The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture
Abstract
:1. Introduction
2. Methods
3. Statistical Analysis
4. Weather Conditions
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, E.M.; Kristensen, K.; Djurhuus, J. Yield parameters as affected by introduction or discontinuation of catch crop use. Agron. J. 2000, 92, 909–914. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Wesołowski, M. Effects of catch crops and tillage system on weed infestation and health of spring wheat. J. Agr. Sci. Tech. 2016, 18, 999–1012. [Google Scholar]
- Locke, M.A.; Krishna, N.R.; Zablotowicz, R.M. Weed management in conservation crop production systems. Weed Biol. Manag. 2002, 2, 123–132. [Google Scholar] [CrossRef]
- Derpsh, R.; Friedrich, T. Global overview of conservation agriculture adoption. In Proceedings of the 4th World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009; pp. 429–438. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsh, R. Conservation agriculture in the 21st century: A paradigm of sustainable agriculture. In Proceedings of the Invited Paper at the European Congress on Conservation Agriculture, Madrid, Spain, 1–5 October 2010; pp. 19–68. [Google Scholar]
- Almendro-Candel, M.B.; Gómez Lucas, I.; Navarro-Pedreño, J.; Zorpas, A.A. Physical properties of soils affected by the use of agricultural waste. Agric. Waste Residues 2018, 2, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Shao, M.A.; Si, B.C. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. Eur. J. Soil Sci. 2012, 63, 820–830. [Google Scholar] [CrossRef]
- Hubbard, R.K.; Strickland, T.C.; Phatak, S. Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil Tillage Res. 2013, 126, 276–283. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Reicher, Z.; Bischoff, M.; Turco, R.F. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol. Fert. Soils 1999, 29, 55–61. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Mocek, A.; Paul-Lis, M. Impact of the tillage system on the enzymatic activity of typologically diverse soils. J. Res. Appl. Agric. Engin. 2008, 53, 10–13. [Google Scholar]
- Berner, A.; Hildermann, I.; Fliessbach, A.; Pfiffner, L.; Niggli, U.; Mader, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Vogeler, I.; Rogasik, J.; Funder, U.; Panten, K.; Schung, E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009, 103, 137–143. [Google Scholar] [CrossRef]
- Gajda, A.M.; Przewłoka, B. Soil biological activity as affected by tillage intensity. Int. Agrophys. 2012, 26, 15–23. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Langhans, C.; Clymans, W.; Vanuytrecht, E.; Merckx, R.; Raes, D. Soil functioning and conservation tillage in the Belgian Loam Belt. Soil Tillage Res. 2012, 103, 1–11. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X.; Liu, J.; Chen, Q.; Gao, L. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci. Horticult. 2009, 123, 139–147. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Klama, J. Effect of organic fertilization on development of proteolytic bacteria and activity of proteases in the soil for cultivation of maize (Zea mays L.). Arch. Environ. Prot. 2010, 36, 47–56. [Google Scholar]
