Combined Addition of Bovine Bone and Cow Manure: Rapid Composting of Chestnut Burrs and Production of a High-quality Chestnut Seedling Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chestnut Burrs (CB), Cow Manure (CM), Bovine Bone (BM), and Other Materials
2.2. Experiment Design and Procedure
2.3. Analytical Methods
2.3.1. Physical Properties:
2.3.2. Chemical Properties
2.3.3. Phytotoxicity Test
2.3.4. Pot Assay
2.4. Analytical Methods
3. Results and Discussion
3.1. Composting Temperature
3.2. Organic Carbon Content
3.3. Nitrogen Changes
3.4. Phosphorus Changes
3.5. The Degradation of Spicular Structure
3.6. Physicochemical Properties of the Final Compost
3.7. Compost Maturity Assessment
3.8. Quality Evaluation of the Final Production
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiong, H.; Zou, F.; Guo, S.J.; Yuan, D.Y.; Niu, G.H. Self-sterility may be due to prezygotic late-acting self-incompatibility and early-acting inbreeding depression in Chinese chestnut. J. Am. Soc. Hort. Sci. 2019, 144, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAOSTAT) Statistics Database: Crops, Chestnut, China. 2017. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 18 November 2019).
- Niu, J.L.; Liang, L.Z.; Lan, Y.P. The substance changes during the composting of cow dung and envelope splits of chestnut. J. Agro Environ. Sci. 2009, 28, 824–827. [Google Scholar]
- Parillo, R.; Ventorino, V.; Pepe, O.; Rivas, P.C.; Testa, A. Use of compost from chestnut lignocellulosic residues as substrate for Tomato growth. Waste Biomass Valorization 2016, 8, 2711–2720. [Google Scholar] [CrossRef]
- Ventorino, V.; Parillo, R.; Testa, A.; Aliberti, A.; Pepe, O. Chestnut biomass biodegradation for sustainable agriculture. BioResources 2013, 8, 4647–4658. [Google Scholar] [CrossRef] [Green Version]
- Halim, N.S.A.; Abdullah, R.; Karsani, S.A.; Osman, N.; Panhwar, Q.A.; Ishak, C.F. Influence of soil amendments on the growth and yield of rice in acidic Soil. Agronomy 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.M.; Chang, S.X.; Bork, E.W.; Carlyle, C.N. Enrichment planting and soil amendments enhance carbon sequestration and reduce greenhouse gas emissions in agroforestry systems: A review. Forests 2018, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Chehab, H.; Tekaya, M.; Ouhibi, M.; Gouiaa, M.; Zakhama, H.; Mahjoub, Z.; Laamari, S.; Sfina, H.; Chihaoui, B.; Boujnah, D.; et al. Effects of compost, olive mill wastewater and legume cover cropson soil characteristics, tree performance and oil quality of olive trees cv. Chemlali grown under organic farming system. Sci. Hortic. 2019, 253, 163–171. [Google Scholar] [CrossRef]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of vineyard byproducts to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production. Agronomy 2019, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Shalizi, M.N.; Goldfarb, B.; Burney, O.T.; Shear, T.H. Effects of five growing media and two fertilizer levels on Polybag-Raised Camden Whitegum (Eucalyptus benthamii Maiden & Cambage) seedling morphology and drought hardiness. Forests 2019, 10, 543. [Google Scholar]
- Ventorino, V.; Parillo, R.; Testa, A.; Viscardi, S.; Espresso, F.; Pepe, O. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control. J. Environ. Manag. 2016, 166, 168–177. [Google Scholar] [CrossRef]
- Guerra-Rodriguez, E.; Diaz-Ravina, M.; Vazquez, M. Co-composting of chestnut burr and leaf litter with solid poultry manure. Bioresour. Technol. 2001, 78, 107–109. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresour. Technol. 2017, 245, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Jia, W.; Guan, S.; Yu, Y.; Liu, W.Y.; Zhang, C.H.; Li, X.; Yu, Q.L.; Han, L. Difference analysis of composition and content in five varieties of bovine bone. Sci. Technol. Food Ind. 2017, 38, 342–348. [Google Scholar]
