-harvest putrescine and calcium treatments on reducing mechanical damage and polyamines and abscisic acid levels during lemon storage. J. Sci. Food Agric. 1999, 79, 1589–1595. [Google Scholar] [CrossRef]
- Valero, D.; Martinez, R.D.; Serrano, M.; Riquelme, F. Influence of postharvest treatment with putrescine and calcium on endogenous polyamines, firmness, and abscisic acid in lemon (Citrus lemon L. Burm cv. Verna). J. Agric. Food Chem. 1998, 46, 2102–2109. [Google Scholar] [CrossRef]
- Davarynejad, G.H.; Zarei, M.; Ardakani, E.; Nasrabadi, M.E. Influence of putrescine application on storability, postharvest quality and antioxidant activity of two Iranian apricot (Prunus armeniaca L.) cultivars. Not. Sci. Biol. 2013, 5, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.R.M.; Abd El-Razek, E.; Emam, H.S.; Ahmed, D.M.M. Pre-storage application of putrescine to improve fruit quality, color parameters and extending shelf life of ‘Hollywood’ plum (Prunus salicina L.). Middle East J. Agric. Res. 2014, 3, 1135–1144. [Google Scholar]
- Serrano, M.; Martinez-Romero, D.; Guillen, F.; Valero, D. Effect of exogenous putrescine in improving shelf life of four plum cultivars. Postharvest Biol. Technol. 2003, 30, 259–271. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Chen, F. A study on polyamine change and browning of fruit during cold storage of litchi (Litchi chinensis). Postharvest Biol. Technol. 1995, 5, 245–250. [Google Scholar] [CrossRef]
- Zokaei, K.M.R.; Asna, A.M.; Ershadi, A.; Ahmadi, A. Effect of exogenous putrescine on postharvest life of strawberry (Fragaria ananassa) fruit, cultivar Selva. Agric. Res. 2006, 6, 15–25. [Google Scholar]
- Barman, K.; Ram, A.; Pal, R.K. Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Sci. Hortic. 2011, 130, 795–800. [Google Scholar] [CrossRef]
- Razzaq, K.; Khan, A.S.; Malik, A.U.; Shahid, M.; Ullah, S. Role of putrescine in regulating fruit softening and antioxidative enzyme systems in ‘Samar Bahisht Chaunsa’ mango. Postharvest Biol. Technol. 2014, 96, 23–32. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahimi, S. Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera) quality during postharvest period. Food Chem. 2016, 196, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Grierson, W.; Miller, W.M. Storage of Citrus Fruits. In Fresh Citrus Fruits; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source, Inc.: Longboat Key, FL, USA, 2006; pp. 547–581. [Google Scholar]
- Kader, A.A. Increasing Food Availability by Reducing Postharvest Losses of Fresh Produce. In Proceedings of the 5th International Postharvest Symposium, Verona, Italy, 6–11 June 2004; pp. 2169–2176. [Google Scholar]
- Kader, A.A. Modified atmospheres during transport and storage. In Posharvest Technology of Horticultural Crops; Kader, A.A., Ed.; University of California, Division of Agriculture and Natural Resource: Oakland, CA, USA, 2002; pp. 135–144. [Google Scholar]
- Arras, G.; Usai, M. Response of Murcott mandarins to storage temperature. Adv. Hort. Sci. 1991, 5, 99–103. [Google Scholar]