- Taylor, J.P.; Wilson, B.; Mills, M.S.; Burns, R.G. Comparison of microbial number and enzymatic activities in surface soils and subsoil using various techniques. Soil Biol. Biochem. 2002, 34, 387–401. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Mocek-Płóciniak, A. Impact of the tillage system on the soil enzymatic activity. Arch. Environ. Prot. 2012, 38, 75–82. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, A.M.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leiros, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1995. [Google Scholar]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; Macintosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 2006, 38, 1451–1461. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Assay of urease activity in soils. Soil Biol. Biochem. 1972, 4, 479–487. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fert. Res. 1994, 37, 227–234. [Google Scholar] [CrossRef]
- Olsen, C.C. Establishment, effect and residual effect of catch crops in winter cereals. NJF Rapp. (Finl.) 1995, 99, 43. [Google Scholar]
- Brant, V.; Neckar, K.; Pivec, J.; Duchoslav, M.; Holec, J.; Fuksa, P.; Venclova, V. Competition of some summer catch crops and volunteer cereals in the areas with limited precipitation. Plant Soil Environ. 2009, 55, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Haruna, S.I.; Nkongolo, N.V. Cover crop management effects on soil physical and biological properties. Procedia Environ. Sci. 2015, 29, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Bacq-Labreuil, A.; Crawford, J.; Mooney, S.J.; Neal, A.L.; Ritz, K. Phacelia (Phacelia tanacetifolia Benth.) affects soil structure differently depending on soil texture. Plant Soil 2019, 441, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Irmak, S.; Sharma, V.; Mohammed, A.T.; Djaman, K. Impacts of cover crops on soil physical properties: Field capacity, permanent wilting point, soil-water holding capacity, bulk density, hydraulic conductivity, and infiltration. Am. Soc. Agric. Biol. Eng. (ASABE) 2018, 61, 1307–1321. [Google Scholar] [CrossRef]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Wu, P.; Chen, X. Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Eur. J. Agron. 2015, 71, 149–159. [Google Scholar] [CrossRef]
- Chan, K.Y.; Mead, J.A. Surface physical properties of a sandy loam soil under different tillage practices. Aust. J. Soil Res. 1988, 26, 549–559. [Google Scholar] [CrossRef]
- Chan, K.Y.; Heenan, D.P. The influence of crop rotation on soil structure and soil physical properties under conventional tillage. Soil Tillage Res. 1996, 37, 113–125. [Google Scholar] [CrossRef]
- Shepherd, T.G.; Saggar Newman, R.H.; Ross, C.W.; Dando, J.L. Tillage induced changes in soil structure and soil organic matter fractions. Aust. J. Soil Res. 2001, 39, 465–489. [Google Scholar] [CrossRef]
- Celik, I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res. 2005, 83, 270–277. [Google Scholar] [CrossRef]
- Nascente, A.S.; Stone, L.F. Cover crops as affecting soil chemical and physical properties and development of upland rice and soybean cultivated in rotation. Rice Sci. 2018, 25, 340–349. [Google Scholar] [CrossRef]
- Pan, C.; Liu, C.; Zhao, H.; Wang, Y. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. Eur. J. Soil Biol. 2012, 55, 13–19. [Google Scholar] [CrossRef]
