Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Setup
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Basil
3.2. Lettuce
3.3. Swiss Chard
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K. Soilless (hydroponic) culture the past, present and future. An Australian viewpoint. In Soilless Culture; International Society for Soilless Culture: Wageningen, The Netherlands, 1986; pp. 27–34. [Google Scholar]
- Bradley, P.; Marulanda, C. Simplified hydroponics to reduce global hunger. Acta Hort. 2000, 554, 289–295. [Google Scholar] [CrossRef]
- Both, A. Ten Years of Hydroponic Lettuce Research; Department of Plant Biology and Pathology; The State University of New Jersey: New Brunswick, NJ, USA, 1998; pp. 7–14. Available online: http://www.researchgate.net/publication/266453402_TEN_YEARS_OF_HYDROPONIC_LETTUCE_RESEARCH (accessed on 2 January 2020).
- Succop, C.E.; Newman, S.E. Organic fertilization of fresh market sweet basil in a greenhouse. HortTechnology 2004, 14, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Putra, P.A.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Christie, E. Water and Nutrient Reuse within Closed Hydroponic Systems.Graduate Thesis, Georgia Southern University, United States. Electron. Thesis Diss. 2014. Available online: https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=2154&context=etd (accessed on 2 January 2020).
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Both, A.J.; Albright, L.D.; Langhans, R.W. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce productions. Acta Hort. 1998, 456, 45–51. [Google Scholar] [CrossRef]
- Mortensen, L.M. CO2 enrichment in greenhouses. Crop responses. Sci. Hort. 1987, 33, 1–25. [Google Scholar] [CrossRef]
- Willits, D.; Peet, M. Predicting yield responses to different greenhouse CO2 enrichment schemes: Cucumbers and tomatoes. Agric. For. Meteorol. 1989, 44, 275–293. [Google Scholar] [CrossRef]
- Hand, D.W. Crop responses to winter and summer CO2 enrichment. Acta Horticulturae 1984, 162, 45–64. [Google Scholar] [CrossRef]
- Klaring, H.P.; Hauschild, C.; Heibner, A.; Bar-Yosef, B. Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agric. For. Meteorol. 2007, 143, 208–216. [Google Scholar] [CrossRef]
- Vittum, M.T. Effect of fertilizers on the quality of vegetables. Agron. J. 1963, 55, 425–429. [Google Scholar] [CrossRef]
- Ali, M.B.; Khandaker, L.; Oba, S. Comparative study on functional components, antioxidant activity and color parameters of selected colored leafy vegetables as affected by photoperiods. J. Food Agric. Environ. 2009, 7, 392–398. [Google Scholar]
- Li, Y.; Gupta, G. Photosynthetic changes in soybean with and without nitrogen and increased carbon dioxide. Plant Sci. 1993, 89, 1–4. [Google Scholar] [CrossRef]
- Zhao, X.; Mao, Z.; Xu, J. Gas exchange, chlorophyll and growth responses of Betula Platyphylla seedlings to elevated CO2 and nitrogen. Int. J. Biol. 2010, 2, 143–149. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables–a review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Holbrook, G.P.; Hansen, J.; Wallick, K.; Zinnen, T.M. Starch accumulation during hydroponic growth of spinach and basil plants under carbon dioxide enrichment. Environ. Exp. Bot. 1993, 33, 313–321. [Google Scholar] [CrossRef]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Dunn, B.L.; Singh, H.; Goad, C. Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves. J. Plant Nutr. 2018, 41, 1566–1575. [Google Scholar] [CrossRef]
- Singh, H.; Dunn, B.; Payton, M.; Brandenberger, L. Fertilizer and cultivar selection of lettuce, basil, and swiss chard for hydroponic production. HortTechnology 2019, 29, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Dunn, B.L.; Singh, H.; Payton, M.; Kincheloe, S. Effects of nitrogen, phosphorus, and potassium on SPAD-502 and atLEAF sensor readings of Salvia. J. Plant Nutr. 2019, 41, 1674–1683. [Google Scholar] [CrossRef]
- Stapleton, S.C.; Hochmuth, R.C. Greenhouse production of several fresh-cut herbs in vertical hydroponic systems in north central Florida. Proc. Fla. State Hort. Soc. 2001, 114, 332–334. [Google Scholar]
- Tyson, R.V.; Hochmuth, R.C.; Lamb, E.M.; Hochmuth, G.J.; Sweat, M.S. A decade of change in Florida’s greenhouse vegetable industry: 1991–2001. Proc. Fla. State Hortic. Soc. 2001, 114, 280–283. [Google Scholar]
- Parkell, N.B.; Hochmuth, R.C.; Laughlin, W.L. Leafy Greens in Hydroponics and Protected Culture for Florida; University of Florida, IFAS Extension: Gainesville, FL, USA, 2016; pp. 1–7. [Google Scholar]
- Singh, H.; Dunn, B. Electrial Conductivity and pH Guide for Hydroponics; Oklahoma Coop. Exten. Fact Sheets, HLA-6722; Oklahoma State University, Division of Agricultural Sciences and Natural Resources: Stillwater, OK, USA, 2016. [Google Scholar]
