Effect of Supplementary Lighting Duration on Growth and Activity of Antioxidant Enzymes in Grafted Watermelon Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Light Treatments and Culture Environment
2.3. Measurement of Soluble Sugars, Starch, and Soluble Proteins
2.4. Measurement of Hydrogen Peroxide
2.5. Measurement of Activities of Antioxidant Enzymes
2.6. Measurements of Growth Parameters and Data Collection
3. Results
3.1. Growth and Developmental Parameters
3.2. Seedling Quality Index
3.3. Seedling Morphology
3.4. Contents of Carbohydrates and Soluble Proteins
3.5. Hydrogen Peroxide Content and Activities of Antioxidant Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McNellis, T.W.; Deng, X.W. Light control of seedling morphogenetic pattern. Plant Cell 1995, 71, 749. [Google Scholar]
- Schuerger, A.C.; Brown, C.S.; Stryjewski, E.C. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot. 1997, 792, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Amaki, W.; Hirai, T. Photomorphogenic responses of horticultural crops to monochromatic light. In Agri-Photonics-Advances in Plant Factories with LED Lighting; CMC Press: Tokyo, Japan, 2008; pp. 29–40. [Google Scholar]
- Fukuda, N.; Fujita, M.; Ohta, Y.; Sase, S.; Nishimura, S.; Ezura, H. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hortic. 2008, 115, 176–182. [Google Scholar] [CrossRef]
- Dorais, M.; Gosselin, A. Physiological response of greenhouse vegetable crops to supplemental lighting. Acta Hortic. 2000, 580, 59–67. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Morrow, R.C. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.L.; Jia, X.F.; Yu, B.; Gao, Y.; Bai, J.G. Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci. Hortic. 2011, 129, 656–662. [Google Scholar] [CrossRef]
- Du, Y.; Ji, X.; Zhang, J.; Li, J.S.; Zhao, Q. Research progress on the impacts of low light intensity on rice growth and development. Chin. J. Eco-Agric. 2013, 21, 1307–1317. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, H.; Sun, M. Growth, development and photosynthetic characteristics of lilium oriental hybrids under low light conditions. J. Beijing For. Univ. 2010, 32, 213–217. [Google Scholar]
- Klamkowski, K.; Treder, W.; Wójcik, K.; Puternicki, A.; Lisak, E. Influence of supplementary lighting on growth and photosynthetic activity of tomato transplants. Infrastrukt. Ekol. Teren. Wiej. 2014. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Whitman, C.M.; Runkle, E.S. Manipulating growth, color, and taste attributes of fresh cut lettuce by greenhouse supplemental lighting. Sci. Hortic. 2019, 252, 274–282. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A.; Maruo, T. Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. Sci. Hortic. 2017, 222, 221–229. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Nighttime supplemental led inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Front. Plant Sci. 2016, 7, 448. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Schussler, H.K. Growth, development and photosynthesis of some horticultural plants as aected by dierent supplementary lighting technologies. Eur. J. Hortic. Sci. 2013, 78, 119–125. [Google Scholar]
- Chen, X.L.; Wang, L.C.; Li, T.; Yang, Q.C.; Guo, W.Z. Sugar accumulation and growth of lettuce exposed to dierent lighting modes of red and blue led light. Sci. Rep. 2019, 9, 6926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, N.; Ding, T.J.; Yeh, P. Light-emitting diodes light qualities and their corresponding scientific applications. Renew. Sustain. Energy Rev. 2015, 51, 55–61. [Google Scholar] [CrossRef]
- Gupta, S.D.; Agarwal, A. Light Emitting Diodes for Agriculture; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Viršilė, A.; Olle, M.; Duchovskis, P. LED lighting in horticulture. In Light Emitting Diodes for Agriculture; Springer: Singapore, 2017; pp. 113–147. [Google Scholar]
- Viršilė, A.; Samuolienė, G.; Miliauskienė, J.; Duchovskis, P. Applications and advances in LEDs for horticulture and crop production. In Ultraviolet LED Technology for Food Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 35–65. [Google Scholar]
