Geoaccumulation and Ecological Risk Indexes in Papaya Cultivation Due to the Presence of Trace Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heavy Metal Analysis
2.2. Geoaccumulation Index (Igeo)
2.3. Index of Potential Ecological Risk
2.4. Statistical Analysis
3. Results
Accumulation and Risk Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Abollino, O.; Aceto, M. Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere 2002, 49, 545–557. [Google Scholar] [CrossRef]
- Navarro, A.J.P.; Aguilar, A.I.; López, M.J.R. Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas 2007, 16, 10–25. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, L.; Mallen, E. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef]
- Huang, S.W.; Jin, J.Y. Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ. Monit. Assess. 2008, 139, 317–327. [Google Scholar] [CrossRef]
- Martí, L.; Burba, J.; Cavagnaro, M. Metales pesados en fertilizantes fosfatados, nitrogenados y mixtos. Revista de la Facultad de Ciencias Agrarias 2002, 34, 43–48. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lokeshappa, B.; Shivpuri, K.; Tripathi, V.; Dikshit, K.A. Assessment of Toxic Metals in Agricultural Produce. Food Public Health 2012, 2, 24–29. [Google Scholar] [CrossRef]
- Kabata, P.A.; Pendias, H. Trace Elements in Soil and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 22. [Google Scholar]
- Baker, A.J.M. Metal Tolerance. New Phytol. 1987, 106, 93–111. [Google Scholar] [CrossRef]
- Gill, M. Heavy metal stress in plants: A review. Int. J. Adv. Res. 2014, 2, 1043–1055. [Google Scholar] [CrossRef]
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez, P.; Ramírez, G.; César, A.; Gutiérrez, R.; Alma, D.; García, P. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Trop. Subtrop. Agroecosyst. 2009, 10, 29–44. [Google Scholar]
- Wang, F.; Huang, C.; Chen, Z.; Bao, K. Distribution, Ecological Risk Assessment, and Bioavailability of Cadmium in Soil from Nansha, Pearl River Delta, China. Int. J. Environ. Res. Public Health 2019, 16, 3637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, S.G.; Rodríguez, V.J.A.; Madriñán, M.R. Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas perspectivas para Colombia. Acta Agronómica 2011, 60, 203–217. [Google Scholar]
- Valladares, G.S.; Camargo, O.A.; Carvalho, J.R.P.; Silva, A.M.C. Assessment of heavy metals in soils of a vineyard region with the use of principal component analysis. Sci. Agric. 2009, 66, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, G.J.M.; Torres, M.M.A. Niveles de contaminación en tres sectores de Villavicencio, a través del índice de geo-acumulación(I-geo). Orinoquia 2015, 19, 109. [Google Scholar] [CrossRef]
- Fadigas, F.D.S.; Do Amaral, S.N.M.B.; Mazur, N.; Dos Anjos, L.H.C.; Freixo, A.A. Proposition of reference values for natural concentration of heavy metals in Brazilian soils. Revista Brasileira de Engenharia Agricola e Ambiental 2006, 10, 699–705. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- López, P.M.E.; Del Rincón, C.M.C.; Muñoz, T.C.; Ruiz, A.G.M.; Solís, S.S.; Zanor, G.A. Evaluation of trace elements contamination in agricultural soils in southwest of Guanajuato, Mexico. Evaluation 2017, 27. [Google Scholar] [CrossRef]
- SAGARPA. Agrícola Nacional. Planeación Agrícola Nacional 2017–2030 2017, I, 1–14. [Google Scholar]
- Vázquez, D.C.A.; Marchant, B.P.; Quintana, J.R.; Santiago, A.; Lafuente, A.L.; Webster, R. Spatial variation of trace elements in the peri-urban soil of Madrid. J. Soils Sediments 2014, 14, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Norma Mexicana NMX-AA-132-SCFI-2016: Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, y manejo de la muestra. Available online: http://www.economianmx.gob.mx/normas/nmx/2010/nmx-aa-132-scfi-2016.pdf (accessed on 12 January 2019).
- Aydinalp, C.; Marinova, S. Distribution and forms of heavy metals in some agricultural soils. Pol. J. Environ. Stud. 2003, 12, 629–633. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight loss-on-ignition. Soil organic matter: Anal. Interpret. 1996, 46, 21–31. [Google Scholar] [CrossRef]
- Diario Oficial. NOM-021-SEMARNAT-2000 Norma Oficial Mexicana, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, esudio, muestreo y análisis. Publicado el 31 de ciiciembre de 2002. Available online: http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002 (accessed on 11 February 2018).
