Potential of Rhizobium sullae–Sulla coronaria Symbiotic Biological Nitrogen Fixation to Supplement Synthetic Mineral Nitrogen in Olive Tree Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Site Characteristics
2.2. Seed Density Tests
2.3. Field Trials
2.4. Inoculum Preparation with R. sullae
2.5. Nodulation and Nitrogen Fixation Assay
2.6. Aerial Biomass Analysis and Green Manure Execution
2.7. Soil and Olive Leaf Analysis
2.8. Numerical Counting of R. sullae in the Soil
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen fixing crop legume to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Choi, B.H.; Ohashi, H. Generic criteria and infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae). Taxon 2003, 52, 567–576. [Google Scholar] [CrossRef]
- Lupi, F.; Casella, S.; Toffanin, A.; Squartini, A. Introduction of Rhizobium “hedysari” in alkaline clay-loam soil by different inoculation techniques. Arid soil Res. Rehabil. 1988, 2, 19–28. [Google Scholar] [CrossRef]
- Sulas, L.; Piluzza, G.; Salis, M.; Deligios, P.A.; Ledda, L.; Canu, S. Cropping systems sustainability: Inoculation and fertilization effect on sulla performances in a new cultivation area. Ital. J. Agron. 2017, 12, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Sulas, L.; Campesi, G.; Piluzza, G.; Re, G.A.; Deligios, P.A.; Ledda, G.; Canu, S. Inoculation and N fertilization after the dry matter, N fixation, and bioactive compounds in sulla leaves. Agronomy 2019, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Squartini, A.; Struffi, P.; Döring, H.; Selenska-Pobell, S.; Tola, E.; Giacomini, A.; Vendramin, E.; Velàzquez, E.; Mateos, P.F.; Martínez-Molina, E.; et al. Rhizobium sullae sp. nov. (formerly) Rhizobium “hedysari”. The root-nodule Microsymbiont of Hedysarum coronarium L. Int. J. Evol. Microbiol. 2002, 52, 1267–1276. [Google Scholar]
- Tola, E.; Henriquez-Sabà, J.L.; Polone, E.; Dazzo, F.B.; Concheri, G.; Casella, S.; Squartini, A. Shovel roots: A unique stress-avoiding developmental strategy of the legume plant Hedysarum coronarium L. Plant Soil 2009, 322, 25–37. [Google Scholar] [CrossRef]
- Casella, S.; Gault, R.R.; Reinolds, K.C.; Dyson, J.R.; Brockwell, J. Nodulation studies on legumes exotic to Australia: Hedysarum coronarium. FEMS Microbiol. Lett. 1984, 22, 37–45. [Google Scholar] [CrossRef]
- Liu, W.Y.Y.; Ridgway, H.J.; James, T.K.; Premaratne, M. Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla). N. Z. Plant Prot. 2012, 65, 192–196. [Google Scholar]
- Allison, F.E. Soil organic matter and its role in crop production. In Developments in Soil Science, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3, p. 637. [Google Scholar]
- Villarreal-Romero, M.; Hernandez-Verdugo, S.; Sanchez-Pena, P.; Garcia-Estrada, R.S.; Osuna-Enciso, T.; Parra-Terrazas, S.; Arementa-Bojorquez, A.D. Effect of cover crops on tomato yield and quality. Terra Lat. Am. 2006, 24, 549–556. [Google Scholar]
- Fernández-Escobar, R.; Garcia-Novelo, J.M.; Restrepo-Díaz, H. Mobilization of nitrogen in the olive bearing shots after foliar application of urea. Sci. Hort. 2011, 127, 452–454. [Google Scholar] [CrossRef]
- Vincent, J.M. A manual for the practical study of root-nodules bacteria. In IBP Handbook; no. 15; Blackwell: Oxford, UK, 1970. [Google Scholar]