- Wang, H.; Gu, M.; Cui, J.; Shi, K.; Zhou, Y.; Yu, J. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. Biol. 2009, 96, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; He, H.; Song, W. Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience 2019, 54, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Olle, M.; Alsiņa, I. Influence of wavelength of light on growth, yield and nutritional quality of greenhouse vegetables. In Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences; Sciendo: Santiago de Compostela, Spain, 2019; Volume 73, pp. 1–9. [Google Scholar]
- Cui, J.; Ma, Z.; Xu, Z.; Zhang, H.; Chang, T.; Liu, H. Effects of supplemental lighting with different light qualities on growth and physiological characteristics of cucumber, pepper and tomato seedlings. Acta Hortic. Sin. 2009, 36, 663–670. [Google Scholar]
- Pettersen, R.I.; Torre, S.; Gislerød, H.R. Effects of leaf aging and light duration on photosynthetic characteristics in a cucumber canopy. Sci. Hortic. 2010, 125, 82–87. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, G.; Yu, J.; Ma, Y. Effects of different LED light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Sci. Agric. Sin. 2013, 46, 1297–1304. [Google Scholar]
- Bao, J.; Jiang, H.; Tian, X.; Dong, S. Growth and energy budgets of green and red type sea cucumbers Apostichopus japonicus (Selenka) under different light colors. Aquaculture 2014, 418, 139–143. [Google Scholar] [CrossRef]
- Hernández, R.; Kubota, C. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci. Hortic. 2014, 173, 92–99. [Google Scholar]
- Dougher, T.A.; Bugbee, B. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. J. Am. Soc. Hortic. Sci. 2004, 129, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Hu, J.; Liu, C.; Wang, M.; Zhao, J.; Kang, D.; Jeong, B.R. Effect of supplementary light source on quality of grafted tomato seedlings and expression of two photosynthetic genes. Agronomy 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Zhao, J.; Hu, J.; Jeong, B.R. Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy 2019, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wang, M.; Hu, J.; Guo, Z.; Liu, C.; Jeong, H.K.; Zhao, J.; Jeong, B.R. Effect of source and intensity of supplemental light on scion Weight to Height Ratio (WHR) of grafted vegetable plug seedlings. Hortic. Sci. Technol. 2018, 5, 60–61. [Google Scholar]
- Muneer, S.; Ko, C.H.; Soundararajan, P.; Manivnnan, A.; Park, Y.G.; Jeong, B.R. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities. PLoS ONE 2015, 10, e0120899. [Google Scholar] [CrossRef]
- Park, Y.G.; Wei, H.; Liu, C.; Wang, M.; Hu, J.; Guo, Z.; Jeong, H.K.; Zhao, J.; Jeong, B.R. Effect of intensity of supplemental light on growth and development of grafted watermelon plug seedlings during winter season. Hortic. Sci. Technol. 2018, 59, 1. [Google Scholar]
- Xue, J.; Wang, S.; Zhang, P.; Zhu, F.; Ren, X.; Liu, C.; Zhang, X. On the role of physiological substances, abscisic acid and its biosynthetic genes in seed maturation and dormancy of tree peony (Paeonia ostii ‘Feng Dan’). Sci. Hortic. 2015, 182, 92–101. [Google Scholar] [CrossRef]
- Bradford, M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Christou, A.; Manganaris, G.A.; Fotopoulos, V. Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ. Exp. Bot. 2014, 107, 46–54. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Rios, S.K. Superoxide dismutases: Purification and quantitative relationship and soluble protein in seedlings. Plant Physiol. 1977, 59, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Kumar, R.G.; Verma, S.; Dubey, R.S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 2001, 161, 1135–1144. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menexes, G.; Dangitsis, C.; Kintzonidis, D. Assessing quantitative criteria for characterization of quality categories for grafted watermelon seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Neto, M.; Lopes, J.L.; Araújo, W.F.; Oliveira Vilarinho, L.B.; de Oliveira Nunes, T.K.; da Silva, E.S.; da Silva Maia, S.; Albuquerque, J.D.A.A.D.; Alves Chagas, E.; da Silva Siqueira, R.H.; et al. Seedlings production of two tomato (Solanum licopersicum L.) cultivars under different environments and substrates. Acta Agron. 2018, 67, 270–276. [Google Scholar] [CrossRef]