- Secretaría de Salud (SSA). Norma Oficial Mexicana NOM-117-SSA1-1994. In Método de Prueba Para la Determinación de Cadmio, Arsénico, Plomo, Estaño, Cobre, Fierro, Zinc y Mercurio en Alimentos, Agua Potable y Agua Purificada por Espectrometría de Absorción Atómica; Diario Oficial de la Federación; Secretaría de Salud, Estados Unidos Mexicanos: Ciudad de México, México, 1995; pp. 1–15. [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1995, 2, 108–118. [Google Scholar]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Liu, Y.; Xiao, T.; Baveye, P.C.; Zhu, J.; Ning, Z.; Li, H. Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicol. Environ. Saf. 2015, 112, 122–131. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Perea, E.; Ojeda, D.; Hernández, A.; Ruiz, T.; Martínez, J. Utilización de quelatos en la agricultura. Aventuras del pensamiento (Synthesis) 2010, 1–5. [Google Scholar]
- Secretaría de Salud (SSA). Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. In Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación; Secretaría de Salud, Estados Unidos Mexicanos: 2004; Secretaría de Salud (SSA): Ciudad de México, México, 1995; pp. 1–68. [Google Scholar]
- Canadiam Council of Minister of the Enviroement. (CCME). Soil Quality Guidelines for the Protection of Environmental and Human Health. Available online: http://ceqg-rcqe.ccme.ca/en/index.html (accessed on 25 January 2020).
- China National Environmental Monitoring Centre (CNEMC). The Background Values of Chinese Soils; Environmental Science Press of China: Beijing, China, 1990; pp. 15–505. [Google Scholar]
- European Union. Heavy Metals in Wastes; European Commission on Environment. 2002. Available online: http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf (accessed on 8 June 2019).
- Ahaneku, I.E.; Sadiq, B.O. Assessment of heavy metals in Nigerian agricultural soils. Pol. J. Environ. Stud. 2014, 23, 1091–1100. [Google Scholar]
- Cai, L.; Xu, Z.; Ren, M.; Guo, Q.; Hu, X.; Hu, G.; Wan, H.; Peng, P. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [Green Version]
- Acosta, J.A.; Faz, A.; Martínez, M.S.; Arocena, J.M. Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Appl. Geochem. 2011, 26, 405–414. [Google Scholar] [CrossRef]
- Murtic, S.; Brkovic, D.; Djuric, M.; Vujinovic, I. Heavy metal dynamics in the soil-leaf-fruit system under intensive apple cultivation. Acta Agriculturae Serbica 2014, 19, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Ke-Lin, H.U.; Zhang, F.R.; Hong, L.; Feng, L.; Bao-Guo, L. Spatial Patterns of Soil Heavy Metals in Urban-Rural Transition Zone of Beijing. Pedosphere 2006, 16, 690–698. [Google Scholar] [CrossRef]
- Olivares, R.S.; García, C.D.; Lima, C.L.; Saborit, S.I.; Llizo, C.A.; Pérez, A.P. Niveles de cadmio, plomo, cobre y zinc en hortalizas cultivadas en una zona altamente urbanizada de la ciudad de la habana, Cuba. Revista Internacional de Contaminacion Ambiental 2013, 29, 285–293. [Google Scholar]
- Bautista, C.A.; Arnaud, V.M.D.R.; Carrillo, G.R. Elementos traza en dos áreas agrícolas. Terra Latinoamericana 2011, 29, 123–131. [Google Scholar]
- Ebong, G.A.; Akpan, M.M.; Mkpenie, V.N. Heavy metal contents of municipal and rural dumpsite soils and rate of accumulation by Carica papaya and Talinum triangulare in Uyo, Nigeria. J. Chem. 2008, 5, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Roca, N.; Pazos, M.S.; Bech, J. Disponibilidad de cobre, hierro, manganeso, zinc en suelos del NO Argentino. Ciencia del suelo 2007, 25, 31–42. [Google Scholar]
- Jalali, M.; Hemati, N. Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy Water Environ. 2013, 11, 299–309. [Google Scholar] [CrossRef]
- Martín, J.A.R.; Arias, M.L.; Corbí, J.M.G. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012. [Google Scholar] [CrossRef]
- Chen, T.; Liu, X.; Li, X.; Zhao, K.; Zhang, J.; Xu, J.; Shi, J.; Dahlgren, R.A. Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environ. Pollut. 2009, 157, 1003–1010. [Google Scholar] [CrossRef]
- García, J.L.E.; Veloz, C.S.; Damián, M.T.M.; Garza, Á.M.; García, P.S.; Hernández, R.M.S. Fertilización orgánica, mineral y foliar sobre el desarrollo y la producción de papaya cv. Maradol. Terra Latinoamericana 2003, 21, 157–166. [Google Scholar]
- Ordóñez, R.; Kheraiwish, D.; Polo, M.J.; Giráldez, J.V.; González, P. Influencia del encalado sobre la movilidad de metales en un suelo contaminado en el valle del río Guadiamar (Sevilla). Estudios de la Zona no Saturada del Suelo 2005, 7, 29–32. [Google Scholar]
- Esperanza González Hernández. Problemas ambientales y de salud en la cuenca del río Atoyac, Veracruz: Estrategias regionales y mapeo colectivo. In Megaproyectos Urbanos y Productivos; Impactos socio-territoriales; Universidad Autónoma del Estado de México: Toluca, México, 2017; pp. 235–244. Available online: http://ri.uaemex.mx/handle/20.500.11799/65706 (accessed on 15 October 2019).