- Głąb, T.; Kulig, B. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Tillage Res. 2008, 99, 169–178. [Google Scholar] [CrossRef]
- Ghuman, B.S.; Sur, H.S. Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. Soil Tillage Res. 2001, 58, 1–10. [Google Scholar] [CrossRef]
- De Cima, D.S.; Luik, A.; Reintam, E. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties. Int. Agrophys. 2015, 29, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Unger, P.W. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil. Sci. Soc. Am. J. 2001, 65, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Tiessen, H. Effect of land use on soil degradation in Alpine grassland soil, China. Soil Sci. Soc. Am. J. 2002, 66, 1648–1655. [Google Scholar] [CrossRef]
- Brzezińska, M.; Stępniewska, Z.; Stępniewski, W.; Włodarczyk, T.; Przywara, G.; Bennicelli, R. Effect of oxygen deficiency on soil dehydrogenase activity (pot experiment with barley). Int. Agrophys. 2001, 15, 3–7. [Google Scholar]
- Avellaneda-Torres, L.M.; Melgarejo, L.M.; Narváez-Cuenca, C.E.; Sánchez, J. Enzymatic activities of potato crop soils subjected to conventional management and grassland soils. J. Soil Sci. Plant Nut. 2013, 13, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Baldrian, P. Distribution of extracellular enzymes in soils: Spatial heterogeneity and determining factors AT various scales. Soil Sci. Soc. Am. J. 2014, 78, 11–18. [Google Scholar] [CrossRef]
- Shao, X.; Zheng, J. Soil Organic Carbon, Black Carbon, and Enzyme Activity under Long-Term Fertilization. J. Integr. Agr. 2014, 13, 517–524. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Haddix, M.L.; Lee, D.D.; Conant, R.T.; Paul, E.A. A litter-slurry technique lucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol. Biochem. 2012, 47, 18–26. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 9505–9517. [Google Scholar] [CrossRef]
- Kołodziej, B.; Antonkiewicz, J.; Stachyra, M.; Bielińska, E.J.; Wiśniewski, J.; Luchowska, K.; Kwiatkowski, C.A. Use of sewage sludge in bioenergy production—A case study on the effects on sorghum biomass production. Eur. J. Agron. 2015, 69, 63–74. [Google Scholar] [CrossRef]
Date of Performance | Plough Tillage | Conservation Tillage |
---|---|---|
First 10 days of August | Harvest of spring wheat (stubble left in the field; straw removed from the field) | Harvest of spring wheat (stubble left in the field; straw removed from the field) |
Second 10 days of August | Field preparation for sowing catch crops (subsoil ploughing, harrowing), sowing of catch crops | Field preparation for sowing catch crops (no-tillage)—rigid tine cultivator (grubber), harrowing |
Second 10 days of October | Catch crop biomass is cut and then shredded. Incorporation of biomass into the soil (ploughing-in of biomass) | Catch crop biomass is cut and then shredded. Biomass is left on the field surface (mulch) |
Third 10 days of October—First 10 days of April | Catch crop biomass mixed with the soil decomposes into organic matter | Catch crop biomass left in the field (mulch) slowly decomposes |
Second 10 days of March—Second 10 days of April | Field preparation for sowing spring wheat (tillage practices as in plough tillage) | Field preparation for sowing spring wheat (tillage practices as in conservation tillage) |