- Obenland, D.; Collin, S.; Sievert, J.; Arpaia, M.L. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biol. Technol. 2013, 82, 6–14. [Google Scholar] [CrossRef]
- Grierson, W.; Ben-Yehoshua, S. Storage of citrus fruit. In Fresh Citrus Fruit; Wardowski, W.F., Nayg, S., Grierson, W., Eds.; AVI, Van Nostrand Reinhold Co. Inc.: New York, NY, USA, 1986; pp. 479–507. [Google Scholar]
- Liu, F.W.; Pan, C.H.; Hsueh, S.M.; Hung, T.H. Influences of maturity at harvest and storage temperature on the storability of ‘Ponkan’ mandarin (Citrus reticulata Blanco). J. Chin. Soc. Hort. Sci. 1998, 44, 239–253. [Google Scholar]
- Strano, M.C.; Altieri, G.; Admane, N.; Genovese, F.; Di Renzo, G.C. Advance in Citrus Postharvest Management: Diseases, Cold Storage and Quality Evaluation. In Citrus Pathology; Gill, H., Garg, H., Eds.; Open Access Book; IntechOpen Limited: London, UK, 2017; Available online: https://www.intechopen.com/books/citrus-pathology/advance-in-citrus-postharvest-management-diseases-cold-storage-and-quality-evaluation (accessed on 27 November 2019). [CrossRef] [Green Version]
- Lafuente, M.T.; Zacarias, L.; Sala, J.M.; Sanchez-Ballesta, M.T.; Gosalbes, M.J.; Marcos, J.F.; Gonzalez-Candelas, L.; Lluch, Y.; Granell, A. Understanding the basis of chilling injury in citrus fruit. Acta Hortic. 2005, 682, 831–842. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S. Transportation, water stress and gas exchange. In Postharvest Biology of Vegetables; Wiechmann, J., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1987; pp. 113–170. [Google Scholar]
- Norman, S.M.; Houck, L.G. The role of volatiles in storage of citrus fruits. Proc. Int. Soc. Citric. 1977, 1, 238–242. [Google Scholar]
- El-Kady, M.; Samra, N.R.; El-Eryan, E.E. Physiological studies on storage life of apple fruits. J. Agric. Sci. Mansoura Univ. 2007, 32, 2773–2786. [Google Scholar]
- Mazumdar, B.C.; Majumder, K. Methods on Physico-Chemical Analysis of Fruits; College of Agriculture, Calcutta University: Calcutta, India, 2003; pp. 108–109. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Rangana, S.H. Manual of Analysis of Fruit and Vegetable Products; Tata McGraw-Hill publishing Company Limited: New Delhi, India, 1977; p. 634. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1990; p. 593. [Google Scholar]
- Duncan, D.B. Multiple ranges and multiple F. test. Biometries 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Albrigo, L.G.; Ismail, M.A. Shipment and storage of Florida grapefruit using unipack film barriers. Proc. Int. Soc. Citric. 1981, 2, 714–717. [Google Scholar]
- Ben-Yehoshua, S. Gas exchange, transpiration and the commercial deterioration in storage of orange fruit. J. Am. Soc. Hort. Sci. 1969, 94, 524–528. [Google Scholar]
- Kaufmann, M.R. Water potential components in growing citrus fruits. Plant Physiol. 1970, 46, 145–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawada, K.; Albrigo, L.G. Effects of film packaging, in-carton air filters, and storage temperatures on the keeping quality of Florida grapefruit. Proc. Fla. Sta. Hort. Soc. 1979, 92, 209–212. [Google Scholar]
