Carbon and Metal(loid)s in Parkland and Road Verge Surface Soils in the City of Liverpool, UK
Abstract
:1. Introduction
2. Study Sites and Methods
2.1. Sampling Locations and Soil Sampling
2.2. Sample Preparation and Analysis
2.3. Data Analysis and Mapping
3. Results
3.1. Physico-Chemical Characteristics and C Storage
3.2. Metal(loid) Concentrations
4. Discussion
4.1. Carbon Storage and Flux
4.2. Trace Metals and As
4.3. Interrelationships between Soil Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schleuß, U.; Wu, Q.; Blume, H.-P. Variability of soils in urban and periurban areas in Northern Germany. Catena 1998, 33, 255–270. [Google Scholar]
- Davidson, D.A.; Dercon, G.; Stewart, M.; Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 2006, 33, 778–783. [Google Scholar] [CrossRef]
- He, Y.; Zhang, G.-L. Comments on ‘Biochemical characterization of urban soil profiles from Stuttgart, Germany’ by Klaus Lorenz and Ellen Kandeler. Soil Biol. Biochem. 2006, 38, 413–414. [Google Scholar] [CrossRef]
- Madrid, L.; Diaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks in Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Madrid, F.; Reinoso, R.; Florido, M.C.; Diaz-Barrientos, E.; Ajmone-Marsan, F.; Davidson, C.M.; Madrid, L. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions. Environ. Pollut. 2007, 147, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.-K.; McPherson, G.E. Carbon storage and flux in urban residential greenspace. J. Environ. Manag. 1995, 45, 109–133. [Google Scholar] [CrossRef] [Green Version]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil Carbon pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, 107–118. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage in urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [Green Version]
- Pouyat, R.V.; Yesilonis, I.D.; Golubiewski, N.E. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosyst. 2009, 12, 45–62. [Google Scholar] [CrossRef]
- Kaye, J.P.; McCulley, R.L.; Burke, I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Chang. Biol. 2005, 11, 575–587. [Google Scholar] [CrossRef]
- Golubiewski, N.E. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecol. Appl. 2006, 16, 555–571. [Google Scholar] [CrossRef]
- Pouyat, R.; Szlavecz, K.; Yesilonis, I.D.; Groffman, P.M.; Schwarz, K. Chemical, physical, and biological characteristics of urban soils. In Urban Ecosystem Ecology; Aitkenhead-Peterson, J., Volder, A., Eds.; American Society of Agronomy: Madison, WI, USA, 2010. [Google Scholar]
- Vasanev, V.; Kuzyakov, Y. Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad. Dev. 2018, 29, 1607–1622. [Google Scholar] [CrossRef]
- Morisada, K.I.; Ono, K.; Kanomata, H. Organic carbon stocks in forest soils in Japan. Geoderma 2004, 119, 21–32. [Google Scholar] [CrossRef]
- Parry, G.D.R.; Johnson, M.S.; Bell, R.M. Trace metal surveys of soil as a component of strategic and local planning policy development. Environ. Pollut. 1981, 2, 97–107. [Google Scholar] [CrossRef]
- Watmough, S.A.; Dickinson, N.M. Dispersal and mobility of heavy metals in relation to tree survival in an aerially contaminated woodland soil. Environ. Pollut. 1995, 90, 135–142. [Google Scholar] [CrossRef]
- Lepp, N.W.; Hartley, J.; Toti, M.; Dickinson, N.M. Patterns of soil copper contamination in the vicinity of a copper rod rolling factory. Environ. Pollut. 1997, 95, 363–369. [Google Scholar] [CrossRef]
- Beesley, L.; Dickinson, N. Carbon and trace element mobility in an urban soil amended with greenwaste compost. J. Soils Sediments 2010, 10, 215–222. [Google Scholar] [CrossRef]
- Beesley, L.; Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
- Sena, M.M.; Frighetto, R.T.S.; Valarini, P.J.; Tokeshi, H.; Poppi, R.J. Discrimination of management effects on soil parameters by using principal component analysis: A multivariate analysis case study. Soil Tillage Res. 2002, 67, 171–181. [Google Scholar] [CrossRef]
- Tomlinson, R.W.; Milne, R.M. Soil carbon stocks and land cover in Northern Ireland from 1939 to 2000. Appl. Geogr. 2006, 26, 18–39. [Google Scholar] [CrossRef]