- Cordeiro, K.V.; Costa, N.A.; Andrade, H.A.F.D.; Oliveira-Neto, E.D.D.; Rocha, B.R.D.S.; Farias Machado, N.A.; Albano, F.G.; Furtado, M.B.; Silva-Matos, R.R.S. Inclusion of babassu decomposed stem substrates on the pattern of the vegetative growth of passion fruit seedlings. Commun. Soil Sci. Plant Anal. 2019, 50, 2777–2786. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, G.; Zheng, X.; Zhong, Q.; Zhang, M.; Wu, Z.; Wen, C.; Liu, M. Comprehensive transcriptome reveals an opposite regulatory effect of plant growth retardants in controlling seedling overgrowth between roots and shoots. Int. J. Mol. Sci. 2019, 20, 3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, F.A. Influence of light intensity on plant morphological and photosynthetic characteristics of cucumber in greenhouse. J. Anhui Agric. Sci. 2011, 9, 5047–5048. [Google Scholar]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Ochieng, C.A.; Short, F.T.; Walker, D.I. Photosynthetic and morphological responses of eelgrass (Zostera marina L.) to a gradient of light conditions. J. Exp. Mar. Biol. Ecol. 2010, 382, 117–124. [Google Scholar] [CrossRef]
- Piszczek, P.; Głowacka, B. Effect of the colour of light on cucumber (Cucumis sativus L.) seedlings. Veg. Crops Res. Bull. 2008, 68, 71–80. [Google Scholar] [CrossRef]
- Hao, X.; Papadopoulos, A.P. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Sci. Hortic. 1999, 80, 1–18. [Google Scholar] [CrossRef]
- Jeffers, A.; Palma, M.; Klingeman, W.E.; Hall, C.; Buckley, D.; Kopsell, D. Assessments of bare-root liner quality and purchasing decisions made by green industry professionals. HortScience 2009, 44, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Kormanik, P.P. Lateral root morphology as an expression of sweetgum seedling quality. For. Sci. 1986, 32, 595–604. [Google Scholar]
- Carlson, W.C. Root system considerations in the quality of loblolly pine seedlings. South. J. Appl. For. 1986, 10, 87–92. [Google Scholar] [CrossRef]
- Benedetti, M.; Vecchi, V.; Barera, S.; Dall’Osto, L. Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb. Cell Fact. 2018, 17, 173. [Google Scholar] [CrossRef] [Green Version]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ménard, C.; Dorais, M.; Hovi, T.; Gosselin, A. Developmental and physiological responses of tomato and cucumber to additional blue light. In V International Symposium on Artificial Lighting in Horticulture; ISHS: Leuven, Belgium, 2005; Volume 711, pp. 291–296. [Google Scholar]
- Garland, K.F.; Burnett, S.E.; Day, M.E.; van Iersel, M.W. Influence of substrate water content and daily light integral on photosynthesis, water use efficiency, and morphology of Heuchera americana. J. Am. Soc. Hortic. Sci. 2012, 137, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Vézina, F.; Trudel, M.J.; Gosselin, A. Influence du mode d’utilisation de l’éclairage d’appoint sur la productivité et la physiologie de la tomate de serre. Can. J. Plant Sci. 1991, 71, 923–932. [Google Scholar]
- Demers, D.A.; Dorais, M.; Wien, C.; Gosselin, A. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 1998, 74, 295–306. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Radoglou, K.; Dangitsis, C. Optimal LED wavelength composition for the production of high-quality watermelon and interspecific squash seedlings used for grafting. Agronomy 2019, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Neto, F.J.; Dalanhol, S.J.; Machry, M.; Pimentel, A.; Rodrigues, J.D.; Ono, E.O. Effects of plant growth regulators on eggplant seed germination and seedling growth. Aust. J. Crop Sci. 2017, 11, 1277. [Google Scholar] [CrossRef]
- Erhioui, B.M.; Gosselin, A.; Hao, X.; Papadopoulos, A.P.; Dorais, M. Greenhouse covering materials and supplemental lighting affect growth, yield, photosynthesis, and leaf carbohydrate synthesis of tomato plants. J. Am. Soc. Hortic. Sci. 2002, 127, 819–824. [Google Scholar] [CrossRef]
- Hidaka, K.; Okamoto, A.; Araki, T.; Miyoshi, Y.; Dan, K.; Imamura, H.; Kitano, M.; Sameshima, K.; Okimura, M. Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environ. Control Biol. 2014, 52, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, C.; Dong, W.; Wang, L.J. Research of weak light stress physiology in plants. Chin. Bull. Bot. 2003, 1, 43–50. [Google Scholar]