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Luan, J.; Chai, M.; Li, R. Heavy Metal Migration and Potential Environmental Risk Assessment During the Washing Process of MSW Incineration Fly Ash and Molten Slag. Procedia Environ. Sci. 2016, 31, 351–360. [Google Scholar] [CrossRef] [Green Version]
UP | Textural Features (%) | pH | MO (%) | Average Concentration (± SD) (mg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GF | A | L | AG | GT | Pb | Cr | Cd | Zn | Cu | |||
BT | 3.7 | 59.3 | 34.0 | 2.9 | SL | 6.5 ± 0.05 | 4.5 ± 0.26 | 0.26 ± 0.02 | 0.49 ± 0.01 | 0.02 ± 0.01 | 0.42 ± 0.01 | 0.18 ± 0.01 |
BV | 3.0 | 47.1 | 38.7 | 11.2 | L | 7.5 ± 0.04 | 4.1 ± 0.12 | 0.20 ± 0.02 | 0.32 ± 0.03 | 0.02 ± 0.01 | 0.19 ± 0.02 | 0.98 ± 0.01 |
TR | 2.1 | 76.1 | 17.0 | 4.8 | SL | 7.6 ± 0.03 | 5.1 ± 0.35 | 0.18 ± 0.01 | 0.34 ± 0.02 | 0.02 ± 0.01 | 0.26 ± 0.01 | 0.14 ± 0.01 |
LO | 12.3 | 53.5 | 26.5 | 7.7 | SL | 5.5 ± 0.10 | 2.4 ± 0.25 | 0.22 ± 0.02 | 0.46 ± 0.01 | 0.02 ± 0.01 | 0.47 ± 0.02 | 0.16 ± 0.02 |
LM | 6.9 | 53.4 | 36.0 | 3.8 | SL | 6.5 ± 0.26 | 2.0 ± 0.05 | 0.23 ± 0.01 | 0.31 ± 0.02 | 0.02 ± 0.01 | 0.43 ± 0.01 | 0.16 ± 0.01 |
LI | 4.6 | 82.3 | 11.1 | 2.0 | SL | 5.8 ± 0.28 | 2.1 ± 0.19 | 0.19 ± 0.01 | 0.29 ± 0.02 | 0.02 ± 0.01 | 0.29 ± 0.01 | 0.17 ± 0.01 |
LT | 2.9 | 61.1 | 33.8 | 2.2 | SL | 6.5 ± 0.02 | 4.1 ± 0.10 | 0.24 ± 0.02 | 0.28 ± 0.02 | 0.02 ± 0.01 | 0.19 ± 0.02 | 0.13 ± 0.01 |
LA | 0.3 | 57.6 | 15.6 | 26.5 | SL | 5.8 ± 0.05 | 1.6 ± 0.97 | 0.26 ± 0.01 | 0.29 ± 0.02 | 0.03 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 |
LH | 1.9 | 22.8 | 62.7 | 12.6 | LS | 6.4 ± 0.04 | 3.2 ± 2.57 | 0.21 ± 0.01 | 0.29 ± 0.01 | 0.02 ± 0.01 | 0.52 ± 0.01 | 0.18 ± 0.01 |
LY | 0.0 | 51.6 | 38.4 | 10.1 | SL | 6.6 ± 0.10 | 5.4 ± 0.43 | 0.27 ± 0.01 | 0.42 ± 0.01 | 0.03 ± 0.01 | 0.36 ± 0.01 | 0.19 ± 0.01 |
TA | 9.7 | 38.9 | 43.0 | 8.4 | L | 7.7 ± 0.22 | 5.8 ± 0.34 | 0.24 ± 0.01 | 0.28 ± 0.01 | 0.02 ± 0.01 | 0.28 ± 0.01 | 0.18 ± 0.01 |
ME | 6.7 | 19.4 | 37.4 | 36.5 | L | 6.3 ± 0.02 | 5.9 ± 0.27 | 0.25 ± 0.02 | 0.48 ± 0.02 | 0.02 ± 0.01 | 0.61 ± 0.02 | 0.27 ± 0.01 |
MS | 4.4 | 21.3 | 38.3 | 36.0 | CL | 6.4 ± 0.02 | 5.8 ± 0.24 | 0.27 ± 0.03 | 0.63 ± 0.03 | 0.02 ± 0.02 | 0.55 ± 0.01 | 0.20 ± 0.01 |
