Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field Site
2.2. Experimental Set-Up and Crop Management
2.3. Sampling and Morphological Analyses
2.4. Molecular Analysis
2.5. Statistics and Data Analyses
3. Results
3.1. AMF Root Colonization
3.2. Plant Growth and Micronutrient Uptake at GS30
3.3. Plant Height, Yield and Yield Components at GS90
3.4. Micronutrient Uptake and Protein Content in Grain at GS90
3.5. AMF Characterization within the Roots of Two Old Genotypes and the Modern Variety, Bologna
4. Discussion
4.1. AMF Root Colonization
4.2. Plant Growth and Micronutrient Uptake at GS30
4.3. Plant Height, Grain Yield and Yield Components
4.4. Plant Nutrient and Micronutrient Concentrations at Maturity
4.5. Arbuscular Mycorrhizal Fungal Community Diversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 November 2019).
- Byerlee, D.; de Polanco, E.H. Wheat in the world food economy: Increasing role in developing countries. Food Policy 1983, 8, 67–75. [Google Scholar] [CrossRef]
- White, P.J. Biofortification of Edible Crops; eLS, Wiley Online Library: Hoboken, NJ, USA, 2016; pp. 1–8. [Google Scholar]
- Calderini, D.F.; Slafer, G.A. Changes in yield and yield stability in wheat during the 20th century. Field Crop. Res. 1998, 57, 335–347. [Google Scholar] [CrossRef]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, S.; Porfiri, O.; Ceccarelli, S. Nazareno Strampelli, the ‘Prophet’of the green revolution. J. Agric. Sci. 2013, 151, 1–5. [Google Scholar] [CrossRef] [Green Version]
- De Vita, P.; Nicosia, O.L.D.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-Physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Canevara, M.G.; Romani, M.; Corbellini, M.; Perenzin, M.; Borghi, B. Evolutionary trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bread in Italy since 1990. Eur. J. Agron. 1994, 3, 175–185. [Google Scholar] [CrossRef]
- Peng, J.H.; Sun, D.; Nevo, E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011, 28, 281. [Google Scholar] [CrossRef]
- Fu, Y.B.; Somers, D.J. Genome-Wide reduction of genetic diversity in wheat breeding. Crop Sci. 2009, 49, 161–168. [Google Scholar] [CrossRef]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Kutman, U.B.; Yildiz, B.; Ozturk, L.; Cakmak, I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Ciccolini, V.; Pellegrino, E.; Coccina, A.; Fiaschi, A.I.; Cerretani, D.; Sgherri, C.; Quartacci, M.F.; Ercoli, L. Biofortification with iron and zinc improves nutritional and nutraceutical properties of common wheat flour and bread. J. Agr. Food Chem. 2017, 65, 5443–5452. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Optimizing forage yield of durum wheat/field bean intercropping through N fertilization and row ratio. Grass For. Sci. 2012, 67, 243–254. [Google Scholar] [CrossRef]
- Pellegrino, E.; Bedini, S. Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2014, 68, 429–439. [Google Scholar] [CrossRef]
- Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-A meta-Analysis. Soil Biol. Biochem. 2015, 81, 147–158. [Google Scholar] [CrossRef]
- Pellegrino, E.; Öpik, M.; Bonari, E.; Ercoli, L. Responses of wheat to arbuscular mycorrhizal fungi: A meta-Analysis of field studies from 1975 to 2013. Soil Biol. Biochem. 2015, 84, 210–217. [Google Scholar] [CrossRef]
- Ercoli, L.; Schüßler, A.; Arduini, I.; Pellegrino, E. Strong increase of durum wheat iron and zinc content by field-Inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil 2017, 419, 153–167. [Google Scholar] [CrossRef]
- Coccina, A.; Cavagnaro, T.R.; Pellegrino, E.; Ercoli, L.; McLaughlin, M.J.; Watts-Williams, S.J. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol. 2019, 19, 133. [Google Scholar] [CrossRef] [Green Version]
- IUSS. World Base Reference for Soil Resources. Report on World Soil Resources; FAO: Rome, Italy, 2006. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Agrawal, H.P. Assessing the micronutrient requirement of winter wheat. Commun. Soil Sci. Plant Anal. 1992, 23, 2555–2568. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Vallebona, C.; Pellegrino, E.; Frumento, P.; Bonari, E. Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: A case study in southern Tuscany, Italy. Clim. Chang. 2015, 128, 139–151. [Google Scholar] [CrossRef]
- Schüßler, A.; Walker, C. The Glomeromycota: A Species List with New Families and New Genera; The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University: Gloucester, UK, 2010. [Google Scholar]
- Stockinger, H.; Walker, C.; Schüßler, A. ‘Glomus intraradices DAOM197198′, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol. 2009, 183, 1176–1187. [Google Scholar] [CrossRef]
- Council Regulation (EC). Available online: https://eur-lex.europa.eu/eli/reg/2007/834/oj (accessed on 14 February 2019).
