The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Experimental Design and Agronomic Management
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Voisin, A.S.; Gueguen, J.; Huyghe, C.; Jeuffroy, M.H.; Magrini, M.B.; Meynard, J.M.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Dev. 2014, 34, 361–380. [Google Scholar] [CrossRef]
- Schott, C.; Mignolet, C.; Meynad, J.M. Les oléoprotéagineux dans les systémes de culture: Évolution des assolements et des successions culturales depuis les années 1970 dans le bassin de la Seine. OCL 2010, 17, 276–291. [Google Scholar] [CrossRef] [Green Version]
- Murphy-Bokern, D.; Watson, C. Legume-Supported Cropping Systems for Europe. Looking Forward. 2016. Available online: http://www.legumefutures.de/images/Legume_Futures_Looking_Forward.pdf (accessed on 9 January 2018).
- EUROSTAT. Agricultural Production–Crops. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops (accessed on 23 November 2018).
- Kordas, L. Energy and economic effects of reduced tillage in crop rotation. Acta Sci. Pol. Agric. 2005, 4, 51–59. [Google Scholar]
- Jastrzębska, M.; Kostrzewska, M.K.; Marks, M.; Jastrzębski, W.P.; Treder, K.; Makowski, P. Crop Rotation Compared with Continuous Rye Cropping for Weed Biodiversity and Rye Yield. A Case Study of a Long-Term Experiment in Poland Agronomy. Agronomy 2019, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975. [Google Scholar]
- Gill, K.S.; Arshad, M.A. Weed flora in the early growth period of spring crops under conventional, reduced, and zero tillage systems on a clay soil in northern Alberta, Canada. Soil Tillage Res. 1995, 33, 65–79. [Google Scholar] [CrossRef]
- Samarajeewa, K.B.D.P.; Horiuchi, T.; Oba, S. Weed population dynamics in wheat as affected by Astragalus sinicus L. (Chinese milk vetch) under reduced tillage. Crop Prot. 2005, 24, 864–869. [Google Scholar] [CrossRef]
- Özpinar, S. Effects of tillage systems on weed population and economics for winter wheat production under the Mediterranean dryland conditions. Soil Tillage Res. 2006, 87, 1–8. [Google Scholar] [CrossRef]
- Rusu, T.; Gus, P.; Bogdan, I. The influence of minimum soil tillage systems on weed density, frequency of phytopatogenous agents and crop yields of soybean, wheat, potato, rape and corn. J. Food Agric. Environ. 2006, 4, 225–227. [Google Scholar]
- Légère, A.; Stevenson, F.C.; Ziadi, N. Contrasting responses of weed communities and crops to 12 years of tillage and fertilization treatments. Weed Technol. 2008, 22, 309–317. [Google Scholar] [CrossRef]
- Anonymous. The Biology of Lupinus L. (Lupin or Lupine); Australian Government; Version 1: April 2013; Department of Health and Ageing, Office of the Gene Technology Regulator: Canberra, Australia, 2013; p. 64. [Google Scholar]
- Rodrigues dos Reis, A.R.; Vivian, R. Weed competition in the soybean crop management in Brazil. In Soybean–Applications and Technology; IntechOpen: London, UK, 2011; p. 402. [Google Scholar]
- Auškalniene, O.; Auškalnis, A. The influence of tillage system on diversities of soil weed seed bank. Agron. Res. 2009, 7, 156–161. [Google Scholar]
- Dogan, K.; Celik, I.; Gok, M.; Coskan, A. Effect of different soil tillage methods on rhizobial nodulation, biomass and nitrogen content of second crop soybean. Afr. J. Microbiol. Res. 2011, 5, 3186–3194. [Google Scholar]
- Doran, J.W.; Elliott, E.T.; Paustian, K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil Tillage Res. 1998, 49, 3–18. [Google Scholar] [CrossRef]
- Madejón, E.; Moreno, F.; Murillo, J.M.; Pelegrin, F. Soil biochemical response to long-term conserva-tion tillage under semi-arid Mediterranean conditions. Soil Tillage Res. 2007, 94, 346–352. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion till-age systems in the United Kingdom and the agronomic impact on soil, crops and the environment-A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Melero, S.; Panettieri, M.; Madejón, E.; Gómez Macpherson, H.; Moreno, F.; Murillo, J.M. Implementa-tion of chiseling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil Tillage Res. 2011, 112, 107–113. [Google Scholar] [CrossRef]
- Flynn, R. Inoculation of Legumes. Guide A-130. College of Agricultural, Consumer and Environmental Sciences, New Mexico State University. 2015. Available online: https://aces.nmsu.edu/pubs/_a/A130.pdf (accessed on 9 January 2018).