Specification | Month | Annual Total | ||
---|---|---|---|---|
VIII | IX | X | ||
Monthly total in 2014 | 78.1 | 82.6 | 19.3 | 648.0 |
Monthly total in 2015 | 80.5 | 80.1 | 24.0 | 633.4 |
Monthly total in 2016 | 76.4 | 78.4 | 21.7 | 666.2 |
Long-term mean (1966–2002) | 68.2 | 56.9 | 49.2 | 612.6 |
Specification | Month | Annual Mean | ||
---|---|---|---|---|
VIII | IX | X | ||
Monthly mean in 2014 | 19.3 | 11.2 | 5.8 | 7.5 |
Monthly mean in 2015 | 18.9 | 10.9 | 6.1 | 7.7 |
Monthly mean in 2016 | 19.5 | 11.4 | 5.6 | 8.0 |
Long-term mean (1966–2002) | 17.7 | 13.3 | 8.4 | 7.8 |
Treatment | Tillage System | |||||||
---|---|---|---|---|---|---|---|---|
Plough Tillage | Conservation Tillage | |||||||
Soil Particle Size Fractions (mm) | ||||||||
1.0–0.1 | 0.1–0.02 | 0.02–0.002 | <0.002 | 1.0–0.1 | 0.1–0.02 | 0.02–0.002 | <0.002 | |
A * | 5 a ** | 54 a | 33 a | 8 a | 9 b | 57 b | 29 b | 5 b |
B | 4 a | 51 a | 36 a | 9 a | 7 b | 55 b | 32 b | 6 b |
C | 4 a | 52 a | 35 a | 9 a | 8 b | 56 b | 30 b | 6 b |
D | 3 a | 50 a | 37 a | 10 a | 7 b | 53 b | 33 b | 7 b |
HSD(0.05) | 0.6 | 1.9 | 1.8 | 0.7 | 0.7 | 1.8 | 1.7 | 0.6 |
HSD(0.05) for years—not significant differences HSD(0.05) for interaction (tillage system × catch crops)—not significant differences HSD(0.05) for interaction (tillage system × catch crops × years)—not significant differences |
Specification | Soil Moisture Content | Water Stability Index (Wo) | |
---|---|---|---|
In 5–10 cm Layer | In 15–20 cm Layer | ||
PT * | 17.9 ±1.1 *** | 18.7 ±1.2 | 50.2 ±9.0 |
CT | 17.1 ±1.0 | 15.5 ±0.8 | 59.9 ±9.9 |
CV (%) **** | 4.2 | 8.7 | 4.5 |
HSD(0.05) | n.s ***** | 1.45 | n.s. |
A ** | 16.7 ±0.9 | 16.9 ±0.8 | 40.4 ±9.3 |
B | 18.0 ±0.6 | 17.1 ±0.5 | 60.0 ±7.2 |
C | 17.7 ±0.8 | 16.9 ±0.8 | 50.4 ±7.6 |
D | 17.6 ±0.7 | 18.2 ±0.4 | 70.2 ±8.1 |
CV (%) | 6.7 | 7.1 | 8.5 |
HSD(0.05) | 1.28 | 1.22 | 12.2 |
HSD(0.05) for years—not significant differences HSD(0.05) for interaction (tillage system × catch crops)—not significant differences HSD(0.05) for interaction (tillage system × catch crops × years)—not significant differences |
Specification | Soil Bulk Density | |
---|---|---|
In 5–10 cm Layer | In 15–20 cm Layer | |
PT * | 1.61 ±0.033 *** | 1.65 ±0.031 |
CT | 1.46 ±0.022 | 1.50 ±0.020 |
CV (%) **** | 9.7 | 11.6 |
HSD(0.05) | 0.052 | 0.064 |
A ** | 1.56 ±0.019 | 1.62 ±0.024 |
B | 1.55 ±0.021 | 1.59 ±0.029 |
C | 1.53 ±0.024 | 1.57 ±0.025 |
D | 1.50 ±0.025 | 1.53 ±0.028 |
CV (%) | 9.0 | 10.3 |
HSD(0.05) | 0.041 | 0.050 |
HSD(0.05) for years—not significant differences HSD(0.05) for interaction (tillage system × catch crops)—not significant differences HSD(0.05) for interaction (tillage system × catch crops × years)—not significant differences |
Specification | Soil Total Porosity | Soil Capillary Porosity | ||
---|---|---|---|---|
In 5–10 cm Layer | In 15–20 cm Layer | In 5–10 cm Layer | In 15–20 cm Layer | |
PT * | 38.3 ±1.4 *** | 36.5 ± 1.5 | 32.8 ± 1.0 | 30.9 ± 0.8 |
CT | 41.8 ±2.1 | 40.1 ± 1.9 | 36.6 ± 2.3 | 34.5 ± 1.2 |
CV (%) **** | 11.9 | 11.3 | 11.7 | 11.1 |
HSD(0.05) | 1.324 | 1.513 | 1.721 | 1.504 |
A ** | 38.5 ± 1.5 | 36.4 ± 2.1 | 34.4 ± 0.8 | 32.4 ± 0.6 |
B | 40.2 ± 0.9 | 38.2 ± 1.2 | 34.7 ± 0.8 | 32.8 ± 0.8 |
C | 40.1 ± 0.6 | 38.7 ± 2.0 | 34.6 ± 0.9 | 32.5 ± 0.5 |