- Li, X.; Dong, J.; Gruda, N.S.; Chu, W.; Duan, Z. Interactive effects of the CO2 enrichment and nitrogen supply on the biomass accumulation, gas exchange properties, and mineral elements concentrations in cucumber plants at different growth stages. Agronomy 2020, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Slack, G.; Hand, D.W. The effect of winter and summer CO2 enrichment on the growth and fruit yield of glasshouse cucumber. J. Hort. Sci. 1985, 60, 507–516. [Google Scholar] [CrossRef]
- Becker, C.; Kläring, H.P. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem. 2016, 199, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.; Wilson, J.W.; Hand, D.W.; Sweeney, D.G. Integrated analysis of growth and light interception in winter lettuce I. Analytical methods and environmental influences. Ann. Bot. 1984, 54, 743–757. [Google Scholar] [CrossRef]
- Gillig, S.; Heinemann, R.; Hurd, G.; Pittore, K.; Powell, D. Response of basil (Ocimum basilicum) to Increased CO2 Levels. Available online: http://jvarekamp.web.wesleyan.edu/CO2/CO2%20Basil%20Final%20Master.pdf (accessed on 2 January 2020).
- Stanciel, K.; Mortley, D.G.; Hileman, D.R.; Loretan, P.R.; Bonsi, C.K.; Hill, W.A. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment. HortScience 2000, 35, 49–52. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Austin, P.T.; Lee, S.K. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants. J. Exp. Bot. 2010, 61, 3959–3969. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Sicher, R.C.; Kremer, D.F. Reversibility of photosynthetic acclimation of Swiss chard and sugar beet grown at elevated concentrations of CO2. Physiol. Plantarum 1995, 95, 355–364. [Google Scholar] [CrossRef]
- Harmens, H.; Stirling, C.M.; Marshall, C.; Farrar, J.F. Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment? Ann. Bot. 2000, 86, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Agrawal, M.; Tiwari, S. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield. Environ. Pollut. 2013, 174, 279–288. [Google Scholar] [CrossRef]
- Jeong, H.M.; Kim, H.R.; Hong, S.; You, Y.H. Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants. J. Ecol. Environ. 2018, 42, 1. [Google Scholar] [CrossRef] [Green Version]
- Delucia, E.H.; Sasek, T.W.; Strain, B.R. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth. Res. 1985, 7, 175–184. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ineson, P.; Scott, A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Chang. Biol. 1998, 4, 43–54. [Google Scholar] [CrossRef]
- Taub, D.R.; Wang, X. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef]
- Huluka, G.; Hileman, D.R.; Biswas, P.K.; Lewin, K.F.; Nagy, J.; Hendrey, G.R. Effects of elevated CO2 and water stress on mineral concentration of cotton. Agric. For. Meteorol. 1994, 70, 141–152. [Google Scholar] [CrossRef]
- Kuenhy, J.S.; Peet, M.M.; Melson, P.V.; Willits, D. Nutrient dilution by starch in CO2 enriched Chrysanthemum. J. Exp. Bot. 1991, 42, 711–716. [Google Scholar]
- Chagvardieff, P.; D’Aletto, T.; Andre, M. Specific effects of irradiance and CO2 concentration doublings on productivity and mineral content in lettuce. Adv. Space Res. 1994, 14, 269–275. [Google Scholar] [CrossRef]
- Jin, C.W.; Du, S.T.; Chen, W.W.; Li, G.X.; Zhang, Y.S.; Zheng, S.J. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol. 2009, 150, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Graziano, M.; Lamattina, L. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 2007, 52, 949–960. [Google Scholar] [CrossRef]
- McDonald, E.P.; Erickson, J.E.; Kruger, E.L. Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct. Plant Biol. 2002, 29, 1115–1120. [Google Scholar] [CrossRef]
- Duval, B.D.; Blankinship, C.J.; Dijkstra, P.; Hungate, B.A. CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: A meta-analysis. Plant Ecol. 2012, 213, 505–521. [Google Scholar] [CrossRef]
- Taub, D.R.; Miller, B.; Allen, H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Glob. Chang. Biol. 2008, 14, 565–575. [Google Scholar] [CrossRef]
- Chiplonkar, S.A.; Tarwadi, K.V.; Kavedia, R.B.; Mengale, S.S.; Paknikar, K.M.; Agte, V.V. Fortification of vegetarian diets for increasing bioavailable iron density using green leafy vegetables. Food Res. Int. 1999, 32, 169–174. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Kotsiras, A.; Nifakos, K. Incidence of lettuce tipburn as related to hydroponic system and cultivar. J. Plant Nutr. 2013, 36, 1383–1400. [Google Scholar] [CrossRef]
- Mattson, N.S. Tipburn of Hydroponic Lettuce e-Gro Alert. Available online: https://www.e-gro.org/pdf/2015_431.pdf (accessed on 2 January 2020).