- Arduini, I.; Ercoli, L.; Mariotti, M.; Masoni, A. Sowing date affect spikelet number and grain yield of durum wheat. Cereal Res. Commun. 2009, 37, 469–478. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Isaac, R.A.; Johnson, W.C.; Kalra, Y. Elemental determination by inductively coupled plasma atomic emission spectrometry. In Handbook and Reference Methods for Plant Analysis; Kalra, Y., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 165–170. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis, Part 2, Chemical, Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 595–624. [Google Scholar]
- Ghiselli, L.; Rossi, E.; Whittaker, A.; Dinelli, G.; Baglio, A.P.; Andrenelli, L.; Benedettelli, S. Nutritional characteristics of ancient Tuscan varieties of Triticum aestivum L. Ital. J. Agron. 2016, 11, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Ercoli, L.; Ciccolini, V.; Pellegrino, E. Frumenti teneri toscani: Caratteri nutrizionali e nutraceutici di varietà iscritte al repertorio regionale; Terre Regionali Toscane: Pisa, Italy, 2018. [Google Scholar]
- Simon, L.; Lalonde, M.; Bruns, T.D. Specific amplification of 18S fungal ribosomal genes from vesicular-Arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 1992, 58, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, S.; Young, J.P.W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, M.; Krüger, C.; Walker, C.; Stockinger, H.; Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012, 193, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Kohout, P.; Sudová, R.; Janoušková, M.; Čtvrtlíková, M.; Hejda, M.; Pánková, H.; Slavíkováa, R.; Štajerováae, K.; Vosátkaa, M.; Sýkorováa, Z. Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution? Soil Biol. Biochem. 2014, 68, 482–493. [Google Scholar] [CrossRef]
- Pellegrino, E.; Turrini, A.; Gamper, H.A.; Cafà, G.; Bonari, E.; Young, J.P.W.; Giovannetti, M. Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol. 2012, 194, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucl. Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-Joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- MaarjAM Database. Available online: https://maarjam.botany.ut.ee (accessed on 28 December 2019).
- Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, Ü.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. Getting Started with PRIMER v7; PRIMER-E: Plymouth, UK, 2015. [Google Scholar]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2006, 23, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J. A new method for non-Parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Anderson, M.J.; Braak, C.T. Permutation tests for multi-Factorial analysis of variance. J. Stat. Comput. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Gorley, R.N.; Clarke, R.K. Permanova+ for Primer: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Babana, A.H.; Antoun, H. Effect of Tilemsi phosphate rock-Solubilizing microorganisms on phosphorus uptake and yield of field-Grown wheat (Triticum aestivum L.) in Mali. Plant Soil 2006, 287, 51–58. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Pan, W.L.; Kennedy, A.C. Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 1998, 8, 139–144. [Google Scholar]
- Suri, V.K.; Choudhary, A.K.; Chander, G.; Verma, T.S. Influence of vesicular arbuscular-Mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid alfisol of western Himalayas. Commun. Soil Sci. Plan. 2011, 42, 1177–1186. [Google Scholar] [CrossRef]
- Renaut, S.; Daoud, R.; Masse, J.; Vialle, A.; Hijri, M. Inoculation with Rhizophagus irregularis does not alter arbuscular mycorrhizal fungal community structure within the roots of corn, wheat, and soybean crops. Microorganisms 2020, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Siddique, K.H.M.; Tennant, D.; Perry, M.W.; Belford, R.K. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-Type environment. Crop Pasture Sci. 1990, 41, 431–447. [Google Scholar] [CrossRef]
- Rengel, Z.; Graham, R.D. Wheat genotypes differ in Zn efficiency when grown in chelate-Buffered nutrient solution. Plant Soil 1995, 176, 307–316. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Mariotti, M.; Pampana, S.; Pellegrino, E.; Arduini, I. Effect of preceding crop on the agronomic and economic performance of durum wheat in the transition from conventional to reduced tillage. Eur. J. Agron. 2017, 82, 125–133. [Google Scholar] [CrossRef]