- Beesley, L. Carbon storage and fluxes in existing and newly created urban soils. J. Environ. Manag. 2012, 104, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, B.; Adani, F. Biodegradability of soil water soluble carbon extracted from seven different soils. J. Environ. Sci. 2009, 21, 641–646. [Google Scholar] [CrossRef]
- White, R.E. Principles and Practices of Soil Science: The Soil as a Natural Resource; Blackwell: London, UK, 1997. [Google Scholar]
- Beesley, L. Respiration (CO2 flux) from urban and peri-urban soils amended with green waste compost. Geoderma 2014, 223, 68–72. [Google Scholar] [CrossRef]
- Ruiz-Cortes, E.; Reinoso, R.; Diaz-Barrientos, E.; Madrid, L. Concentrations of potentially toxic metals in urban soils of Seville: Relationship with different land uses. Environ. Geochem. Health 2005, 27, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.P.; McFee, W.W. Distribution of cadmium, zinc, copper, and lead in soils of industrial northwestern Indiana. J. Environ. Qual. 1983, 12, 29–33. [Google Scholar] [CrossRef]
- Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.D.; Raskin, I. Enhanced Accumulation of Pb in Indian Mustard by Soil-Applied Chelating Agents. Environ. Sci. Technol. 1997, 31, 860–865. [Google Scholar] [CrossRef]
- Sauvé, S.; McBride, M.B.; Norvell, W.A.; Hendershot, W.H. Copper Solubility and Speciation of In Situ Contaminated Soils: Effects of Copper Level, pH and Organic Matter. Water Air Soil Pollut. 1997, 100, 133–149. [Google Scholar] [CrossRef]
- Zhang, M.K.; Ke, Z.-X. Copper and Zinc Enrichment in Different Size Fractions of Organic Matter from Polluted Soils. Pedosphere 2004, 14, 27–36. [Google Scholar]
- Clemente, R.; Bernal, M.P. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 2006, 64, 1264–1273. [Google Scholar] [CrossRef]
- Thums, C.R.; Farago, M.E.; Thornton, I. Bioavailability of trace metals in brownfield soils in an urban area in the UK. Environ. Geochem. Health 2008, 30, 549–563. [Google Scholar] [CrossRef]
- Gadepalle, V.P.; Ouki, S.K.; Van Herwijnen, R.; Hutchings, T. Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediments Contam. 2007, 16, 233–251. [Google Scholar] [CrossRef]
- Hartley, W.; Dickinson, N.M.; Clemente, R.; French, C.; Piearce, T.G.; Sparke, S.; Lepp, N.W. Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK). Environ. Pollut. 2009, 157, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C. Trace Elements in Terrestrial Environments. In Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001; 866p. [Google Scholar]
- Ross, S.M. Toxic Metals in Soil-Plant Systems; John Wiley & Sons: Chichester, UK, 1994. [Google Scholar]
- Kabata-Pendias, A. Soil-plant transfer of trace elements-an environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
Factor | Component 1 (43%) | Component 2 (24%) |
---|---|---|
Bulk Density | −0.63 | - |
TOC | 0.74 | - |
OM | 0.64 | - |
pH | - | 0.81 |
As | 0.90 | - |
Cd | - | 0.60 |
Cu | 0.89 | - |
Pb | 0.75 | - |
Zn | - | 0.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beesley, L.; Moreno-Jiménez, E.; Jenn, P.; Lepp, N.W. Carbon and Metal(loid)s in Parkland and Road Verge Surface Soils in the City of Liverpool, UK. Agronomy 2020, 10, 335. https://doi.org/10.3390/agronomy10030335
Beesley L, Moreno-Jiménez E, Jenn P, Lepp NW. Carbon and Metal(loid)s in Parkland and Road Verge Surface Soils in the City of Liverpool, UK. Agronomy. 2020; 10(3):335. https://doi.org/10.3390/agronomy10030335
Chicago/Turabian StyleBeesley, Luke, Eduardo Moreno-Jiménez, Phil Jenn, and Nicholas W. Lepp. 2020. "Carbon and Metal(loid)s in Parkland and Road Verge Surface Soils in the City of Liverpool, UK" Agronomy 10, no. 3: 335. https://doi.org/10.3390/agronomy10030335
APA StyleBeesley, L., Moreno-Jiménez, E., Jenn, P., & Lepp, N. W. (2020). Carbon and Metal(loid)s in Parkland and Road Verge Surface Soils in the City of Liverpool, UK. Agronomy, 10(3), 335. https://doi.org/10.3390/agronomy10030335