Morphological Features and Biomass Partitioning of Lucerne Plants (Medicago sativa L.) Subjected to Water Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.3. Statistical Analyses
3. Results
3.1. Effect of Water Treatments on Plant Height and Leaf Growth
3.2. Effect of Water Treatments on Taproot Length and Lateral Root Number
3.3. Effect of Water Treatments on Leaf, Stem, and Root Dry Weight
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Turner, N.C.; Molyneux, N.; Yang, S.; Xiong, Y.C.; Siddique, K.H.M. Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop Pasture Sci. 2011, 62, 445–456. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2004, 29, 153–188. [Google Scholar]
- Wang, X.; Marija, V.; Liu, F.; Susanne, J.; Dong, J.; Bernd, W. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regul. 2015, 75, 677–687. [Google Scholar] [CrossRef]
- Easwar, D.R.; Chaitanya, K.V. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol. Plant. 2016, 60, 201–218. [Google Scholar] [CrossRef]
- Joshi, R.; Wani, S.H.; Singh, B.; Bohra, A.; Dar, Z.A.; Lone, A.A.; Singla, S.L. Transcription factors and plants response to drought stress: Current understanding and future directions. Front. Plant Sci. 2016, 7, 1029. [Google Scholar] [CrossRef] [Green Version]
- Chimenti, C.A.; Hall, A.J. Responses to water stress of apoplastic water fraction and of elasticity in sunflower (Helianthus annuus L.) genotypes capacity for osmotic adjustment. Plant Soil 1994, 166, 101–107. [Google Scholar] [CrossRef]
- Turner, N.C. Crop water deficits: A decade of progress. Adv. Agron. 1986, 39, 1–51. [Google Scholar] [CrossRef]
- Gabriel, M.M.; Jesu´s, J.C.; Sara, P.; Carmen, P.R.; Rube´n, M.; Jorge, A.; Melchor, M. Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: Implications for their persistence and reproduction. Trees 2009, 23, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C.; Begg, J.E. Responses of pasture plants to water deficits. In Plant Relations in Pastures; Wilson, J.R., Ed.; CSIRO: Melbourne, Australia, 1978; pp. 50–66. [Google Scholar]
- Nasreddine, Y.; Ncib, S.; Amari, R.; Chedly, A. Growth, potosynthesis and water relations as affected by different drought regimes and subsequent recovery in Medicago laciniata (L.) populations. Plant Biol. 2016, 59, 33–43. [Google Scholar] [CrossRef]
- David, L.; Warren, K.C.; Richard, E.V. Adaptation of potato to water shortage: Irrigation management and enhancement of tolerance to drought and salinity. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- French, R.J.; Turner, N.C. Water deficits change dry matter partitioning and seed yield in narrow-leafed lupins (Lupinus angustifolius L.). Aust. J. Agric. Res. 1991, 42, 471–484. [Google Scholar] [CrossRef]
- Lalith, D.S.; Megan, H.R.; Michael, R.; Hans, L. Above- and below-ground interactions of grass and pasture legume species when grown together under drought and low phosphorus availability. Plant Soil 2011, 348, 281–297. [Google Scholar] [CrossRef]
- Jiang, H.M.; Jiang, J.P.; Jia, Y.; Li, F.M.; Xu, J.Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 2006, 38, 2350–2358. [Google Scholar] [CrossRef]
- Peoples, M.B.; Bowman, A.M.; Gault, R.R.; Herridge, D.F.; McCallum, M.H.; McCormick, K.M.; Norton, R.M.; Rochester, I.J.; Scammell, G.J.; Schwenke, G.D. Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant Soil 2001, 228, 29–41. [Google Scholar] [CrossRef]
- Norton, M.R.; Malinowski, D.P.; Volaire, F. Plant drought survival under climate change and strategies to improve perennial grasses. A review. Agron. Sustain. Dev. 2016, 36, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, G.; Danell, K.H. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Jia, Y.H.; Shao, M.A. Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China. Agric. Water Manag. 2013, 117, 33–42. [Google Scholar] [CrossRef]
- Sumberg, J.E.; Murphy, R.P.; Lowe, C.C. Selection for fiber and protein concentration in a diverse alfalfa population. Crop Sci. 1983, 23, 11–14. [Google Scholar] [CrossRef]