MP | 4.1 | 34.6 | 37.6 | 23.7 | CL | 6.2 ± 0.02 | 6.4 ± 0.77 | 0.31 ± 0.02 | 0.45 ± 0.03 | 0.03 ± 0.01 | 0.39 ± 0.01 | 0.20 ± 0.01 |
ML | 9.9 | 56.0 | 25.7 | 8.5 | L | 6.2 ± 0.05 | 3.1 ± 1.19 | 0.27 ± 0.02 | 0.34 ± 0.02 | 0.03 ± 0.01 | 0.39 ± 0.01 | 0.22 ± 0.01 |
MT | 13.6 | 47.5 | 25.9 | 13.0 | SL | 5.8 ± 0.26 | 3.4 ± 0.38 | 0.27 ± 0.02 | 0.33 ± 0.02 | 0.03 ± 0.01 | 0.46 ± 0.01 | 0.20 ± 0.01 |
PT | 6.8 | 29.5 | 39.8 | 23.9 | SL | 6.7 ± 0.02 | 6.6 ± 0.33 | 0.24 ± 0.02 | 0.36 ± 0.02 | 0.20 ± 0.01 | 0.45 ± 0.01 | 0.13 ± 0.01 |
PP | 1.8 | 62.3 | 32.0 | 3.9 | L | 6.8 ± 0.02 | 8.1 ± 2.38 | 0.29 ± 0.02 | 0.43 ± 0.02 | 0.03 ± 0.01 | 0.11 ± 0.01 | 0.19 ± 0.01 |
SF | 6.8 | 52.5 | 27.8 | 12.9 | SL | 6.2 ± 0.02 | 3.8 ± 0.56 | 0.23 ± 0.01 | 0.21 ± 0.01 | 0.02 ± 0.01 | 0.16 ± 0.01 | 0.22 ± 0.01 |
SI | 2.4 | 34.2 | 35.1 | 28.4 | SL | 7.2 ± 0.03 | 13.1 ± 1.34 | 0.29 ± 0.01 | 0.55 ± 0.02 | 0.02 ± 0.01 | 0.36 ± 0.01 | 0.12 ± 0.01 |
SO | 0.0 | 50.9 | 36.4 | 12.7 | L | 5.8 ± 0.20 | 3.8 ± 0.18 | 0.22 ± 0.02 | 0.38 ± 0.02 | 0.02 ± 0.01 | 0.54 ± 0.01 | 0.19 ± 0.01 |
SY | 0.0 | 54.1 | 36.8 | 9.0 | L | 5.6 ± 0.11 | 3.0 ± 0.24 | 0.27 ± 0.02 | 0.38 ± 0.02 | 0.02 ± 0.01 | 0.42 ± 0.01 | 0.22 ± 0.01 |
SL | 1.8 | 50.1 | 36.8 | 11.3 | L | 6.3 ± 0.02 | 3.2 ± 0.27 | 0.29 ± 0.01 | 0.39 ± 0.01 | 0.03 ± 0.01 | 0.53 ± 0.01 | 0.25 ± 0.02 |
SP | 2.3 | 50.2 | 38.1 | 9.4 | L | 6.4 ± 0.03 | 3.5 ± 0.87 | 0.28 ± 0.01 | 0.35 ± 0.01 | 0.02 ± 0.01 | 0.50 ± 0.01 | 0.26 ± 0.01 |
VC | 2.2 | 77.6 | 18.1 | 2.1 | L | 6.8 ± 0.04 | 12.8 ± 1.06 | 0.32 ± 0.01 | 0.70 ± 0.02 | 0.02 ± 0.01 | 0.26 ± 0.01 | 0.22 ± 0.01 |
AG | A | GF | L | pH | MO | Cd | Cr | Cu | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
AG | 1.00 | ||||||||||
A | −0.769 <0.001 | 1.00 | |||||||||
GF | −0.003 0.988 | −0.164 0.444 | 1.00 | ||||||||
L | 0.232 0.276 | −0.761 <0.001 | −0.9 0.677 | 1.00 | |||||||
pH | −0.271 0.201 | 0.263 0.214 | −0.084 0.695 | −0.119 0.579 | 1.00 | ||||||
MO | −0.141 0.511 | 0.156 0.466 | −0.287 0.174 | −0.007 0.973 | 0.749 <0.001 | 1.00 | |||||
Cd | 0.206 0.335 | −0.239 0.261 | 0.132 0.537 | 0.127 0.554 | −0.161 0.453 | −0.205 0.337 | 1.00 | ||||