- Piazza, G.; Pellegrino, E.; Moscatelli, M.C.; Ercoli, L. Long-Term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil Till. Res. 2020, 196, 104482. [Google Scholar] [CrossRef]
- Alvaro, F.; Isidro, J.; Villegas, D.; del Moral, L.F.G.; Royo, C. Old and modern durum wheat varieties from Italy and Spain differ in main spike components. Field Crop. Res. 2008, 106, 86–93. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Snape, J.W.; Shearman, V.J.; Reynolds, M.P.; Gaju, O.; Sylvester-Bradley, R. Genetic progress in yield potential in wheat: Recent advances and future prospects. J. Agric. Sci. Cambridge 2007, 145, 17–29. [Google Scholar] [CrossRef]
- Ormoli, L.; Costa, C.; Negri, S.; Perenzin, M.; Vaccino, P. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches. Sci. Rep. 2015, 5, 8574. [Google Scholar] [CrossRef] [Green Version]
- Antunes, P.M.; Lehmann, A.; Hart, M.M.; Baumecker, M.; Rillig, M.C. Long--Term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Funct. Ecol. 2012, 26, 532–540. [Google Scholar] [CrossRef]
- Aghili, F.; Jansa, J.; Khoshgoftarmanesh, A.H.; Afyuni, M.; Schulin, R.; Frossard, E.; Gamper, H.A. Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Appl. Soil Ecol. 2014, 84, 93–111. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Distelfeld, A.; Cakmak, I.; Peleg, Z.; Ozturk, L.; Yazici, A.M.; Budak, H.; Saranga, Y.; Fahima, T. Multiple QTL--Effects of wheat Gpc--B1 locus on grain protein and micronutrient concentrations. Physiol. Plant. 2007, 129, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2010. [Google Scholar]
- George, E.; Marschner, H.; Jakobsen, I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit. Rev. Biotechnol. 1995, 15, 257–270. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 2012, 104, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Avio, L.; Pellegrino, E.; Bonari, E.; Giovannetti, M. Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol. 2006, 172, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Helgason, T.; Fitter, A.H. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 2010, 3, 267–273. [Google Scholar] [CrossRef]
- Bürkert, B.; Robson, A. 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-Arbuscular mycorrhizal fungi in a root-Free sandy soil. Soil Biol. Biochem. 1994, 26, 1117–1124. [Google Scholar] [CrossRef]
- Azcon, R.; Ocampo, J.A. Factors affecting the vesicular--Arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol. 1981, 87, 677–685. [Google Scholar] [CrossRef]
- Hetrick, B.A.D.; Wilson, G.W.T.; Gill, B.S.; Cox, T.S. Chromosome location of mycorrhizal responsive genes in wheat. Can. J. Botany 1995, 73, 891–897. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Smith, S.E.; Smith, F.A. Zinc (Zn)-Phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Ann. Bot. 2001, 88, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Ellouze, W.; Hamel, C.; DePauw, R.M.; Knox, R.E.; Cuthbert, R.D.; Singh, A.K. Potential to breed for mycorrhizal association in durum wheat. Can. J. Microbiol. 2015, 62, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Xavier, L.J.; Germida, J.J. Response of spring wheat cultivars to Glomus clarum NT4 in a P-Deficient soil containing arbuscular mycorrhizal fungi. Can. J. Soil Sci. 1988, 78, 481–484. [Google Scholar] [CrossRef]
- Singh, A.K.; Hamel, C.; DePauw, R.M.; Knox, R.E. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Can. J. Microbiol. 2012, 58, 293–302. [Google Scholar] [CrossRef]
- Helgason, T.; Daniell, T.J.; Husband, R.; Fitter, A.H.; Young, J.P.W. Ploughing up the wood-Wide web? Nature 1998, 394, 431. [Google Scholar] [CrossRef] [PubMed]
- Daniell, T.J.; Husband, R.; Fitter, A.H.; Young, J.P.W. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol. 2001, 36, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Hijri, I.; Sýkorová, Z.; Oehl, F.; Ineichen, K.; Mäder, P.; Wiemken, A.; Redecker, D. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol. Ecol. 2006, 15, 2277–2289. [Google Scholar] [CrossRef] [PubMed]
- Oehl, F.; Sieverding, E.; Mäder, P.; Dubois, D.; Ineichen, K.; Boller, T.; Wiemken, A. Impact of long-Term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 2004, 138, 574–583. [Google Scholar] [CrossRef]