- Fan, J.W.; Du, Y.L.; Turner, N.C.; Wang, B.R.; Fang, Y.; Xi, Y.; Guo, X.R.; Li, F.M. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant Soil 2015, 392, 215–226. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Wang, X.L. Soil quality responses to alfalfa watered with a field micro-catchment technique in the Loess Plateau of China. Field Crop. Res. 2006, 95, 64–74. [Google Scholar] [CrossRef]
- He, S.; Liu, G.; Yang, H. Water use efficiency by alfalfa: Mechanisms involving anti-oxidation and osmotic adjustment under drought. Russ. J. Plant Physiol. 2012, 59, 348–355. [Google Scholar] [CrossRef]
- Richard, E.S.; Hamish, E.B.; Edmar, I.T.; Derrick, J.M. Soil water extraction patterns of lucerne grown on stony soils. Plant Soil 2017, 414, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.W.; Williams, A.H.; Ryan, M.H.; Ewing, M.A. Water relations and adaptations to increasing water deficit in three perennial legumes, Medicago sativa, Dorycnium hirsutum and Dorycnium rectum. Plant Soil 2007, 290, 231–243. [Google Scholar] [CrossRef]
- Orloff, S.; Putnam, D.; Bali, K. Drought Strategies for Alfalfa; University of California Agriculture and Natural Resources Publication: Richmond, CA, USA, 2015. [Google Scholar]
- Pang, J.Y.; Yang, J.Y.; Ward, P.; Siddique, K.H.M.; Lambers, H.; Tibbett, M.; Ryan, M. Contrasting responses to drought stress in herbaceous perennial legumes. Plant Soil 2011, 348, 299–314. [Google Scholar] [CrossRef]
- Gernot, B.; Alireza, N.; Hans, P.K. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Luo, Y.Z.; Liu, H.; Yan, G.J.; Li, G.; Turner, N.C. Roots of lucerne seedlings are more resilient to a water deficit than leaves or stems. Agronomy 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Cui, K.H.; Xu, A.H.; Nie, L.X.; Huang, J.L.; Peng, S.B. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 2015, 37, 9. [Google Scholar] [CrossRef]
- Khonghintaisong, J.; Songsri, P.; Toomsan, B.; Jongrungklang, N. Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Technol. 2018, 20, 396–406. [Google Scholar] [CrossRef]
- Brown, H.E.; Moot, D.J.; Fletcher, A.L.; Jamieson, P.D. A framework for quantifying water extraction and water stress responses of pernnial lucerne. Crop Pasture Sci. 2009, 60, 785–794. [Google Scholar] [CrossRef]
- Amiri, R.; Nikbakht, A.; Rahimmalek, M.; Hosseini, H. Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. J. Plant Growth Regul. 2017, 36, 502–515. [Google Scholar] [CrossRef]
- Turner, N.C. Imposing and maintaining soil water deficits in drought studies in pots. Plant Soil 2019, 439, 45–55. [Google Scholar] [CrossRef]
Growth Rate (mg day−1) | Root/Shoot Ratio | ||
---|---|---|---|
WW | Seedling | 10.8 ± 6.4 | 0.47 |
Branching | 10.6 ± 7.5 | 0.45 | |
Squaring | 9.4 ± 1.3 | 0.32 | |
Flowering | 5.9 ± 1.0 | 0.26 | |
MS | Mean | 9.2 ± 1.5 | 0.38 |
Seedling | 10.3 ± 6.9 | 0.48 | |
Branching | 10.4 ± 7.7 | 0.50 | |
Squaring | 8.3 ± 1.2 | 0.42 | |
Flowering | 4.3 ± 1.0 | 0.42 | |
SS | Mean | 8.3 ± 2.1 | 0.46 |
Seedling | 8.4 ± 2.6 | 0.51 | |
Branching | 6.3 ± 1.8 | 0.55 | |
Squaring | 5.6 ± 0.9 | 0.73 | |
Flowering | 3.8 ± 0.8 | 0.38 | |
Mean | 6.0 ± 2.5 | 0.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.-Z.; Li, G.; Yan, G.; Liu, H.; Turner, N.C. Morphological Features and Biomass Partitioning of Lucerne Plants (Medicago sativa L.) Subjected to Water Stress. Agronomy 2020, 10, 322. https://doi.org/10.3390/agronomy10030322
Luo Y-Z, Li G, Yan G, Liu H, Turner NC. Morphological Features and Biomass Partitioning of Lucerne Plants (Medicago sativa L.) Subjected to Water Stress. Agronomy. 2020; 10(3):322. https://doi.org/10.3390/agronomy10030322
Chicago/Turabian StyleLuo, Yong-Zhong, Guang Li, Guijun Yan, Hui Liu, and Neil C. Turner. 2020. "Morphological Features and Biomass Partitioning of Lucerne Plants (Medicago sativa L.) Subjected to Water Stress" Agronomy 10, no. 3: 322. https://doi.org/10.3390/agronomy10030322
APA StyleLuo, Y. -Z., Li, G., Yan, G., Liu, H., & Turner, N. C. (2020). Morphological Features and Biomass Partitioning of Lucerne Plants (Medicago sativa L.) Subjected to Water Stress. Agronomy, 10(3), 322. https://doi.org/10.3390/agronomy10030322