Cr | 0.306 0.146 | −0.128 0.55 | −0.14 0.514 | −0.049 0.821 | −0.324 0.122 | −0.376 0.07 | −0.065 0.762 | 1.00 | |||
Cu | −0.012 0.956 | −0.066 0.76 | −0.074 0.732 | 0.141 0.51 | −0.136 0.526 | 0.032 0.883 | −0.131 0.541 | −0.082 0.703 | 1.00 | ||
Pb | 0.217 0.309 | −0.122 0.569 | −0.024 0.912 | −0.012 0.956 | −0.34 0.104 | −0.612 0.001 | −0.044 0.838 | 0.607 0.002 | −0.238 0.263 | 1.00 | |
Zn | 0.391 0.059 | −0.573 0.003 | 0.141 0.511 | 0.468 0.021 | −0.174 0.416 | −0.182 0.395 | 0.107 0.618 | 0.291 0.168 | −0.168 0.434 | 0.119 0.58 | 1.00 |
Reference Limits | Heavy Metals in Agricultural Soils (mg kg−1) | References | ||||
---|---|---|---|---|---|---|
Pb | Cd | Cu | Cr | Zn | ||
Study Data | 0.32 | 0.20 | 0.98 | 0.70 | 0.62 | |
Mexico * | 400 | 37 | −280 | 300 | [39] | |
Mexico ** | 35 | 0.35 | - | - | - | [30] |
Canada | 70 | 1.4 | 63 | 64 | 250 | [40] |
China | 36 | 0.056 | 17 | 50.5 | 47.3 | [41] |
European Union | 100–600 | 2–6 | - | - | - | [42] |
United States | 100 | 3 | 100 | 100 | [43] |
Code | Igeo | Ei | RI | GC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Cr | Cd | Zn | Cu | Pb | Cr | Cd | Zn | Cu | |||
BT | −6 | −4 | −2 | −6 | −6 | 0.26 | 0.14 | 10.67 | 0.03 | 0.15 | 11.50 | L |
BV | −6 | −5 | −2 | −7 | −3 | 0.20 | 0.09 | 9.50 | 0.01 | 0.82 | 10.82 | L |
TR | −6 | −5 | −2 | −7 | −6 | 0.18 | 0.10 | 10.33 | 0.02 | 0.12 | 10.93 | L |
LO | −6 | −5 | −2 | −6 | −6 | 0.22 | 0.13 | 10.17 | 0.04 | 0.13 | 10.91 | L |
LM | −6 | −5 | −2 | −6 | −6 | 0.23 | 0.09 | 10.17 | 0.03 | 0.14 | 10.89 | L |
LI | −6 | −5 | −2 | −6 | −6 | 0.19 | 0.08 | 10.83 | 0.02 | 0.14 | 11.46 | L |
LT | −6 | −5 | −2 | −7 | −6 | 0.24 | 0.08 | 11.55 | 0.01 | 0.11 | 12.23 | L |
LA | −6 | −5 | −2 | −7 | −6 | 0.26 | 0.08 | 12.50 | 0.01 | 0.13 | 13.26 | L |
LH | −6 | −5 | −2 | −6 | −6 | 0.21 | 0.08 | 10.83 | 0.04 | 0.15 | 11.52 | L |
LO | −6 | −5 | −2 | −6 | −6 | 0.27 | 0.12 | 12.67 | 0.03 | 0.15 | 13.51 | L |
TA | −6 | −5 | −2 | −7 | −6 | 0.24 | 0.08 | 11.50 | 0.02 | 0.15 | 12.24 | L |
ME | −6 | −4 | -2 | −5 | −5 | 0.25 | 0.14 | 11.33 | 0.05 | 0.23 | 12.25 | L |
MS | −6 | −4 | −2 | −6 | −6 | 0.27 | 0.18 | 9.00 | 0.04 | 0.17 | 9.93 | L |
MP | −6 | −5 | −2 | −6 | −6 | 0.31 | 0.13 | 12.50 | 0.03 | 0.16 | 13.44 | L |