- Grierson, W.; Wardowski, W.F. Relative humidity effects on the postharvest life of fruits and vegetables. HortScience 1978, 13, 22–28. [Google Scholar]
- Levy, Y. Effect of evaporative demand on water relations of Citrus limon. Anal. Bot. 1980, 46, 695–700. [Google Scholar] [CrossRef]
- El-Otmani, M. Growth regulator improvement of postharvest quality. In Fresh Citrus Fruits; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Service Source, Inc.: Longboat Key, FL, USA, 2006; pp. 67–104. [Google Scholar]
- Lafuente, M.T.; Martinez-Tellez, M.A.; Zacarias, L. Abscisic acid in the response of ‘Fortune’ mandarins to chilling. Effect of Maturity and high-temperature conditioning. J. Sci. Food Agric. 1997, 73, 494–502. [Google Scholar] [CrossRef]
- Fahmy, M.A.; Abd El-Razek, A.M.; Sultan, M.Z.; Abd-Alhafeez, A.A.; Elnaggar, I.A. Influence of storage temperature on quality and storability of Murcott tangor (Citrus Reticulata × Citrus Sinensis (L.) Osbeck) fruits. Nat. Sci. 2018, 16, 150–154. [Google Scholar]
- Krishna, H.; Das, B.; Attri, B.L.; Kumar, A.; Ahmed, N. Interaction between different pre-harvest and postharvest treatments on shelf life extension of ‘Oregon Spur’ apple. Fruits 2012, 67, 31–40. [Google Scholar] [CrossRef]
- Amanullah, S.; Sajid, M.; Qamar, M.B.; Ahmad, S. Postharvest treatment of salicylic acid on guava to enhance the shelf life at ambient temperature. Int. J. Biosci. 2017, 10, 92–106. [Google Scholar]
- Martinez-Romero, D.; Serrano, M.; Carbonell, A.; Burgos, L.; Riquelme, F.; Valero, D. Effect of postharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot. J. Food Sci. 2002, 67, 1706–1712. [Google Scholar] [CrossRef]
- Davarynejad, G.H.; Zarei, M.; Nasrabadi, M.E.; Ardakani, E. Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv. ‘Santa Rosa’. J. Food Sci. Technol. 2015, 52, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Zaghloul, A.E.; El-Hadidy, J.A.; Abo Ogiela, H.M. Effect of putrescine application on fruit quality of Florida Prince and Early Grande peaches during cold Storage. Alex. J. Agric. Sci. 2016, 61, 587–596. [Google Scholar]
- Rajkumar, M.; Karuppaiah, P.; Kandasamy, R. Effect of calcium and gibberellic acid on postharvest behaviour of papaya cv. Co2. Ind. J. Hortic. 2005, 62, 327–331. [Google Scholar]
- Hosseini, M.S.; Fakhar, Z.; Babalar, M.; Askari, M.A. Effect of pre-harvest putrescine treatment on quality and postharvest life of pear cv. Spadona. Adv. Hort. Sci. 2017, 31, 11–17. [Google Scholar]
- Shu, S.; Yuan, Y.; Chen, J.; Sun, J.; Zhang, W.; Tang, Y.; Zhong, M.; Guo, S. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci. Rep. 2015, 5, 14390. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, E.A. Citrus fruit. In The Biochemistry of Fruit Ripening; Seymour, G.B., Taylor, J.E., Tucker, G.A., Eds.; Chapman and Hall: New York, NY, USA, 1993; pp. 107–149. [Google Scholar]
- Grierson, W. Anatomy and Physiology. In Fresh Citrus Fruits; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida science source, Inc.: Longboat Key, FL, USA, 2006; pp. 1–22. [Google Scholar]
- Wutscher, H. Influence of night temperatures and day length on fruit shape of grapefruit. J. Am. Soc. Hort. Sci. 1976, 101, 573–575. [Google Scholar]
