Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experiment Design
2.3. Soil Sampling and Measurements
2.4. Data Analysis
3. Results
3.1. Soil Physical Properties
3.2. Soil Chemical Properties
3.3. Soil Biological Properties
3.4. Wheat Productivity
4. Discussion
4.1. Soil Health Indicators
4.2. Wheat Yield and Diversified Crop Rotation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Glob. Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Perelli-Harris, B.; Sigle-Rushton, W.; Kreyenfeld, M.; Lappegård, T.; Keizer, R.; Berghammer, C. The Educational Gradient of Childbearing within Cohabitation in Europe. Popul. Dev. Rev. 2010, 36, 775–801. [Google Scholar] [CrossRef]
- The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW): Managing Systems as Risk; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2011; p. 4.
- Lal, R. Soils and food sufficiency. A review. Agron. Sustain. Dev. 2009, 29, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agrc. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Kendy, E.; Zhang, Y.; Liu, C.; Wang, J.; Steenhuis, T. Groundwater recharge from irrigated cropland in the North China Plain: Case study of Luancheng County, Hebei Province, 1949–2000. Hydrol. Process. 2004, 18, 2289–2302. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Lu, C.; Fan, L. Winter wheat yield potentials and yield gaps in the North China Plain. Field Crop. Res. 2013, 143, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yang, X.; Liu, Z.; Zhang, T.; Lu, S.; Liu, Y. Low yield gap of winter wheat in the North China Plain. Eur. J. Agron. 2014, 59, 1–12. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Wang, X.; McConkey, B. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crop. Res. 2011, 122, 199–206. [Google Scholar] [CrossRef]
- Wei, Z.; Yuanquan, C.; Peng, S.; Wangsheng, G.; Haijun, L. Research of Eco-ecinomy on Sustitution Planting Patterns in the North China Plain. Chin. Agric. Sci. Bull. 2009, 8, 249–253. [Google Scholar]
- Oliver, M.A.; Gregory, P.J. Soil, food security and human health: A review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Miller, P.R.; McConkey, B.G.; Clayton, G.W.; Brandt, S.A.; Staricka, J.A.; Johnston, A.M.; Lafond, G.P.; Schatz, B.G.; Baltensperger, D.D.; Neill, K.E. Pulse Crop Adaptation in the Northern Great Plains. Agron. J. 2002, 94, 261–272. [Google Scholar] [CrossRef]
- Gan, Y.T.; Miller, P.R.; McConkey, B.G.; Zentner, R.P.; Stevenson, F.C.; McDonald, C.L. Influence of diverse cropping sequences on durum wheat yield and protein in the semiarid northern Great Plains. Agron. J. 2003, 95, 245–252. [Google Scholar] [CrossRef]
- Miller, P.R.; Gan, Y.; McConkey, B.G.; McDonald, C.L. Pulse crops for the northern Great Plains: II. Cropping sequence effects on cereal, oilseed, and pulse crops. Agron. J. 2003, 95, 980–986. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; Selles, F.; Biederbeck, V.O.; McConkey, B.G.; Blomert, B.; Jefferson, P.G. Quantifying short-term effects of crop rotations on soil organic carbon in southwestern Saskatchewan. Can. J. Soil Sci. 2000, 80, 193–202. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Gan, Y.; Hamel, C.; O’Donovan, J.T.; Cutforth, H.; Zentner, R.P.; Campbell, C.A.; Niu, Y.; Poppy, L. Diversifying crop rotations with pulses enhances system productivity. Sci. Rep. 2015, 5, 14625. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martinez, V.; Cano, A.; Johnson, J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices. Appl. Soil Ecol. 2018, 126, 121–128. [Google Scholar] [CrossRef]