- Zhang, L.; Sun, X.Y.; Tian, Y.; Gong, X.Q. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresour. Technol. 2013, 131, 68–75. [Google Scholar] [CrossRef]
- Li, F.; Qian, K.; Wu, J.; Wan, S.X.; Jiang, G.Y.; Zhu, H.B. Influence of applying calcium superphosphate on swine manure composting and phosphorus transformation. Plant Nutr. Fert. Sci. 2017, 23, 1037–1044. [Google Scholar]
- Barje, F.; Fels, L.E.; Hajjouji, H.E.; Winterton, P.; Hafifidi, M. Biodegradation of organic compounds during co-composting of olive oil mill waste and municipal solid waste with added rock phosphate. Environ. Technol. 2013, 34, 2965–2975. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2016, 48, 115–126. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef]
- Gabhane, J.; Prince William, S.P.M.; Bidyadhar, R.; Bhilawe, P.; Anand, D.; Vaidya, A.N.; Wate, S.R. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour. Technol. 2012, 114, 382–388. [Google Scholar] [CrossRef]
- Boruah, T.; Barman, A.; Kalita, P.; Lahkar, J.; Deka, H. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresour. Technol. 2019, 294, 122147. [Google Scholar] [CrossRef]
- Wang, P.; Liu, C.Q.; Chang, J.; Yin, Q.Q.; Huang, W.W.; Liu, Y.; Dang, X.W.; Gao, T.Z.; Lu, F.S. Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw. Renew. Energy 2019, 138, 502–508. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Maluf, H.J.G.M.; Silva, C.A.; de Morais, E.G.; de Paula, L.H.D. Is composting a route to solubilize low-grade phosphate rocks and improve MAP-Based composts? Rev. Bras. Cienc. Solo 2018, 42, 1–17. [Google Scholar] [CrossRef]
- NY/T 300-1995. Determination of Effective Phosphorus in Organic Fertilizers; The Ministry of Agriculture of the People’s Republic of China: Beijing, China, 1995.
- Zhang, L.; Sun, X.Y. Addition of fish pond sediment and rock phosphate enhances the composting of green waste. Bioresour. Technol. 2017, 233, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.F.; Li, S.Y.; Sun, X.Y.; Cai, L.L.; Zhang, P.F.; Kang, Y.; Yu, Z.H.; Tong, J.; Wang, L. Application of seasonal freeze-thaw to pretreat raw material for accelerating green waste composting. J. Environ. Manag. 2019, 239, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, F.; Pera, A.; Forte, M.; De Bertoldi, M. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar]
- Hafeez, A.; Ali, S.; Ma, X.L.; Tung, S.A.; Shah, A.N.; Ahmad, S.; Chattha, M.S.; Souliyanonh, B.; Zhang, Z.; Yang, G.Z. Photosynthetic characteristics of boll subtending leaves are substantially influenced by applied K to N ratio under the new planting model for cotton in the Yangtze River Valley. Field Crops Res. 2019, 237, 43–52. [Google Scholar] [CrossRef]
- Rashad, F.M.; Saleh, W.D.; Moselhy, M.A. Bioconversion of rice straw and certain agro-industrial wastes to amendments for organic farming systems: 1. Composting, quality, stability and maturity indices. Bioresour. Technol. 2010, 101, 5952–5960. [Google Scholar] [CrossRef]
- Wang, Y.; Han, W.; Wang, X.Y.; Chen, H.M.; Zhu, F.; Wang, X.P.; Lei, C.L. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour. Technol. 2017, 245, 411–418. [Google Scholar] [CrossRef]
- Caceres, R.; Coromina, N.; Malinska, K.; Martinez-Farre, F.X.; Lopez, M.; Sava, M.; Marfa, O. Nitrifification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media. Waste Manag. 2016, 58, 118–125. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Bailey, S.K.; Tha, P.U.K.; Burger, M.; Horwath, W.R. Greenhouse gas emissions from green waste composting windrow. Waste Manag. 2017, 59, 70–79. [Google Scholar] [CrossRef]
- Sharma, D.; Yadav, K.D.; Sunil, K. Role of sawdust and cow dung on compost maturity during rotary drum composting of flower waste. Bioresour. Technol. 2018, 264, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Shemekite, F.; Gómez-Brandón, M.; Franke-Whittle, I.H.; Praehauser, B.; Insam, H.; Assefa, F. Coffee husk composting: An investigation of the process using molecular and non-molecular tools. Waste Manag. 2014, 34, 642–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karak, T.; Kutu, F.R.; Paul, R.K.; Bora, K.; Das, D.K.; Khare, P.; Das, K.; Dutta, A.K.; Boruah, R.K. Co-composting of cow dung, municipal solid waste, roadside pond sediment and tannery sludge: Role of human hair. Int. J. Environ. Sci. Technol. 2017, 14, 577–594. [Google Scholar] [CrossRef]