- Huber, D.J. The role of cell wall hydrolases in fruit softening. Hort. Rev. 1983, 5, 169–219. [Google Scholar]
- Eaks, I.L.; Sinclair, W.B. Cellulose-hemi-cellulose fractions in the alcohol-insoluble solid of Valencia orange peel. J. Food Sci. 1980, 45, 985–988. [Google Scholar] [CrossRef]
- Monselise, S.P. Growth regulators used to extend the picking season of grapefruits. In Proceedings of the International Citrus Congress, Orlando, FL, USA, 1–8 May 1977; pp. 393–398. [Google Scholar]
- Muramatsu, N.; Takahara, T.; Ogata, T.; Kojima, K. Changes in rind firmness and cell wall polysaccharides during citrus fruit development and maturation. HortScience 1999, 34, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Coggins, C.W., Jr. Gibberellin research on citrus rind aging problems. In Proceedings of the First International Citrus Symposium, Riverside, CA, USA, 16–26 March 1968; pp. 1177–1185. [Google Scholar]
- Spiegel-Roy, P.; Goldschmidt, E.E. Biology of Citrus; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Eckert, J.W.; Eaks, I.L. Postharvest disorders and diseases of citrus fruits. In The Citrus Industry; Reuther, W., Calavan, E.C., Carman, G.E., Eds.; University of California, Division of Agriculture and Natural Resource: Oakland, CA, USA, 1989; pp. 179–260. [Google Scholar]
- Valero, D.; Martinez, R.D.; Serrano, M. The role of polyamines in the improvement of the shelf life of fruits. Trends Food Sci. Technol. 2002, 13, 228–234. [Google Scholar] [CrossRef]
- Nissen, P. Stimulation of somatic embryogenesis in carrot by ethylene: Effects of modulators of ethylene biosynthesis and action. Physiol. Plant. 1994, 92, 397–403. [Google Scholar] [CrossRef]
- Kazemi, M.; Aran, M.; Zamani, S. Effect of salicylic acid treatments on quality characteristics of apple fruits during storage. Am. J. Plant Physiol. 2011, 6, 113–119. [Google Scholar] [CrossRef]
- Coggins, C.W., Jr.; Scora, R.W.; Lewis, L.N.; Knapp, C.F. Gibberellin-delayed senescence and essential oil changes in the Navel orange rind. J. Agric. Food Chem. 1969, 17, 807–809. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Brown, G.E.; Eckert, J.W. The biology and control of postharvest diseases. In Fresh Citrus Fruits; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source, Inc.: Longboat Key, FL, USA, 2006; pp. 353–355. [Google Scholar]
- Huang, Y.; Deverall, B.J.; Tang, W.H.; Wang, W.; Wu, F.W. Foliar application of acibenzolar-S-methyle and protection of postharvest Rock melons and hami melon from disease. Eur. J. Plant Pathol. 2000, 106, 651–656. [Google Scholar] [CrossRef]
- Zainuri, J.D.C.; Wearing, A.H.; Coates, L.; Terry, L. Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‘Kensington Pride’ mango fruit. Aust. J. Exp. Agric. 2001, 41, 805–813. [Google Scholar] [CrossRef]
- Khosroshahi, M.R.Z.; Ershadi, E.M.A. Effect of exogenous putrescine on post-harvest life of strawberry (Fragaria ananassa Duch.) fruit, cultivar ‘Selva’. Sci. Hortic. 2007, 114, 27–32. [Google Scholar] [CrossRef]