- Gilliham, M.; Dayod, M.; Hocking, B.J.; Xu, B.; Conn, S.J.; Kaiser, B.N.; Leigh, R.A.; Tyerman, S.D. Calcium delivery and storage in plant leaves: Exploring the link with water flow. J. Exp. Bot. 2011, 62, 2233–2250. [Google Scholar] [CrossRef]
- Lee, J.G.; Choi, C.S.; Jang, Y.A.; Jang, S.W.; Lee, S.G.; Um, Y.C. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hort. Environ. Biotechnol. 2013, 54, 303–310. [Google Scholar] [CrossRef]
Carbon Dioxide | Height (cm) | Width (cm) | Fresh Weight (g) | Dry Weight (g) | SPAD (unitless) | atLEAF (Unitless) | Total Leaf Area (cm2) | Specific Leaf Area z (cm2 g−1) |
---|---|---|---|---|---|---|---|---|
Basil | ||||||||
Ambient | 34.0b y | 26.2b y | 123.1b y | 11.9b y | 44.4a y | 52.6a y | 1644.4b x | 260.7a x |
Elevated | 36.9a | 29.8a | 158.9a | 15.0a | 42.2b | 49.6b | 2333.8a | 160.0b |
Lettuce | ||||||||
Ambient | 26.6a | 25.2a | 203.8b | 19.1b | 48.5a | 45.8a | 4884.5b | 271.1b |
Elevated | 26.5a | 25.7a | 254.2a | 23.8b | 45.1b | 48.6a | 5988.5a | 321.6a |
Swiss chard | ||||||||
Ambient | 48.4b | 33.3b | 296.8b | 26.0b | 50.6a | 54.8a | 2836.4b | 105.9a |
Elevated | 52.8a | 35.4a | 414.1a | 38.4a | 47.4b | 51.0b | 3801.1a | 105.8a |
Carbon dioxide | Nitrogen (%) | Phosphorus (%) | Calcium (%) | Potassium (%) | Magnesium (%) | Sulphur (%) | Boron (ppm) | Manganese (ppm) | Iron (ppm) | Zinc (ppm) |
---|---|---|---|---|---|---|---|---|---|---|
Basil | ||||||||||
Ambient | 5.1a z | 0.6a | 2.6a | 2.97a | 0.86a | 0.30a | 36.70a | 57.96a | 135.38b | 49.90a |
Elevated | 4.6b | 0.5a | 2.5a | 3.21a | 0.84a | 0.29a | 40.46a | 55.93a | 239.30a | 48.75a |
Lettuce | ||||||||||
Ambient | 4.3a | 0.6a | 1.8a | 5.68a | 0.63a | 0.28a | 49.93a | 99.90a | 154.40a | 38.90a |
Elevated | 3.7b | 0.4b | 1.6a | 5.12a | 0.81a | 0.26a | 47.51a | 95.20a | 195.01a | 32.45a |
Swiss chard | ||||||||||
Ambient | 4.6a | 0.3b | 1.7a | 4.38a | 1.14a | 0.37a | 61.93a | 108.03a | 97.01a | 35.75a |
Elevated | 4.4a | 0.5a | 1.4a | 4.55a | 0.70b | 0.33a | 59.68a | 71.08a | 137.55a | 39.96a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, H.; Poudel, M.R.; Dunn, B.L.; Fontanier, C.; Kakani, G. Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique. Agronomy 2020, 10, 323. https://doi.org/10.3390/agronomy10030323
Singh H, Poudel MR, Dunn BL, Fontanier C, Kakani G. Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique. Agronomy. 2020; 10(3):323. https://doi.org/10.3390/agronomy10030323
Chicago/Turabian StyleSingh, Hardeep, Megha R. Poudel, Bruce L. Dunn, Charles Fontanier, and Gopal Kakani. 2020. "Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique" Agronomy 10, no. 3: 323. https://doi.org/10.3390/agronomy10030323
APA StyleSingh, H., Poudel, M. R., Dunn, B. L., Fontanier, C., & Kakani, G. (2020). Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique. Agronomy, 10(3), 323. https://doi.org/10.3390/agronomy10030323