- Yang, F.; Li, G.X.; Shi, H.; Wang, Y.M. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting. Waste Manag. 2015, 36, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.M.; Li, G.X.; Luo, W.H.; Schuchardt, F.; Jiang, T.; Xu, D.G. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting. J. Environ. Sci. 2013, 25, 1338–1345. [Google Scholar] [CrossRef]
- Lee, J.E.; Rahman, M.M.; Ra, C.S. Dose effects of Mg and PO4 sources on the composting of swine manure. J. Hazard. Mater. 2009, 169, 801–807. [Google Scholar] [CrossRef]
- Foereid, B. Phosphorus availability in residues as fertilizers in organic agriculture. Agric. Food Sci. 2017, 26, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Wong, J.W.C.; Li, R.H.; Zhang, Z.Q. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef]
- Shan, D.X.; Li, S.Q.; Xu, J.G. Nitrogen transformations in solid organic waste composting. J. Northeast Agric. Univ. 2007, 2, 265–269. [Google Scholar]
- Tiquia, S.M. Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 2010, 79, 506–512. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Guardado, I.; San Francisco, S.; Mandado, M.; Baigorri, R.; Yvin, J.C.; Garcia-Mina, J.M. Physico-chemical characterization of humic-metal-phosphate complexes and their potential application to the manufacture of new types of phosphate-based fertilizers. J. Plant Nutr. Soil Sci. 2014, 177, 128–136. [Google Scholar] [CrossRef]
- Gerke, J. Humic (organic matter)-Al(Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci. 2010, 175, 417–425. [Google Scholar] [CrossRef]
- Liu, G.N.; Dong, L.M. Sorption isotherms of calcium to sediments of lake in different phosphorus concentrations. Environ. Sci. Technol. 2011, 34, 36–41. [Google Scholar]
- Vassilev, N.; Mendes, G.; Costas, M.; Vassileva, M. Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiol. J. 2014, 31, 751–763. [Google Scholar] [CrossRef]
- Qin, H.L.; Quan, Z.; Liu, X.L.; Li, M.D.; Zong, Y.; Wu, J.S.; Wei, W.X. Phosphorus status and risk of phosphate leaching loss from vegetable soils of different planting years in suburbs of changsha, china. Agric. Sci. China 2010, 9, 1641–1649. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresour. Technol. 2014, 63, 112–122. [Google Scholar] [CrossRef]
- Chen, G.Y.; Bao, X.F.; Ye, X.M.; Chang, Z.Z.; Li, Y.C.; Zhou, L.Y. Effect of composting pretreatment on biogas production of the mixture of wheat straw and cattle wastewater. China Environ. Sci. 2013, 33, 111–117. [Google Scholar]
- Huerta-Pujol, O.; Soliva, M.; Martinez-Farre, F.X.; Valero, J.; Lopez, M. Bulk density determination as a simple and complementary tool in composting process control. Bioresour. Technol. 2010, 101, 995–1001. [Google Scholar] [CrossRef]
- Qu, P.; Huang, H.Y.; Zhao, Y.F.; Wu, G.F. Physicochemical changes in rice straw after composting and its effect on rice-straw-based composites. J. Appl. Polym. Sci. 2017, 134, 1–9. [Google Scholar] [CrossRef]
- Costa, M.S.S.D.M.; Lorin, H.E.F.; Costa, L.A.D.M.; Cestonaro, T.; Pereira, D.C.; Bernardi, F.H. Performance of four stabilization bioprocesses of beef cattle feedlot manure. J. Environ. Manag. 2016, 181, 443–448. [Google Scholar] [CrossRef]
- Arias, O.; Viña, S.; Uzal, M.; Soto, M. Composting of pig manure and forest green waste amended with industrial sludge. Sci. Total Environ. 2017, 586, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yang, F.; Li, R.; Shen, Q.R.; Chu, J.D.; Li, X.; Huang, F.L.; Sun, Z.; Dong, Y.; Duan, Y.H. Organic Fertilizer; NY 525-2012; The Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2012.