- Khosroshahi, M.R.Z.; Ershadi, E.M.A. Effect of exogenous putrescine treatment on the quality and storage life of peach (Prunus persica L.) fruit. Int. J. Postharvest Technol. Innovation. 2008, 1, 278–287. [Google Scholar] [CrossRef]
- Ishaq, S.; Rathore, H.A.; Majeed, S.; Awan, S.; Shah, S.Z.A. The studies on the physico-chemical and organoleptic characteristics of apricot (Prunus armeniaca L.) produced in Rawalakot, Azad Jammu and Kashmir during storage. Pak. J. Nutr. 2009, 8, 856–860. [Google Scholar] [CrossRef] [Green Version]
- Ting, S.V.; Attaway, J.A. Citrus fruits. In The Biochemistry of Fruits and Their Products; Hulme, A.C., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Schiffman-Nadel, M.; Cohen, E. Factors affecting keeping quality of lemons in storage. Int. Citrus Congr. 1973, 456–458. [Google Scholar]
- Huang, R.; Xia, R.; Lu, Y.; Hu, L.; Xu, Y. Effect of pre-harvest salicylic acid spray treatment on post-harvest antioxidant in the pulp and peel of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck). J. Sci. Food Agric. 2008, 88, 229–236. [Google Scholar] [CrossRef]
- Leslie, C.A.; Romani, R.J. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 1988, 88, 833–837. [Google Scholar] [CrossRef] [Green Version]
- Rana, G.S.; Sing, K. Studying on extending postharvest life of sweet orange fruits. Crop Res. 1992, 5, 154–157. [Google Scholar]
- Del Caro, A.; Piga, A.; Vacca, V.; Agabbio, M. Changes of flavonoids, vitamin C and antioxidants capacity in minimally processed citrus segments and juices during storage. Food Chem. 2004, 84, 99–105. [Google Scholar] [CrossRef]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P.; Murr, D.P.; Watkins, C.B. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol. 1997, 115, 137–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlidag, H.; Yildirim, E.; Turan, M. Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. J. Plant Nutr. Soil Sci. 2009, 172, 270–276. [Google Scholar] [CrossRef]
Treatments | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | ||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | |
Control | 0 | 3.29 a | 3.85 a | 5.17 a | 3.08 a | 0 | 3.39 a | 3.78 a | 4.12 a | 2.82 a |
SA 200 ppm | 0 | 2.01 d | 2.18 d | 3.48 d | 1.92 d | 0 | 2.11 c | 2.28 c | 2.38 d | 1.69 c |
SA 400 ppm | 0 | 1.83 e | 1.90 e | 3.32 e | 1.77 e | 0 | 1.80 e | 2.02 d | 2.16 e | 1.50 d |
Put. 50 ppm | 0 | 2.29 b | 2.87 b | 4.05 b | 2.30 b | 0 | 2.43 b | 2.75 b | 2.98 b | 2.04 b |
Put. 100 ppm | 0 | 2.08 c | 2.49 c | 3.68 c | 2.06 c | 0 | 1.93 d | 2.28 c | 2.53 c | 1.69 c |
Mean | 0 | 2.30 c | 2.66 b | 3.94 a | -- | 0 | 2.33 c | 2.62 b | 2.83 a | -- |
23 ± 1 °C and 60–70% RH | ||||||||||
Control | 0 | 6.43 a | 10.15 a | 14.48 a | 7.77 a | 0 | 7.11 a | 10.71 a | 14.53 a | 8.09 a |
SA 200 ppm | 0 | 5.17 d | 6.53 d | 6.65 d | 4.59 d | 0 | 5.31 d | 5.45 d | 5.70 d | 4.11 d |
SA 400 ppm | 0 | 4.91 e | 6.11 e | 6.25 e | 4.32 e | 0 | 4.98 e | 5.26 e | 5.43 e | 3.92 e |
Put. 50 ppm | 0 | 5.53 b | 6.85 b | 7.10 b | 4.87 b | 0 | 5.70 b | 5.81 c | 6.03 b | 4.38 b |
Put. 100 ppm | 0 | 5.31 c | 6.62 c | 6.91 c | 4.71 c | 0 | 5.59 c | 5.88 b | 5.96 c | 4.36 c |
Mean | 0 | 5.47 c | 7.25 b | 8.28 a | -- | 0 | 5.74 c | 6.62 b | 7.53 a | -- |