ML | −6 | −5 | −2 | −6 | −5 | 0.27 | 0.10 | 12.33 | 0.03 | 0.19 | 13.19 | L |
MT | −6 | −5 | −2 | −6 | −6 | 0.27 | 0.10 | 13.00 | 0.04 | 0.17 | 13.84 | L |
PT | −6 | −5 | 1.13 | −6 | −6 | 0.24 | 0.10 | 98.23 | 0.03 | 0.11 | 98.96 | M |
PP | −6 | −5 | −2 | −8 | −6 | 0.29 | 0.12 | 13.00 | 0.01 | 0.16 | 13.87 | L |
SF | −6 | −6 | −2 | −7 | −5 | 0.23 | 0.06 | 11.33 | 0.01 | 0.18 | 12.04 | L |
SI | −6 | −4 | −2 | −6 | −6 | 0.29 | 0.16 | 8.67 | 0.03 | 0.10 | 9.53 | L |
SO | −6 | −5 | −2 | −6 | −6 | 0.22 | 0.11 | 11.50 | 0.04 | 0.16 | 12.25 | L |
SY | −6 | −5 | −2 | −6 | −5 | 0.27 | 0.11 | 12.00 | 0.03 | 0.18 | 12.87 | L |
SL | −6 | −5 | −2 | −6 | −5 | 0.29 | 0.11 | 12.50 | 0.04 | 0.21 | 13.43 | L |
SP | −6 | −5 | −2 | −6 | −5 | 0.28 | 0.10 | 10.17 | 0.04 | 0.22 | 11.09 | L |
VC | −6 | −4 | −2 | −7 | −5 | 0.32 | 0.20 | 11.83 | 0.02 | 0.18 | 12.88 | L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaro-Espejo, I.A.; Castañeda-Chávez, M.d.R.; Murguía-González, J.; Lango-Reynoso, F.; Bañuelos-Hernández, K.P.; Galindo-Tovar, M.E. Geoaccumulation and Ecological Risk Indexes in Papaya Cultivation Due to the Presence of Trace Metals. Agronomy 2020, 10, 301. https://doi.org/10.3390/agronomy10020301
Amaro-Espejo IA, Castañeda-Chávez MdR, Murguía-González J, Lango-Reynoso F, Bañuelos-Hernández KP, Galindo-Tovar ME. Geoaccumulation and Ecological Risk Indexes in Papaya Cultivation Due to the Presence of Trace Metals. Agronomy. 2020; 10(2):301. https://doi.org/10.3390/agronomy10020301
Chicago/Turabian StyleAmaro-Espejo, Isabel Araceli, María del Refugio Castañeda-Chávez, Joaquín Murguía-González, Fabiola Lango-Reynoso, Karina Patricia Bañuelos-Hernández, and María Elena Galindo-Tovar. 2020. "Geoaccumulation and Ecological Risk Indexes in Papaya Cultivation Due to the Presence of Trace Metals" Agronomy 10, no. 2: 301. https://doi.org/10.3390/agronomy10020301
APA StyleAmaro-Espejo, I. A., Castañeda-Chávez, M. d. R., Murguía-González, J., Lango-Reynoso, F., Bañuelos-Hernández, K. P., & Galindo-Tovar, M. E. (2020). Geoaccumulation and Ecological Risk Indexes in Papaya Cultivation Due to the Presence of Trace Metals. Agronomy, 10(2), 301. https://doi.org/10.3390/agronomy10020301