- Govaerts, B.; Fuentes, M.; Mezzalama, M.; Nicol, J.M.; Deckers, J.; Etchevers, J.D.; Figueroa-Sandoval, B.; Sayre, K.D. Infiltration, soil moisture, root rot and nematode populations after 12years of different tillage, residue and crop rotation managements. Soil Tillage Res. 2007, 94, 209–219. [Google Scholar] [CrossRef]
- Fernandez-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T. Effect of tillage systems on soil moisture, soil temperature, soil respiration and production of wheat, maize and soybean crop. J. Food Agric. Environ. 2012, 10, 445–448. [Google Scholar]
- Lampurlanés, J.; Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 2016, 189, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Limousin, G.; Tessier, D. Effect of no-tillage on chemical gradients and topsoil acidification. Soil Tillage Res. 2007, 92, 167–174. [Google Scholar] [CrossRef]
- Faligowska, A.; Szukała, J. The effect of various long-term tillage systems on yield and yield component of yellow and narrow-leaved lupin. Turk. J. Field Crops. 2015, 20, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Suliman, A.A.M. Contribution of weed control and tillage systems on soil moisture content, growth and forage quality of (Clitoria & Siratro) mixture under-rainfed conditions at Zalingei-Western Darfur state-Sudan. J. Sci. Technol. 2008, 3, 80–90. [Google Scholar]
- Borin, M.; Sartori, L. Barley, soybean and maize production using ridge tillage, no-tillage and conventional tillage in north-east Italy. J. Agric. Eng. Res. 1995, 62, 229–236. [Google Scholar] [CrossRef]
- Blecharczyk, A.; Skrzypczak, G.; Małecka, I.; Piechota, T. The effect of diverse tillage systems on physical soil properties and yielding of winter wheat and pea. Folia Univ. Agric. Stetin. Agric. 1999, 195, 171–179. [Google Scholar]
- Heenan, D.P.; Taylor, A.C.; Chan, K.Y.; McGhie, W.J.; Collins, D.; Lill, W.J. The impact of long-term rotation, tillage and stubble management on lupin (Lupinus angustifolius L.) productivity. Field Crops Res. 2000, 67, 11–23. [Google Scholar] [CrossRef]
- Szukała, J.; Mystek, A.; Kurasiak-Popowska, D. Productional and economic effects of different soil tillage systems of lupin. Zesz. Probl. Postepow Nauk Rol. 2003, 495, 219–230. [Google Scholar]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swędrzyńska, D.; Sawinska, Z.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea. Acta Sci. Pol. Agric. 2016, 15, 37–50. [Google Scholar]
- Rasmussen, K.J. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northen, western and south-western Europe: A review of problem and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.W.; Kohler, K.A.; Liebman, M.; Richard, T.L.; Cambardella, C.A.; Buhler, D.D. Tillage and compost affect yield of corn, soybean, and wheat and soil fertility. Agron. J. 2004, 96, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Al-Kaisi, M.M. Periodic response of soybean yields and economic returns to long term no tillage. Agron. J. 2004, 96, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, W.W.; Wortmann, C.S. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. Agron. J. 2004, 96, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Košutić, S.; Filipović, D.; Gospodarić, Z.; Husnjak, S.; Kovačev, I.; Čopec, K. Effects of different soil tillage systems on yield of maize, winter wheat and soybean on albic luvisol in north-west Slavonia. J. Cent. Eur. Agric. 2005, 6, 241–248. [Google Scholar]