Treatments | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | ||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | |
Control | 0.311 d | 0.268 d | 0.247 e | 0.226 d | 0.263 e | 0.319 c | 0.289 c | 0.260 c | 0.240 d | 0.277 c |
SA 200 ppm | 0.314 b | 0.296 ab | 0.266 c | 0.249 b | 0.281 b | 0.338 ab | 0.309 b | 0.279 b | 0.250 c | 0.294 b |
SA 400 ppm | 0.316 a | 0.304 a | 0.284 a | 0.265 a | 0.292 a | 0.348 a | 0.328 a | 0.309 a | 0.270 a | 0.314 a |
Put. 50 ppm | 0.312 cd | 0.279 c | 0.259 d | 0.231 d | 0.271 d | 0.328 bc | 0.299 bc | 0.274 b | 0.255 bc | 0.289 b |
Put. 100 ppm | 0.313 bc | 0.287 bc | 0.272 b | 0.237 c | 0.277 c | 0.319 c | 0.304 b | 0.279 b | 0.260 b | 0.290 b |
Mean | 0.313 a | 0.287 b | 2.66 c | 0.242 d | -- | 0.330 a | 0.306 b | 0.280 c | 0.255 d | -- |
23 ± 1 °C and 60–70% RH | ||||||||||
Control | 0.311 d | 0.259 d | 0.201 c | 0.180 d | 0.238 d | 0.319 c | 0.267 d | 0.207 e | 0.178 e | 0.243 e |
SA 200 ppm | 0.314 b | 0.290 a | 0.274 a | 0.196 c | 0.269 b | 0.338 ab | 0.289 b | 0.270 b | 0.240 b | 0.284 b |
SA 400 ppm | 0.316 a | 0.281 b | 0.280 a | 0.245 a | 0.279 a | 0.348 a | 0.298 a | 0.279 a | 0.250 a | 0.294 a |
Put. 50 ppm | 0.312 cd | 0.274 c | 0.245 b | 0.181 d | 0.253 c | 0.328 bc | 0.269 d | 0.240 d | 0.221 d | 0.265 d |
Put.100 ppm | 0.313 bc | 0.287 bc | 0.255 b | 0.225 b | 0.268 b | 0.319 c | 0.275 c | 0.250 c | 0.230 c | 0.269 c |
Mean | 0.313 a | 0.276 b | 0.251 c | 0.206 d | -- | 0.330 a | 0.279 b | 0.249 c | 0.223 d | -- |
Treatments | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | ||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | |
Control | 0 | 0 | 0.35 a | 0.40 a | 0.19 a | 0 | 0 | 0.33 a | 0.42 a | 0.19 a |
SA 200 ppm | 0 | 0 | 0.00 d | 0.00 d | 0.00 d | 0 | 0 | 0.00 d | 0.00 d | 0.00 d |
SA 400 ppm | 0 | 0 | 0.00 d | 0.00 d | 0.00 d | 0 | 0 | 0.00 d | 0.00 d | 0.00 d |
Put. 50 ppm | 0 | 0 | 0.21 b | 0.29 b | 0.13 b | 0 | 0 | 0.23 b | 0.31 b | 0.14 b |
Put. 100 ppm | 0 | 0 | 0.15 c | 0.20 c | 0.09 c | 0 | 0 | 0.18 c | 0.22 c | 0.10 c |
Mean | 0 | 0 | 0.14 b | 0.18 a | -- | 0 | 0 | 0.15 b | 0.19 a | -- |
23 ± 1 °C and 60–70% RH | ||||||||||
Control | 0 | 0 | 1.28 a | 1.47 a | 0.69 a | 0 | 0 | 1.31 a | 1.45 a | 0.69 a |
SA 200 ppm | 0 | 0 | 0.40 c | 0.65 c | 0.26 c | 0 | 0 | 0.35 d | 0.63 d | 0.25 c |
SA 400 ppm | 0 | 0 | 0.31 d | 0.57 d | 0.22 d | 0 | 0 | 0.29 e | 0.48 e | 0.19 d |
Put. 50 ppm | 0 | 0 | 0.65 b | 0.70 c | 0.34 b | 0 | 0 | 0.68 b | 0.77 c | 0.36 b |
Put. 100 ppm | 0 | 0 | 0.60 b | 0.78 b | 0.35 b | 0 | 0 | 0.60 c | 0.88 b | 0.37 b |
Mean | 0 | 0 | 0.65 b | 0.83 a | -- | 0 | 0 | 0.65 b | 0.84 a | -- |
Treatments | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | ||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | |
Control | 12.15 ab | 12.68 a | 13.18 a | 13.48 d | 12.87 b | 12.48 a | 13.08 a | 13.45 ab | 14.87 a | 13.47 a |
SA 200 ppm | 12.13 b | 12.47 c | 12.97 c | 13.67 c | 12.81 c | 12.38 b | 12.8 7 c | 13.37 b | 14.07 d | 13.17 c |
SA 400 ppm | 12.05 c | 12.25 d | 12.79 d | 13.49 d | 12.65 d | 12.21 c | 12.65 d | 13.18 c | 13.88 e | 12.98 d |