- Haider, J.; Hussam, A.K.M.A.; Ikeda, M.; Yamakawa, T.; Ishizuka, J. Effects of nitrate application on growth, nodulation and nitrogen fixation of nitrate-tolerant mutant of soybean. Soil Sci. Plant Nutr. 1991, 37, 521–529. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Nelsen, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Fernández-Escobar, R.; Parra, M.A.; Navarro, C.; Arquero, O. Foliar diagnosis as a guide to olive fertilization. Span. J. Agric. Res. 2019, 7, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Weaver, R.W.; Frederick, L.R. Effect of inoculums rate on competitive nodulation of Glycine max L, Merril green house studies. Agron. J. 1972, 66, 229–236. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Hand Book for Rhizobia Methods in Legume-Rhizobium Technology; Springer: Heidelberg, Germany, 1994. [Google Scholar]
- Snedecor, G.A.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa State University Press: Iowa city, IA, USA, 1987. [Google Scholar]
- Duncan, D.B. Multiple ranges and multiple test. Biometrics 1955, 11, 24–30. [Google Scholar] [CrossRef]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R.M. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R.M.; Mbuya, O.S. Growth and yield of sweet corn following green manure in a warm temperate environment on sandy soil. J. Agron. Crop Sci. 2007, 193, 1–9. [Google Scholar] [CrossRef]
- Du, Y.; Wang, T.; Wang, C.; Anane, P.S.; Liu, S.; Paz-Ferreiro, J. Nitrogen fertilizer is a key factor affecting the soil chemical and microbial communities in a Mollisol. Can. J. Microbiol. 2019, 65, 510–521. [Google Scholar] [CrossRef] [PubMed]
- DeBell, D.S.; Miller, R.E. Nitrogen-fixing plant to replace or supplement synthetic nitrogen fertilizers. In Proceedings of the Forest Fertilization Conference, Washington, DC, USA, 25–27 September 1979; Contribution No. 40; Gessel, S.P., Kenady, R.M., Atkinson, W.A., Eds.; Washington University: Washington, DC, USA, 1979. [Google Scholar]
- Rodrigues, M.Â.; Correia, C.M.; Claro, A.M.; Ferreira, Q.; Barbosa, J.C.; Moutinho-Pereira, J.M.; Bacelar, E.A.; Fernandes-Silva, A.A.; Arrobas, M. Soil nitrogen availability in olive orchards after mulching legume cover crop residues. Sci. Hort. 2013, 158, 45–51. [Google Scholar] [CrossRef]
- Gurfel, D.; Löbel, R.; Schiffmann, J. Symbiotic nitrogen-fixing activity and yield potential of inoculated Hedysarum coronarium in Israel. Israel J. Plant Sci. 1982, 31, 296–304. [Google Scholar]
- Fitouri, D.S.; Ben Jeddi, F.; Zribi, K.; Rezgui, S.; Mhamdi, R. Effect de l’inoculation par une souche osmotolerant de Rhizobium sullae sur la croissance et la production en proteine du sulla (Sulla coronarium L.) sous déficit hydriques. J. Appl. Biosci. 2012, 51, 3642–3651. [Google Scholar]
Seed Density | Sulla Plants | February | March | April | |||
---|---|---|---|---|---|---|---|
(Kg ha−1) | (No m−2) | Dry Biomass 1 | C/N | Dry Biomass | C/N | Dry Biomass | C/N |
20 | 540 ± 25 c | 197 ± 9 b | 12 | 320 ± 34 c | 12 | 410 ± 45 c | 20 |
40 | 725 ± 28 b | 224 ± 6 b | 11 | 430 ± 11 b | 13 | 534 ± 25 b | 20 |
60 | 935 ± 60 a | 432 ± 27 a | 11 | 595 ± 32 a | 12 | 686 ± 42 a | 19 |
Significance | ** | * | ** | * |