- Klose, S.; Tabatabai, M.A. Urease activity of microbial biomass in soils as affected by cropping systems. Biol. Fertil. Soils 2000, 31, 191–199. [Google Scholar] [CrossRef]
- Yang, X.; Sun, B.; Gao, W.; Chen, Y.; Sui, P. Carbon footprints of grain-, forage-, and energy-based cropping systems in the North China plain. Int. J. Life Cycle Assess. 2018, 24, 371–385. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Pacenka, S.; Gao, W.; Ma, L.; Wang, G.; Yan, P.; Sui, P.; Steenhuis, T.S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J. Hydrol. 2015, 522, 428–438. [Google Scholar] [CrossRef]
- Abegunde, O.K.; Mu, T.-H.; Chen, J.-W.; Deng, F.-M. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocoll. 2013, 33, 169–177. [Google Scholar] [CrossRef]
- Variath, M.T.; Janila, P. Economic and Academic Importance of Peanut. In The Peanut Genome; Varshney, R.K., Pandey, M.K., Puppala, N., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 7–26. [Google Scholar]
- Sun, Q.; Kröbel, R.; Müller, T.; Römheld, V.; Cui, Z.; Zhang, F.; Chen, X. Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agric. Water Manag. 2011, 98, 808–814. [Google Scholar] [CrossRef]
- Meng, Q.; Sun, Q.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F.; Römheld, V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric. Ecosyst. Environ. 2012, 146, 93–102. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Krämer-Schmid, M.; Lund, P.; Weisbjerg, M.R. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows. Anim. Feed Sci. Technol. 2016, 219, 68–76. [Google Scholar] [CrossRef]
- Burgers, P.; Burgers, P.; Wiliams, D. Indigenous Fallow Management; International Center for the Research in Agroforestry: Bogor, Indonesia, 2000; pp. 1–2. [Google Scholar]
- Karlen, D.L.; Hurley, E.G.; Andrews, S.S.; Cambardella, C.A.; Meek, D.W.; Duffy, M.D.; Mallarino, A.P. Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Belt Locations. Agron. J. 2006, 98, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Li, J.; Inanaga, S.; Li, Z.; Eneji, A.E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric. Water Manag. 2005, 76, 8–23. [Google Scholar] [CrossRef]
- Aller, D.; Mazur, R.; Moore, K.; Hintz, R.; Laird, D.; Horton, R. Biochar Age and Crop Rotation Impacts on Soil Quality. Soil Sci. Soc. Am. J. 2017, 81, 1157–1167. [Google Scholar] [CrossRef]
- Zhou, H.; LÜ, Y.-Z.; Yang, Z.-C.; Li, B.-G. Influence of Conservation Tillage on Soil Aggregates Features in North China Plain. Agric. Sci. China 2007, 6, 1099–1106. [Google Scholar] [CrossRef]
- He, J.; Li, H.; Rasaily, R.G.; Wang, Q.; Cai, G.; Su, Y.; Qiao, X.; Liu, L. Soil properties and crop yields after 11 years of no tillage farming in wheat–maize cropping system in North China Plain. Soil Tillage Res. 2011, 113, 48–54. [Google Scholar] [CrossRef]
- Charles, M.J.; Simmons, M.S. Methods for the determination of carbon in soils and sediments. A review. Analyst 1986, 111, 385–390. [Google Scholar] [CrossRef]