Put. 50 ppm | 12.21 a | 12.57 b | 13.07 b | 13.87 a | 12.93 a | 12.11 d | 12.97 b | 13.47 a | 14.27 b | 13.21 b |
Put. 100 ppm | 12.20 a | 12.51 c | 13.01 bc | 13.81 b | 12.88 b | 12.17 cd | 12.91 bc | 13.41 ab | 14.21 c | 13.18 bc |
Mean | 12.14 d | 12.49 c | 13.00 b | 13.66 a | -- | 12.27 d | 12.89 c | 13.37 b | 14.26 a | -- |
23 ± 1 °C and 60–70% RH | ||||||||||
Control | 12.15 bc | 12.87 a | 13.57 a | 15.07 b | 13.42 a | 12.48 a | 13.48 a | 14.19 a | 15.68 a | 13.97 a |
SA 200 ppm | 12.13 c | 12.66 c | 13.36 c | 14.26 d | 13.10 c | 12.38 b | 13.02 d | 13.98 c | 14.87 d | 13.56 c |
SA 400 ppm | 12.05 d | 12.44 d | 13.11 d | 14.08 e | 12.92 d | 12.21 c | 12.97 d | 13.73 d | 14.69 e | 13.40 d |
Put. 50 ppm | 12.21 a | 12.76 b | 13.46 b | 14.40 c | 13.21 b | 12.11 d | 13.37 b | 14.08 b | 15.07 b | 13.66 b |
Put. 100 ppm | 12.20 ab | 12.70 bc | 13.40 bc | 15.40 a | 13.43 a | 12.17 cd | 13.27 c | 14.02 bc | 15.01 c | 13.61 b |
Mean | 12.15 d | 12.67 c | 13.38 b | 14.54 a | -- | 12.27 d | 13.22 c | 14.00 b | 15.06 a | -- |
Treatments | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | ||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | |
Control | 1.22 b | 0.89 e | 0.77 e | 0.63 c | 0.88 e | 1.25 a | 0.92 c | 0.80 e | 0.66 e | 0.91 d |
SA 200 ppm | 1.20 c | 1.08 b | 0.97 b | 0.86 a | 1.03 b | 1.21 ab | 1.11 a | 1.00 b | 0.89 b | 1.05 b |
SA 400 ppm | 1.25 a | 1.11 a | 1.00 a | 0.89 a | 1.06 a | 1.24 a | 1.14 a | 1.03 a | 0.92 a | 1.08 a |
Put. 50 ppm | 1.24 a | 1.01 d | 0.91 d | 0.79 b | 0.99 d | 1.17 b | 1.14 a | 0.93 d | 0.81 d | 1.01 c |
Put. 100 ppm | 1.20 c | 1.04 c | 0.94 c | 0.83 ab | 1.00 c | 1.20 ab | 1.04 b | 0.97 c | 0.86 c | 1.02 c |
Mean | 1.22 a | 1.02 b | 0.91 c | 0.80 d | -- | 1.21 a | 1.07 b | 0.94 c | 0.82 d | -- |
23 ± 1 °C and 60–70% RH | ||||||||||
Control | 1.22 b | 0.73 b | 0.62 c | 0.52 b | 0.77 c | 1.25 a | 0.70 c | 0.59 b | 0.48 b | 0.76 c |
SA 200 ppm | 1.20 c | 0.93 a | 0.82 b | 0.71 a | 0.92 b | 1.21 ab | 0.90 b | 0.79 a | 0.68 a | 0.90 ab |
SA 400 ppm | 1.25 a | 0.96 a | 0.85 a | 0.74 a | 0.95 a | 1.24 a | 0.93 a | 0.82 a | 0.71 a | 0.93 a |
Put. 50 ppm | 1.24 a | 0.96 a | 0.85 a | 0.74 a | 0.95 a | 1.17 b | 0.93 a | 0.82 a | 0.71 a | 0.91 ab |
Put. 100 ppm | 1.20 c | 0.93 a | 0.83 b | 0.72 a | 0.92 ab | 1.20 ab | 0.89 b | 079 a | 0.69 a | 0.89 b |
Mean | 1.22 a | 0.90 b | 0.79 c | 0.69 d | -- | 1.21 a | 0.87 b | 0.76 c | 0.65 d | -- |
Treatments | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | ||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | |
Control | 9.96 ab | 14.24 a | 17.12 a | 21.40 a | 15.68 a | 9.98 ab | 14.22 a | 16.81 a | 22.53 a | 15.89 a |
SA 200 ppm | 10.10 a | 11.55 c | 13.37 cd | 15.89 cd | 12.73 d | 10.23 a | 11.60 c | 13.37 c | 15.62 d | 12.71 c |
SA 400 ppm | 9.63 c | 11.03 d | 12.80 d | 15.16 d | 12.16 e | 9.85 b | 11.10 c | 12.79 d | 15.09 d | 12.21 d |
Put. 50 ppm | 9.84 bc | 12.45 b | 14.41 b | 17.57 b | 13.57 b | 10.35 a | 11.38 c | 14.49 b | 17.63 b | 13.46 b |
Put. 100 ppm | 10.17 a | 12.02 b | 13.84 bc | 16.63 bc | 13.17 c | 10.14 ab | 12.41 b | 13.82 c | 16.52 c | 13.22 b |