Treatment | Rhizobium sullae Content (MPN g−1 soil) 1 | Nodulated Plants (%) | Nodules Per Plant (n) | Nodule Biomass Per Plant (mg) | ARA 2 (µmol C2H4 h−1g−1 nodules) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Uninoculated | 2·103 ± 77 b | 8·103 ± 110 b | 60 ± 10 b | 72 ± 9 b | 6.54 ± 0.53 b | 8.51 ± 0.24 b | 40 ± 6 b | 52 ± 3 b | 3.64 ± 0.73 b | 4.71 ± 0.50 b |
Inoculated | 6·104 ± 240 a | 9·104 ± 186 a | 100 a | 100 a | 10.80 ± 0.44 a | 15.33 ± 0.82 a | 65 ± 9 a | 105 ± 12 a | 5.90 ± 0.92 a | 7.21 ± 0.34 a |
Significance | ** | * | ** | ** | * | ** | ** | ** | ** | ** |
Treatment | Dry Biomass Yield (g m−2) | Dry Biomass Used per Olive Tree (g) | Nitrogen Content of Dry Biomass (%) | C/N | ||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Uninoculated | 517 ± 49 a | 521 ± 18 a | 6,200 ± 225 a | 6256 ± 432 a | 3.20 ± 0.20 b | 3.10 ± 0.41 b | 13 b | 15 b |
Inoculated | 592 ± 90 a | 588 ± 87 a | 7,102 ± 114 a | 7050 ± 97 a | 3.87 ± 0.17 a | 3.60 ± 0.22 a | 11 c | 12 c |
Control1 | 354 ± 84 b | 321 ± 12 b | 4, 248 ± 96 b | 3848 ± 84 b | 1.38 ± 0.10 c | 1.27 ± 0.15 c | 22 a | 25 a |
Significance | * | * | ** | ** | ** | ** | ** | ** |
Year | Nitrogen Forms | Uninoculated Sulla (g) | △ 1 | Inoculated Sulla (g) | △ | Control 2 (g) |
---|---|---|---|---|---|---|
2017 | ||||||
organic | 198.40 b | 274.85 a | 58.62 c | |||
mineral | 0.00 | 0.00 | 184.00 | |||
N total | 198.40 b | −44.22 | 274.85 a | 32.23 | 242.62 a | |
2018 | ||||||
organic | 193.94 b | 253.80 a | 48.87 c | |||
mineral | 0.00 | 0.00 | 184.00 | |||
N total | 193.94 b | −38.93 | 253.80 a | 20.93 | 232.87 a |
Treatment | Fruit Yield (Kg plant −1) | Soil Total N (%) | Leaves Total N (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | mean | 2017 | 2018 | mean | 2017 | 2018 | mean | |
Uninoculated | 16 ± 4 1 | 20 ± 5 | 18 | 0.16 ± 0.01ab | 0.17 ± 0.02b | 0.17 | 1.67 ± 0.42b | 1.72 ± 0.51b | 1.70 |
Inoculated | 17 ± 3 | 25 ± 4 | 21 | 0.18 ± 0.04a | 0.19 ± 0.05a | 0.19 | 1.85 ± 0.31a | 1.90 ± 0.50a | 1.88 |
Control | 16 ± 2 | 21 ± 4 | 19 | 0.15 ± 0.02b | 0.18 ± 0.04ab | 0.17 | 1.78 ± 0.44ab | 1.73 ± 0.30b | 1.76 |
Significance | NS | NS | * | * | * | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zullo, B.A.; Ciafardini, G. Potential of Rhizobium sullae–Sulla coronaria Symbiotic Biological Nitrogen Fixation to Supplement Synthetic Mineral Nitrogen in Olive Tree Fertilization. Agronomy 2020, 10, 270. https://doi.org/10.3390/agronomy10020270
Zullo BA, Ciafardini G. Potential of Rhizobium sullae–Sulla coronaria Symbiotic Biological Nitrogen Fixation to Supplement Synthetic Mineral Nitrogen in Olive Tree Fertilization. Agronomy. 2020; 10(2):270. https://doi.org/10.3390/agronomy10020270
Chicago/Turabian StyleZullo, Biagi Angelo, and Gino Ciafardini. 2020. "Potential of Rhizobium sullae–Sulla coronaria Symbiotic Biological Nitrogen Fixation to Supplement Synthetic Mineral Nitrogen in Olive Tree Fertilization" Agronomy 10, no. 2: 270. https://doi.org/10.3390/agronomy10020270
APA StyleZullo, B. A., & Ciafardini, G. (2020). Potential of Rhizobium sullae–Sulla coronaria Symbiotic Biological Nitrogen Fixation to Supplement Synthetic Mineral Nitrogen in Olive Tree Fertilization. Agronomy, 10(2), 270. https://doi.org/10.3390/agronomy10020270