- Dueñas, M.; Hernández, T.; Estella, I.; Fernández, D. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 2009, 177, 599–607. [Google Scholar] [CrossRef]
- Rutkowski, A.; Hejdysz, M.; Kaczmarek, S.; Mikuła, R.; Kasprowicz-Potocka, M.; Zaworska, A. Potential Use of Legumes in Feeding Monogastric Animals; Foundation of Assistance Programmes for Agriculture: Warsaw, Poland, 2014; p. 37. [Google Scholar]
- Anken, T.; Weisskopf, P.; Zihlmann, U.; Forrer, H.; Jansa, J.; Perhacova, K. Long-term tillage systems effects under moist cool conditions in Switzerland. Soil Tillage Res. 2004, 78, 171–183. [Google Scholar] [CrossRef]
- Golik, S.; Chidichimo, H.; Sarandon, S. Biomass production, nitrogen accumulation and yield in wheat under two tillage systems and nitrogen supply in the Argentine Rolling Pampa. World J. Agric. Sci. 2005, 1, 36–41. [Google Scholar]
- Özpinar, S.; Çay, A. Effects of minimum and conventional tillage systems on soil properties and yield of winter wheat (Triticum aestivum L.) in clay-loam in Çanakkale region. Turk. J. Agric. For. 2005, 29, 9–18. [Google Scholar]
- Małecka, I.; Blecharczyk, A.; Sawinska, Z.; Swędrzyńska, D.; Piechota, T. Winter wheat yield and soil properties response to long-term non-inversion tillage. J. Agric. Sci. Technol. 2015, 17, 1571–1584. [Google Scholar]
- Camara, K.; Payne, W.; Rasmussen, P. Long-term effects of tillage, nitrogen, and rainfall on winter wheat yields in the Pacific Northwest. Agron. J. 2003, 95, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Jug, I.; Jug, D.; Sabo, M.; Stipeševć, B.; Stošić, M. Winter wheat yield and yield components as affected by soil tillage systems. Turk. J. Agric. For. 2011, 35, 1–7. [Google Scholar]
- Litke, L.; Gaile, Z.; Ruža, A. Nitrogen fertilizer influence on winter wheat yield and yield components depending on soil tillage and forecrop. Res. Rural Dev. 2017, 23, 54–61. [Google Scholar]
- Halvorson, A.D.; Black, A.L.; Krupinsky, J.M.; Merrill, S.D. Dryland winter wheat response to tillage and nitrogen within an annual cropping system. Agron. J. 1999, 91, 702–707. [Google Scholar] [CrossRef]
- Melaj, M.; Echeverria, H.; Lopez, S.; Studdert, G.; Andrade, F.; Barbaro, N. Timing of nitrogen fertilization in wheat under conventional and no-tillage system. Agron. J. 2003, 95, 1525–1531. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Martíneza, I.; Chervet, A.; Weisskopf, P.; Sturny, W.G.; Etana, A.; Stettler, M.; Forkman, J.; Kellera, T. Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil Tillage Res. 2016, 163, 141–151. [Google Scholar]
Year/Month | March | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|
2012 | 0.68 | 0.92 | 1.24 | 2.62 | 2.53 | 1.00 | 0.72 | 1.27 |
2013 | 3.50 | 0.72 | 1.81 | 2.04 | 0.76 | 0.76 | 2.01 | 0.51 |
2014 | 1.01 | 1.81 | 2.25 | 0.89 | 0.70 | 1.68 | 1.00 | 0.40 |
2015 | 0.36 | 1.34 | 1.10 | 0.57 | 0.91 | 2.74 | 0.54 | 1.08 |
2016 | 4.27 | 1.45 | 0.90 | 1.52 | 2.55 | 0.75 | 0.11 | 4.23 |
Crop Rotation (Harvest Year) | ||||
---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 |