- Huang, G.F.; Wong, J.W.C.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Long, J.R.; Ma, G.H.; Zheng, W.Y.; Song, C.F.; Sun, J.; Qin, R.J. Effects of nitrogen fertilizer level on chlorophyll fuorescence characteristics in fag leaf of super hybrid rice at late growth stage. Rice Sci. 2013, 20, 220–228. [Google Scholar] [CrossRef]
- Ronquim, C.C.; Prado, C.H.B.A.; Souza, J.P. Growth, photosynthesis and leaf water potential in young plants of Capaifera langsdorfii Desf. (Caesalpiniaceae) under contrasting irradiances. Braz. Soc. Plant Phys. 2009, 21, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.W.; Li, Q.; Jin, R.; Chen, W.; Liu, X.L.; Kong, F.L.; Ke, Y.P.; Shi, H.C.; Yuan, J.C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J. Integr. Agric. 2019, 18, 1246–1256. [Google Scholar] [CrossRef]
- Liu, Z.H.; Peng, S.L.; Lv, S.L. Photosynthetic traits and chlorophyll fluorescence of Correa carmen leaves with N and P additions. Jiangsu Agric. Sci. 2019, 47, 148–154. [Google Scholar]
- Hu, W.; Tian, S.B.; Di, Q.; Duan, S.H.; Dai, K. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Catena 2018, 56, 1204–1211. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
Treatment | CM Content in CB (% Dry Weight) | BM Content in CB (% Dry Weight) |
---|---|---|
T1 | 0 | 0 |
T2 | 0 | 10 |
T3 | 0 | 15 |
T4 | 35 | 0 |
T5 | 35 | 10 |
T6 | 35 | 15 |
T7 | 55 | 0 |
T8 | 55 | 10 |
T9 | 55 | 15 |
Treatment | TOC (%) | TKN (%) | TP (%) | TK (%) | Ca (%) | Na (%) |
CB | 45.20 ± 2.05 | 0.29 ± 0.04 | 0.10 ± 0.00 | 1.18 ± 0.06 | 3.48 ± 0.06 | 0.17 ± 0.02 |
BM | 4.23 ± 0.88 | 1.12 ± 0.01 | 12.84 ± 0.49 | 0.52 ± 0.03 | 25.66 ± 0.45 | 1.49 ± 0.08 |
CM | 34.69 ± 0.51 | 2.01 ± 0.13 | 0.30 ± 0.02 | 2.08 ± 0.03 | 3.61 ± 0.03 | 1.42 ± 0.03 |
T1 | 46.57 ± 0.30 d | 1.45 ± 0.08 bc | 0.12 ± 0.01 a | 1.24 ± 0.01 b | 3.37 ± 0.3 a | 0.36 ± 0.05 a |
T2 | 42.55 ± 1.65 c | 1.32 ± 0.09 b | 1.59 ± 0.09 b | 1.12 ± 0.02 a | 4.34 ± 0.19 b | 0.40 ± 0.08 ab |
T3 | 39.20 ± 1.26 b | 1.32 ± 0.02 b | 2.29 ± 0.02 b | 1.12 ± 0.01 a | 4.83 ± 0.59 bc | 0.42 ± 0.02 ab |