- Kasahara, M.; Kagawa, T.; Oikawa, K.; Suetsugu, N.; Miyao, M.; Wada, M. Chloroplast avoidance movement reduces photodamage in plants. Nature 2002, 420, 829. [Google Scholar] [CrossRef]
- Demmig, A.B.; Adams, W.W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Biol. 1992, 43, 599–626. [Google Scholar] [CrossRef]
- Shu, S.; Tang, Y.; Yuan, Y.; Sun, J.; Zhong, M.; Guo, S. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol. Biochem. 2016, 107, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Müller, X.R.; Xing, Q.; Goodrich, J. Footprints of the sun: Memory of UV and light stress in plants. Front. Plant Sci. 2014, 5, 474. [Google Scholar]
- Suzuki, N.; Devireddy, A.R.; Inupakutika, M.A.; Baxter, A.; Miller, G.; Song, L.; Shulaev, E.; Azad, R.K.; Shulaev, V.; Mittler, R. Ultra-fast alterations in mRNA levels uncover multiple players in light stress acclimation in plants. Plant J. 2015, 84, 760–772. [Google Scholar] [CrossRef]
- Neill, S.; Desikan, R.; Hancock, J. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 2002, 5, 388–395. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef]
- Corpas, F.J.; Barroso, J.B.; del Rio, L.A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 2001, 6, 145–150. [Google Scholar] [CrossRef]
- Shohael, A.M.; Ali, M.B.; Yu, K.W.; Hahn, E.J.; Islam, R.; Paek, K.Y. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem. 2006, 41, 1179–1185. [Google Scholar] [CrossRef]
Cultivar [A] | Supplementary Light Duration (h) [B] | Shoot | Leaf | Root | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (cm) | Fresh Weight (g) | Dry Weight (g) | Diameter (mm) | No. | Area (cm2) | Chlorophyll Content (SPAD) | Length (cm) | Fresh Weight (g) | Dry Weight (g) | ||||||
Scion | Rootstock | Scion | Rootstock | Scion | Rootstock | Scion | Rootstock | ||||||||
‘Speed’ | CK | 8.0 cz | 6.1 | 0.91 d | 2.35 cd | 0.05 d | 0.10 c | 3.10 c | 5.15 cd | 3.5 cd | 9.1 c | 36.63 c | 14.6 bc | 0.42 d | 0.03 c |
8 | 12.1 b | 6.3 | 2.22 c | 2.59 abc | 0.14 c | 0.13 b | 3.85 ab | 5.26 bcd | 4.0 bc | 19.3 b | 51.53 b | 14.6 bc | 1.46 b | 0.04 bc | |
12 | 13.7 a | 5.9 | 3.75 a | 2.82 ab | 0.26 a | 0.16 a | 4.16 a | 5.68 a | 4.5 ab | 24.0 a | 58.87 a | 17.1 ab | 2.20 a | 0.11 a | |
16 | 14.0 a | 6.3 | 3.75 a | 2.85 a | 0.27 a | 0.16 a | 4.16 a | 5.66 a | 4.5 ab | 24.2 a | 53.22 ab | 14.1 bc | 2.18 a | 0.12 a | |
‘Sambok Honey’ | CK | 8.3 c | 6.1 | 0.90 d | 2.25 d | 0.05 d | 0.11 c | 3.49 bc | 5.08 d | 3.2 d | 11.5 c | 40.40 c | 13.0 c | 0.59 d | 0.02 c |
8 | 10.7 b | 6.2 | 2.16 c | 2.52 bcd | 0.18 bc | 0.13 b | 3.71 ab | 5.56 ab | 3.8 bcd | 22.8 ab | 50.85 b | 15.6 abc | 1.06 c | 0.05 b | |
12 | 11.8 b | 6.4 | 3.23 ab | 2.52 bcd | 0.22 ab | 0.16 a | 3.88 ab | 5.50 abc | 4.8 a | 22.1 ab | 56.33 ab | 18.1 a | 2.24 a | 0.12 a | |
16 | 12.0 b | 6.1 | 3.18 b | 2.53 bcd | 0.23 a | 0.17 a | 4.09 a | 5.71 a | 5.0 a | 22.2 ab | 56.47ab | 18.3 a | 2.23 a | 0.13 a | |
A | **y | NS | * | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
F-test | B | *** | NS | *** | *** | *** | *** | *** | *** | *** | .*** | *** | ** | *** | *** |
A*B | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Wang, M.; Jeong, B.R. Effect of Supplementary Lighting Duration on Growth and Activity of Antioxidant Enzymes in Grafted Watermelon Seedlings. Agronomy 2020, 10, 337. https://doi.org/10.3390/agronomy10030337
Wei H, Wang M, Jeong BR. Effect of Supplementary Lighting Duration on Growth and Activity of Antioxidant Enzymes in Grafted Watermelon Seedlings. Agronomy. 2020; 10(3):337. https://doi.org/10.3390/agronomy10030337
Chicago/Turabian StyleWei, Hao, Mengzhao Wang, and Byoung Ryong Jeong. 2020. "Effect of Supplementary Lighting Duration on Growth and Activity of Antioxidant Enzymes in Grafted Watermelon Seedlings" Agronomy 10, no. 3: 337. https://doi.org/10.3390/agronomy10030337
APA StyleWei, H., Wang, M., & Jeong, B. R. (2020). Effect of Supplementary Lighting Duration on Growth and Activity of Antioxidant Enzymes in Grafted Watermelon Seedlings. Agronomy, 10(3), 337. https://doi.org/10.3390/agronomy10030337