Mean | 9.94 d | 12.25 c | 14.31 b | 17.33 a | -- | 10.10 d | 12.14 c | 14.25 b | 17.47 a | -- |
23 ± 1 °C and 60–70% RH | ||||||||||
Control | 9.96 ab | 18.41 a | 21.89 a | 29.56 a | 19.95 a | 9.98 bc | 19.26 a | 24.05 a | 32.73 a | 21.50 a |
SA 200 ppm | 10.10 a | 13.61 b | 16.30 b | 20.13 b | 15.26 bc | 10.23 ab | 14.46 bc | 17.71 b | 21.91 b | 16.08 b |
SA 400 ppm | 9.63 c | 12.96 b | 15.42 c | 19.03 b | 14.26 d | 9.84 c | 13.94 d | 16.75 b | 20.70 b | 15.31 c |
Put. 50 ppm | 9.84 bc | 13.35 b | 15.83 bc | 19.46 b | 14.62 cd | 10.35 a | 14.38 cd | 17.18 b | 21.26 b | 15.79 bc |
Put. 100 ppm | 10.17 a | 13.65 b | 16.14 b | 21.04 b | 15.34 b | 10.14 abc | 14.91 b | 17.75 b | 21.76 b | 16.14 b |
Mean | 9.94 d | 14.40 c | 17.12 b | 21.92 a | -- | 10.11 d | 15.39 c | 18.69 b | 23.67 a | -- |
Treatments | 2018 Season | 2019 Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 ± 1 °C and 90–95% RH | |||||||||||
0 | 15 | 30 | 45 | Mean | 0 | 15 | 30 | 45 | Mean | ||
Control | 39.26 bc | 37.11 b | 34.68 d | 30.45 e | 35.38 c | 37.44 cd | 33.62 d | 31.54 c | 28.36 d | 32.74 d | |
SA 200 ppm | 40.67 a | 38.35 a | 37.57 b | 35.99 b | 38.14 a | 36.28 d | 35.21 c | 34.01 b | 33.17 b | 34.67 bc | |
SA 400 ppm | 40.34 ab | 38.82 a | 38.15 a | 36.52 a | 38.46 a | 41.71 a | 39.25 a | 37.90 a | 35.49 a | 38.59 a | |
Put. 50 ppm | 37.90 d | 35.52 c | 34.78 d | 32.40 d | 35.15 c | 39.42 b | 35.80 bc | 32.27 c | 30.19 c | 34.42 c | |
Put. 100 ppm | 38.77 cd | 36.64 b | 35.89 c | 34.18 c | 36.37 b | 38.15 bc | 36.67 b | 34.31 b | 31.08 c | 35.05 b | |
Mean | 39.39 a | 37.28 b | 36.21 c | 33.90 d | -- | 38.60 a | 36.11 b | 34.00 c | 31.65 d | -- | |
23 ± 1 °C and 60–70% RH | |||||||||||
Control | 39.26 bc | 31.64 c | 28.61 c | 23.57 d | 30.77 d | 37.44 cd | 31.35 b | 26.38 c | 22.00 d | 29.29 c | |
SA 200 ppm | 40.67 a | 34.97 b | 31.88 b | 29.45 b | 34.24 b | 36.28 d | 34.02 a | 30.28 ab | 29.90 a | 32.62 b | |
SA 400 ppm | 40.34 ab | 37.38 a | 35.17 a | 31.39 a | 36.07 a | 41.71 a | 33.31 a | 31.48 a | 29.91 a | 34.10 a | |
Put. 50 ppm | 37.90 d | 33.42 bc | 31.55 b | 28.77 b | 32.91 c | 39.42 b | 32.80 a | 29.93 b | 26.55 c | 32.17 b | |
Put. 100 ppm | 38.77 cd | 33.51 bc | 29.17 c | 27.33 c | 32.20 c | 38.15 bc | 33.13 a | 30.15 ab | 27.82 b | 32.31 b | |
Mean | 39.39 a | 34.18 b | 31.28 c | 28.10 d | -- | 38.60 a | 32.92 b | 29.64 c | 27.24 d | -- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ennab, H.A.; El-Shemy, M.A.; Alam-Eldein, S.M. Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit. Agronomy 2020, 10, 115. https://doi.org/10.3390/agronomy10010115
Ennab HA, El-Shemy MA, Alam-Eldein SM. Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit. Agronomy. 2020; 10(1):115. https://doi.org/10.3390/agronomy10010115
Chicago/Turabian StyleEnnab, Hassan A., Mervat A. El-Shemy, and Shamel M. Alam-Eldein. 2020. "Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit" Agronomy 10, no. 1: 115. https://doi.org/10.3390/agronomy10010115
APA StyleEnnab, H. A., El-Shemy, M. A., & Alam-Eldein, S. M. (2020). Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit. Agronomy, 10(1), 115. https://doi.org/10.3390/agronomy10010115