T4 | 43.70 ± 1.42 c | 1.77 ± 0.14 e | 0.33 ± 0.01 a | 1.60 ± 0.05 c | 3.67 ± 0.31 a | 0.51 ± 0.10 bc |
T5 | 39.57 ± 1.12 b | 1.67 ± 0.01 de | 1.75 ± 0.01 b | 1.60 ± 0.03 c | 4.64 ± 0.16 bc | 0.54 ± 0.03 c |
T6 | 30.00 ± 1.50 a | 1.16 ± 0.04 a | 1.81 ± 0.04 b | 1.98 ± 0.11 e | 4.88 ± 0.00 bc | 0.51 ± 0.02 bc |
T7 | 43.78 ± 0.39 c | 1.64 ± 0.06 de | 0.21 ± 0.01 a | 1.65 ± 0.03 c | 3.82 ± 0.12 a | 0.40 ± 0.01 ab |
T8 | 38.64 ± 0.73 b | 1.55 ± 0.05 cd | 1.49 ± 0.08 b | 1.79 ± 0.03 d | 5.10 ± 0.04 c | 0.51 ± 0.02 bc |
T9 | 31.07 ± 0.87 a | 1.70 ± 0.02 de | 2.31 ± 0.08 b | 2.04 ± 0.06 e | 6.35 ± 0.03 d | 0.70 ± 0.01 d |
Treatment | Mg (%) | Fe (%) | Mn (×10−3%) | Zn (×10−3%) | Se (×10−3%) | |
CB | 0.18 ± 0.01 | 0.38 ± 0.08 | 54.47 ± 1.54 | 1.35 ± 1.25 | 1.14 ± 1.05 | |
BM | 0.64 ± 0.00 | 0.24 ± 0.04 | 3.83 ± 0.92 | 4.52 ± 1.31 | 1.73 ± 0.84 | |
CM | 0.26 ± 0.02 | 0.38 ± 0.09 | 54.01 ± 7.53 | 1.64 ± 0.95 | 1.51 ± 0.65 | |
T1 | 0.15 ± 0.05 a | 0.36 ± 0.01 bc | 47.74 ± 3.10 a | 1.50 ± 1.07 a | 1.98 ± 0.96 a | |
T2 | 0.18 ± 0.01 ab | 0.15 ± 0.02 a | 31.27 ± 17.06 a | 3.53 ± 1.38 ab | 1.64 ± 1.35 a | |
T3 | 0.21 ± 0.02 bc | 0.40 ± 0.11 c | 34.65 ± 4.14 a | 4.78 ± 1.94 ab | 1.33 ± 0.92 a | |
T4 | 0.20 ± 0.01 bc | 0.21 ± 0.09 ab | 30.67 ± 16.64 a | 2.29 ± 1.37 ab | 1.35 ± 0.89 a | |
T5 | 0.23 ± 0.01 c | 0.36 ± 0.03 bc | 50.43 ± 4.43 a | 6.45 ± 1.03 ab | 1.38 ± 0.89 a | |
T6 | 0.31 ± 0.01 d | 1.46 ± 0.06 e | 103.62 ± 8.04 c | 17.20 ± 2.98 c | 1.72 ± 0.13 a | |
T7 | 0.17 ± 0.01 ab | 0.40 ± 0.14 c | 49.74 ± 7.86 a | 3.10 ± 2.09 ab | 0.89 ± 0.15 a | |
T8 | 0.21 ± 0.03 bc | 0.28± 0.03 abc | 45.06 ± 1.70 a | 7.06 ± 2.10 ab | 0.96 ± 0.47 a | |
T9 | 0.29 ± 0.00 d | 1.08 ± 0.03 d | 85.63 ± 3.28 b | 7.72 ± 3.29 b | 1.81 ± 0.47 a |
Treatment | BD (g/cm3) | TPS (%) | APS (%) | WHP (%) | Amount of Urea Added (% Dry Weight) |
---|---|---|---|---|---|
CB | 0.188 ± 0.007 | 80.83 ± 1.30 | 45.43 ± 4.76 | 35.40 ± 7.81 | – |
BM | 0.572 ± 0.004 | 35.76 ± 1.31 | 6.20 ± 0.31 | 29.56 ± 0.54 | – |