D | 40.7 ± 1.0 | 39.1 ± 0.6 | 35.0 ± 1.1 | 33.0 ± 0.9 |
CV (%) | 10.9 | 12,8 | 4.9 | 4.7 |
HSD(0.05) | 1.294 | 1.476 | n.s. ***** | n.s. |
HSD(0.05) for years—not significant differences HSD(0.05) for interaction (tillage system × catch crops)—not significant differences HSD(0.05) for interaction (tillage system × catch crops × years)—not significant differences |
Specification | Soil Layer (cm) | ||||||
---|---|---|---|---|---|---|---|
0–5 | 5–10 | 10–15 | 15–20 | 20–25 | 25–30 | 0–30 | |
PT * | 0.55 (±0.04) *** | 1.48 (±0.06) | 2.13 (±0.11) | 2.47 (±0.17) | 2.80 (±0.19) | 3.11 (±0.07) | 2.09 (±0.02) |
CT | 0.39 (±0.02) | 1.18 (±0.07) | 1.41 (±0.14) | 1.50 (±0.12) | 1.70 (±0.11) | 2.09 (±0.09) | 1.38 (±0.06) |
CV (%) **** | 16.3 | 20.1 | 20.4 | 40.7 | 46.8 | 25.3 | 17.0 |
HSD(0.05) | 0.044 | 0.115 | 0.153 | 0.112 | 0.164 | 0.316 | 0.052 |
A ** | 0.56 (±0.02) | 1.45 (±0.06) | 2.12 (±0.10) | 1.54 (±0.14) | 1.77 (±0.15) | 2.26 (±0.08) | 1.62 (±0.07) |
B | 0.54 (±0.01) | 1.42 (±0.02) | 2.10 (±0.09) | 1.49 (±0.16) | 1.72 (±0.16) | 2.11 (±0.03) | 1.56 (±0.08) |
C | 0.54 (±0.02) | 1.40 (±0.05) | 2.08 (±0.13) | 1.50 (±0.13) | 1.71 (±0.12) | 2.13 (±0.04) | 1.56 (±0.03) |
D | 0.38 (±0.04) | 1.17 (±0.08) | 1.39 (±0.15) | 1.46 (±0.08) | 1.68 (±0.10) | 2.06 (±0.06) | 1.36 (±0.04) |
CV (%) | 15.3 | 19.7 | 19.9 | 5.1 | 4.9 | 5.2 | 10.4 |
HSD(0.05) | 0.045 | 0.092 | 0.164 | n.s. ***** | n.s. | n.s. | 0.075 |
HSD(0.05) for years—not significant differences HSD(0.05) for interaction (tillage system × catch crops)—ot significant differences HSD(0.05) for interaction (tillage system × catch crops × years)—not significant differences |
Specification | Dehydrogenase Activity (μmol TPF kg−1 h−1) | Urease Activity (mmol NH4+ kg−1 h−1) | ||
---|---|---|---|---|
In 5–10 cm Layer | In 15–20 cm Layer | In 5–10 cm Layer | In 15–20 cm Layer | |
PT * | 5.1 ±0.12 *** | 4.7 ±0.08 | 4.3 ±0.10 | 4.0 ±0.06 |
CT | 6.3 ±0.14 | 5.6 ±0.05 | 5.4 ±0.09 | 4.9 ±0.07 |
CV (%) **** | 19.3 | 15.7 | 16.2 | 11.4 |
HSD(0.05) | 0.9 | 0.7 | 0.6 | 0.5 |
A ** | 4.8 ±0.11 | 4.5 ±0.05 | 4.2 ±0.09 | 3.9 ±0.04 |
B | 6.6 ±0.17 | 5.8 ±0.07 | 5.8 ±0.12 | 5.2 ±0.03 |
C | 5.9 ±0.15 | 5.3 ±0.09 | 5.3 ±0.14 | 4.7 ±0.07 |
D | 6.1 ±0.13 | 5.5 ±0.06 | 5.5 ±0.12 | 4.9 ±0.08 |
CV (%) | 30.3 | 21.2 | 22.4 | 25.3 |
HSD(0.05) | 0.8 | 0.6 | 0.7 | 0.5 |
HSD(0.05) for years—not significant differences HSD(0.05) for interaction (tillage system × catch crops)—not significant differences HSD(0.05) for interaction (tillage system × catch crops × years)—not significant differences |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture. Agronomy 2020, 10, 334. https://doi.org/10.3390/agronomy10030334
Harasim E, Antonkiewicz J, Kwiatkowski CA. The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture. Agronomy. 2020; 10(3):334. https://doi.org/10.3390/agronomy10030334
Chicago/Turabian StyleHarasim, Elżbieta, Jacek Antonkiewicz, and Cezary A. Kwiatkowski. 2020. "The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture" Agronomy 10, no. 3: 334. https://doi.org/10.3390/agronomy10030334
APA StyleHarasim, E., Antonkiewicz, J., & Kwiatkowski, C. A. (2020). The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture. Agronomy, 10(3), 334. https://doi.org/10.3390/agronomy10030334