narrow-leaved lupin | winter wheat | winter triticale | winter barley | - |
- | narrow-leaved lupin | winter wheat | winter triticale | winter barley |
- | - | narrow-leaved lupin | winter wheat | winter triticale |
- | - | - | narrow-leaved lupin | winter wheat |
Tillage System | Cultivation Measures |
---|---|
CT | Post-harvest cultivation: disk harrow (2.5 m wide) to a depth of 8 cm and fertilization. |
Basic land preparation: ploughing to a depth of 30 cm with a 3-furrow reversible plough. | |
Pre-plant tillage: cultivator followed by harrowing to a depth of 8 cm and rolling). | |
RT | Post-harvest cultivation: application of glyphosate herbicide (3 l ha−1), and fertilization. |
Basic land preparation: stubble cultivator (2.5 m wide). | |
Pre-plant tillage: cultivator followed by harrowing to a depth of 8 cm and rolling. | |
NT | Post-harvest cultivation: application of glyphosate herbicide (3 l ha−1) and fertilization. |
Basic land preparation: | |
Pre-plant surface preparation: application of glyphosate herbicide (3 l ha−1) and sowing directly into the stubble of the previous crop. |
Specification | Tillage Systems | LSD Values | ||
---|---|---|---|---|
CT | RT | NT | ||
Dry mass of weeds (g m2) | 1.5 | 24.6 | 46.4 | 23.84 ** |
Plant density (no. m2) | 75.4 | 69.6 | 56.7 | 4.65 ** |
Dry mass of nodules per plant (mg) | 73.4 | 85.1 | 102.6 | 16.1 ** |
No. of pods per plant | 14.8 | 13.7 | 13.9 | NS |
No. of seeds per plant | 57.8 | 51.1 | 56.6 | NS |
No. of seeds per plant pod | 3.9 | 3.7 | 4.1 | NS |
Mass of 1000 seeds (g) | 145 | 143 | 142 | NS |
Seed yield (t ha−1) | 3.0 | 2.7 | 2.3 | 0.18 ** |
Protein content (g kg−1 d.m.) | 295 | 304 | 314 | NS |
Protein efficiency (kg ha−1) | 884 | 823 | 722 | 53.7 ** |
Specification | Tillage Systems | ||
---|---|---|---|
CT | RT | NT | |
Production value * ha−1 | 1091.02 | 1019.88 | 925.02 |
Total cost ha−1 | 721.49 | 711.40 | 682.73 |
Gross agricultural income ha−1 | 369.53 | 308.48 | 242.29 |
Cost of 1 t seed production ** | 240.50 | 263.48 | 296.94 |
Cost of 1 kg protein production *** | 0.82 | 0.86 | 0.95 |
Species | Tillage Systems | LSD Values | ||
---|---|---|---|---|
CT | RT | NT | ||
Winter wheat (mean 2013–2016) | 6.8 | 6.4 | 5.7 | 0.35 ** |
Winter triticale (mean 2014–2016) | 6.4 | 6.0 | 5.9 | 0.39 ** |
Winter barley (mean 2015–2016) | 4.1 | 3.7 | 2.2 | 0.28 ** |
Winter wheat (mean 2015–2016) | 6.7 | 5.9 | 5.1 | 0.49 ** |
Winter triticale (mean 2015–2016) | 6.3 | 5.9 | 5.6 | 0.55 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. https://doi.org/10.3390/agronomy10020304
Panasiewicz K, Faligowska A, Szymańska G, Szukała J, Ratajczak K, Sulewska H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy. 2020; 10(2):304. https://doi.org/10.3390/agronomy10020304
Chicago/Turabian StylePanasiewicz, Katarzyna, Agnieszka Faligowska, Grażyna Szymańska, Jerzy Szukała, Karolina Ratajczak, and Hanna Sulewska. 2020. "The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation" Agronomy 10, no. 2: 304. https://doi.org/10.3390/agronomy10020304
APA StylePanasiewicz, K., Faligowska, A., Szymańska, G., Szukała, J., Ratajczak, K., & Sulewska, H. (2020). The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy, 10(2), 304. https://doi.org/10.3390/agronomy10020304