CM | 0.364 ± 0.042 | 33.42 ± 3.97 | 6.49 ± 0.20 | 26.93 ± 2.21 | – |
T1 | 0.188 ± 0.002 a | 82.05 ± 2.04 ab | 65.49 ± 2.98 c | 16.57 ± 0.94 a | 3.43 |
T2 | 0.204 ± 0.003 ab | 77.46 ± 2.22 ab | 61.42 ± 1.45 abc | 16.05 ± 0.77 a | 2.91 |
T3 | 0.229 ± 0.003 b | 79.14 ± 1.91 ab | 61.15 ± 2.28 abc | 17.99 ± 0.37 ab | 2.73 |
T4 | 0.245 ± 0.004 c | 82.06 ± 1.65 ab | 61.92 ± 1.58 bc | 20.14 ± 0.06 bc | 2.46 |
T5 | 0.242 ± 0.012 c | 83.46 ± 0.54 b | 62.98 ± 0.65 c | 20.48 ± 0.11 bc | 2.02 |
T6 | 0.362 ± 0.003 d | 75.23 ± 1.21 a | 55.19 ± 1.51 a | 20.04 ± 0.30 bc | 1.71 |
T7 | 0.205 ± 0.000 ab | 78.68 ± 0.40 ab | 59.15 ± 0.76 abc | 19.53 ± 0.37 bc | 2.13 |
T8 | 0.233 ± 0.018 bc | 80.20 ± 0.23 ab | 59.98 ± 0.11 abc | 20.22 ± 0.11 bc | 1.74 |
T9 | 0.344 ± 0.006 d | 77.21 ± 3.22 ab | 56.27 ± 1.36 ab | 20.95 ± 1.86 c | 1.53 |
IRa | ≈0.400 | 70.00–85.00 | – | – | – |
Treatment | Number of Thermophilic Phases | C/N | pH | EC (mS/cm) | RSG (%) | RRE (%) | GI (%) |
---|---|---|---|---|---|---|---|
CB | – | 157.86 ± 20.03 | 5.25 ± 0.19 | 0.43 ± 0.06 | – | – | – |
BM | – | 3.77 ± 0.68 | 6.81 ± 0.24 | 0.53 ± 0.06 | – | – | – |
CM | – | 17.31 ± 1.00 | 7.50 ± 0.38 | 3.60 ± 0.01 | – | – | – |
T1 | 0 | 32.21 ± 1.57 f | 6.38 ± 0.29 b | 2.13 ± 0.00 f | 71.23 ± 4.78 a | 108.40 ± 9.37 a | 76.38 ± 8.62 a |
T2 | 0 | 32.21 ± 2.14 f | 6.71 ± 0.55 cd | 1.61 ± 0.01 b | 89.88 ± 3.45 c | 100.26 ± 7.54 a | 90.11 ± 7.22 b |
T3 | 0 | 29.64 ± 0.95 e | 6.82 ± 0.43 d | 1.68 ± 0.01 c | 84.80 ± 3.36 b | 105.68 ± 8.00 a | 89.61 ± 7.27 b |
T4 | 4 | 24.84 ± 1.77 bc | 6.42 ± 0.52 bc | 2.73 ± 0.02 h | 89.88 ± 3.45 c | 102.98 ± 6.75 a | 92.56 ± 6.67 bc |
T5 | 19 | 23.69 ± 0.59 b | 6.49 ± 0.55 bcd | 1.87 ± 0.00 d | 89.88 ± 5.59 c | 100.26 ± 8.22 a | 92.35 ± 8.66 b |
T6 | 18 | 25.81 ± 1.34 cd | 6.76 ± 0.59 cd | 1.57 ± 0.00 a | 96.67 ± 2.50 d | 100.26 ± 8.02 a | 96.34 ± 7.79 d |
T7 | 0 | 26.79 ± 0.86 d | 6.69 ± 0.47 cd | 3.01 ± 0.02 i | 91.58 ± 2.37 c | 102.97 ± 7.64 a | 95.39 ± 6.86 c |
T8 | 7 | 25.02 ± 0.81 bc | 6.73 ± 0.42 cd | 2.04 ± 0.01 e | 91.58 ± 2.37 c | 108.39 ± 6.31 a | 100.49 ± 6.20 e |