- Wang, T.; Kang, F.; Cheng, X.; Han, H.; Ji, W. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 2016, 163, 176–184. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate with sodium bicarbonate. In USDA Circular 939; U.S. Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. No-Tillage and Soil-Profile Carbon Sequestration: An On-Farm Assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Ge, G.; Li, Z.; Fan, F.; Chu, G.; Hou, Z.; Liang, Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 2009, 326, 31–44. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Y.; Teng, Y. Soil and Environmental Microbiology Research Method; Science Press: Beijing, China, 2008; pp. 395–415. [Google Scholar]
- Liu, Y.; Wang, E.; Yang, X.; Wang, J. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob. Chang. Biol. 2009, 16, 2287–2299. [Google Scholar] [CrossRef]
- Kosmas, C.; Gerontidis, S.; Marathianou, M.; Detsis, B.; Zafiriou, T.; Muysen, W.N.; Govers, G.; Quine, T.; Vanoost, K. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Till. Res. 2001, 58, 31–44. [Google Scholar] [CrossRef]
- Gibson, L.R.; Paulsen, G.M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 1999, 39, 1841–1846. [Google Scholar] [CrossRef]
- Triplett, E.W.; Albrecht, K.A.; Oplinger, E.S. Crop rotation effects on populations of Bradyrhizobium japonicum and Rhizobium meliloti. Soil Biol. Biochem. 1993, 25, 781–784. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Abaidoo, R.C.; Iwuafor, E.N.O.; Olufajo, O.O.; Sanginga, N. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agric. Ecosyst. Environ. 2009, 129, 325–331. [Google Scholar] [CrossRef]
- Ray, R.C.; Tomlins, K.I. Sweet Potato: Post Harvest Aspects in Food, Feed and Industry; Nova Science Publishers, Inc: New York, NY, USA, 2010; Sweet potato Growth, development, production and utilization: Overview; pp. 1–2. ISBN 978-1-60876-343-6. [Google Scholar]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Crop Rotation and Tillage Effects on Soil Physical and Chemical Properties in Illinois. Agron. J. 2015, 107, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.T.; law, I.F.W. Aspects of the Comparative Physilogy of Grain Yield in Cereals. Adv. Agron. 1976, 28, 301–359. [Google Scholar]
- Karlen, D.L.; Varvel, G.E.; Bullock, D.G.; Cruse, R.M. Crop Rotations for the 21st Century. Adv. Agron. 1994, 53, 1–45. [Google Scholar]
- Bullock, D.G. Crop rotation. Crit. Rev. Plant Sci. 2008, 11, 309–326. [Google Scholar]
Rotation | Growing Crop | Growing Season | Urea (kg/ha) | P2O5 (kg/ha) | K2O (kg/ha) | Irrigation (mm) |
---|---|---|---|---|---|---|
2016/2017 (October 2016–October 2017) | ||||||
WM→WM | winter wheat | October 2016–June 2017 | 225 | 112.5 | 225 | 225 |
summer maize | June 2017–October 2017 | 180 | 103.5 | 112.5 | 75 | |
F→WM | fallow | October 2016–October 2017 | 0 | 0 | 0 | 0 |
Ms→WM | spring maize | May 2017–October 2017 | 240 | 75 | 90 | 75 |
W→WM | winter wheat | October 2016–June 2017 | 225 | 112.5 | 225 | 225 |
Psw→WM | sweet potato | April 2017–October 2017 | 54 | 138 | 225 | 50 |
Pns→WM | spring peanut | May 2017–October 2017 | 172 | 172.5 | 150 | 75 |
WPn→WM | winter wheat | September 2016–June 2017 | 225 | 112.5 | 225 | 225 |
summer peanut | June 2017–October 2017 | 172 | 172.5 | 150 | 75 | |
PMl→WM | potato | February 2017–June 2017 | 180 | 120 | 300 | 155 |
silage maize | June 2017–October 2017 | 180 | 103.5 | 112.5 | 75 | |