T9 | 20 | 18.32 ± 0.58 a | 6.02 ± 0.19 a | 2.20 ± 0.02 g | 98.36 ± 3.60 d | 105.68 ± 5.72 a | 104.21 ± 6.57 f |
IR a | ≥10 | <20 | 6.0–8.0 | <2.5 | – | – | >80 |
Treatment | ETR | NPQ | qP | qN | Fv/Fm | Plant Height (cm) | Stem Diameter (cm) |
---|---|---|---|---|---|---|---|
Control (Soil) | 69.83 ± 1.80 a | 2.05 ± 0.21 a | 1.05 ± 0.16 a | 0.80 ± 0.02 a | 0.68 ± 0.06 a | 38.97 ± 3.95 a | 0.66 ± 0.05 a |
Soil + CBC (5%) | 77.03 ± 14.92 a | 1.57 ± 0.68 a | 0.84 ± 0.03 b | 0.69 ± 0.14 a | 0.77 ± 0.02 ab | 55.67 ± 4.73 b | 0.82 ± 0.06 b |
Soil + CBC (10%) | 81.80 ± 9.08 a | 1.43 ± 0.36 a | 0.84 ± 0.02 b | 0.68 ± 0.08 a | 0.78 ± 0.03 b | 59.83 ± 4.75 b | 0.91 ± 0.03 c |
Soil + CBC (15%) | 74.17 ± 4.71 a | 1.24 ± 0.30 a | 0.81 ± 0.02 b | 0.65 ± 0.06 a | 0.74 ± 0.03 ab | 53.50 ± 4.77 b | 0.73 ± 0.03 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; He, L.; Tian, S.; Masabni, J.; Zhang, R.; Zou, F.; Yuan, D. Combined Addition of Bovine Bone and Cow Manure: Rapid Composting of Chestnut Burrs and Production of a High-quality Chestnut Seedling Substrate. Agronomy 2020, 10, 288. https://doi.org/10.3390/agronomy10020288
Chen W, He L, Tian S, Masabni J, Zhang R, Zou F, Yuan D. Combined Addition of Bovine Bone and Cow Manure: Rapid Composting of Chestnut Burrs and Production of a High-quality Chestnut Seedling Substrate. Agronomy. 2020; 10(2):288. https://doi.org/10.3390/agronomy10020288
Chicago/Turabian StyleChen, Wangzun, Libing He, Shiyi Tian, Joseph Masabni, Riqing Zhang, Feng Zou, and Deyi Yuan. 2020. "Combined Addition of Bovine Bone and Cow Manure: Rapid Composting of Chestnut Burrs and Production of a High-quality Chestnut Seedling Substrate" Agronomy 10, no. 2: 288. https://doi.org/10.3390/agronomy10020288
APA StyleChen, W., He, L., Tian, S., Masabni, J., Zhang, R., Zou, F., & Yuan, D. (2020). Combined Addition of Bovine Bone and Cow Manure: Rapid Composting of Chestnut Burrs and Production of a High-quality Chestnut Seedling Substrate. Agronomy, 10(2), 288. https://doi.org/10.3390/agronomy10020288