2017/2018 (October 2017–October 2018) | ||||||
Eight Rotations | winter wheat summer maize | October 2017–June 2018 June 2018–October 2018 | 225 180 | 112.5 103.5 | 225 112.5 | 225 75 |
Indicators | Year | Rotation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WM→WM | F→WM | Ms→WM | W→WM | Psw→WM | Pns→WM | WPn→WM | PMl→WM | |||
Physical | BD | 2016/2017 | 1.38ab | 1.40ab | 1.39ab | 1.38ab | 1.42a | 1.37ab | 1.31b | 1.35ab |
2017/2018 | 1.38a | 1.43a | 1.37a | 1.41a | 1.38a | 1.36a | 1.34a | 1.36a | ||
GWC (%) | 2016/2017 | 10.19bcd | 10.82bc | 13.02a | 9.22cd | 9.06cd | 8.00d | 8.13d | 11.54ab | |
2017/2018 | 8.14a | 8.19a | 6.85a | 8.26a | 8.14a | 7.25a | 6.93a | 7.04a | ||
Chemical | pH | 2016/2017 | 8.48a | 8.25b | 8.29ab | 8.29ab | 8.32ab | 8.39ab | 8.34ab | 8.47a |
2017/2018 | 8.17a | 8.11a | 8.16a | 8.14a | 8.25a | 8.15a | 8.16a | 8.30a | ||
SOC (Mg/ha) | 2016/2017 | 16.31a | 16.62a | 16.01ab | 14.74ab | 13.43b | 16.65a | 14.84ab | 14.93ab | |
2017/2018 | 15.55a | 15.64a | 15.91a | 15.84a | 16.35a | 15.44a | 14.92a | 14.62a | ||
TN (Mg/ha) | 2016/2017 | 2.10a | 2.06ab | 2.08ab | 2.09a | 1.71b | 2.22a | 2.07ab | 2.04ab | |
2017/2018 | 2.58ab | 2.87a | 2.53ab | 2.61ab | 2.72ab | 2.64ab | 2.60ab | 2.46b | ||
AP (Mg/ha) | 2016/2017 | 52.98a | 50.15a | 38.18ab | 44.78ab | 29.85b | 54.97a | 38.84ab | 43.45ab | |
2017/2018 | 33.03a | 32.40a | 26.01a | 33.94a | 37.60a | 37.40a | 34.73a | 26.21a | ||
Biological | SA (mg glucose g soil−1 d−1) | 2016/2017 | 7.79a | 6.28bc | 7.42ab | 7.50ab | 5.58c | 7.16ab | 6.74abc | 6.80abc |
2017/2018 | 8.21a | 8.24a | 8.74a | 8.60a | 8.17a | 8.22a | 7.46a | 7.73a | ||
UA (mg NH3-N g soil−1 d−1) | 2016/2017 | 6.26ab | 4.91c | 5.33bc | 6.04abc | 5.70abc | 6.48ab | 6.61a | 5.51abc | |
2017/2018 | 5.73a | 4.43a | 4.82a | 5.17a | 6.27a | 5.30a | 5.41a | 4.62a | ||
APA (mg phenol g soil−1 d−1) | 2016/2017 | 0.15a | 0.14a | 0.14a | 0.16a | 0.13a | 0.14a | 0.12a | 0.13a | |
2017/2018 | 0.13a | 0.12a | 0.12a | 0.13a | 0.14a | 0.13a | 0.12a | 0.13a |
Rotation | Number of spikes (m−2) | Kernels per spike | 1000-Kernel weight(g) | Grain Yield § (Mg ha −1) |
---|---|---|---|---|
WM→WM | 682.2ab | 28.18a | 38.74d | 7.79ab |
F→WM | 705.6ab | 29.00a | 42.12ab | 7.54ab |
Ms→WM | 713.3ab | 28.05a | 40.80bcd | 7.88ab |
W→WM | 627.8b | 27.80a | 39.48cd | 7.24b |
Psw→WM | 821.1a | 29.73a | 43.39a | 7.87ab |
Pns→WM | 765.6ab | 28.03a | 42.68ab | 7.80ab |
WPn→WM | 806.7a | 29.15a | 41.23abc | 7.73ab |
PMl→WM | 703.3ab | 27.05a | 41.24abc | 8.04a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, Y.; Al-Kaisi, M.; Yang, J.; Chen, Y.; Sui, P. Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity. Agronomy 2020, 10, 235. https://doi.org/10.3390/agronomy10020235
Wang L, Zhao Y, Al-Kaisi M, Yang J, Chen Y, Sui P. Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity. Agronomy. 2020; 10(2):235. https://doi.org/10.3390/agronomy10020235
Chicago/Turabian StyleWang, Lin, Yingxing Zhao, Mahdi Al-Kaisi, Jia Yang, Yuanquan Chen, and Peng Sui. 2020. "Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity" Agronomy 10, no. 2: 235. https://doi.org/10.3390/agronomy10020235
APA StyleWang, L., Zhao, Y., Al-Kaisi, M., Yang, J., Chen, Y., & Sui, P. (2020). Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity. Agronomy, 10(2), 235. https://doi.org/10.3390/agronomy10020235