- Nelson, A.G.; Quideau, S.; Frick, B.; Niziol, D.; Clapperton, J.; Spaner, D. Spring wheat genotypes differentially alter soil microbial communities and wheat breadmaking quality in organic and conventional systems. Can. J. Plant Sci. 2011, 91, 485–495. [Google Scholar] [CrossRef]
- Pellegrino, E.; Gamper, H.A.; Ciccolini, V.; Ercoli, L. Forage Rotations Conserve Diversity of Arbuscular Mycorrhizal Fungi and Soil Fertility. Front. Microbiol. 2020, 10, 2969. [Google Scholar] [CrossRef]
- Ciccolini, V.; Ercoli, L.; Davison, J.; Vasar, M.; Öpik, M.; Pellegrino, E. Land-Use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef]
- Öpik, M.; Davison, J. Uniting species-and community-Oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol. 2016, 24, 106–113. [Google Scholar] [CrossRef]
- Alguacil, M.M.; Torres, M.P.; Torrecillas, E.; Díaz, G.; Roldán, A. Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol. Biochem. 2011, 43, 167–173. [Google Scholar] [CrossRef]
- Becklin, K.M.; Hertweck, K.L.; Jumpponen, A. Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb. Ecol. 2012, 63, 682–693. [Google Scholar] [CrossRef] [Green Version]
- Ciccolini, V.; Bonari, E.; Pellegrino, E. Land-Use intensity and soil properties shape the composition of fungal communities in Mediterranean peaty soils drained for agricultural purposes. Biol. Fert. Soils 2015, 51, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Ciccolini, V.; Bonari, E.; Ercoli, L.; Pellegrino, E. Phylogenetic and multivariate analyses to determine the effect of agricultural land-Use intensification and soil physico-Chemical properties on N-Cycling microbial communities in drained Mediterranean peaty soils. Biol. Fert. Soils 2016, 52, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Piazza, G.; Ercoli, L.; Nuti, M.; Pellegrino, E. Interaction between conservation tillage and nitrogen fertilization shapes prokaryotic and fungal diversity at different soil depths: Evidence from a 23-Year field experiment in the Mediterranean area. Front. Microbiol. 2019, 10, 2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öpik, M.; Metsis, M.; Daniell, T.J.; Zobel, M.; Moora, M. Large--Scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol. 2009, 184, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, E.; Alguacil, M.M.; Roldán, A. Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl. Environ. Microbiol. 2012, 78, 6180–6186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela-Cervero, S.; Vasar, M.; Davison, J.; Barea, J.M.; Öpik, M.; Azcón-Aguilar, C. The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ. Microbiol. 2015, 17, 2882–2895. [Google Scholar] [CrossRef] [PubMed]
- Buysens, C.; Alaux, P.L.; César, V.; Huret, S.; Declerck, S.; Cranenbrouck, S. Tracing native and inoculated Rhizophagus irregularis in three potato cultivars (Charlotte, Nicola and Bintje) grown under field conditions. Appl. Soil Ecol. 2017, 115, 1–9. [Google Scholar] [CrossRef]
- Sýkorová, Z.; Börstler, B.; Zvolenská, S.; Fehrer, J.; Gryndler, M.; Vosátka, M.; Redecker, D. Long-Term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 2012, 22, 69–80. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Pampana, S.; Arduini, I. Allelopathic effects of rye, brown mustard and hairy vetch on redroot pigweed, common lambsquarter and knotweed. Allelopath. J. 2007, 19, 249. [Google Scholar]
- Hart, M.M.; Antunes, P.M.; Chaudhary, V.B.; Abbott, L.K. Fungal inoculants in the field: Is the reward greater than the risk? Funct. Ecol. 2018, 32, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Hoeksema, J.D.; Gehring, C.A.; Johnson, N.C.; Klironomos, J.N.; Abbott, L.K.; Pringle, A. The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol. Lett. 2006, 9, 501–515. [Google Scholar] [CrossRef] [PubMed]
Explained Variance | |
---|---|
AMF inoc 1 | 15.67 2 |
Genotype | 27.25 |
TIL × N fert | 56.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, E.; Piazza, G.; Arduini, I.; Ercoli, L. Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety. Agronomy 2020, 10, 333. https://doi.org/10.3390/agronomy10030333
Pellegrino E, Piazza G, Arduini I, Ercoli L. Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety. Agronomy. 2020; 10(3):333. https://doi.org/10.3390/agronomy10030333
Chicago/Turabian StylePellegrino, Elisa, Gaia Piazza, Iduna Arduini, and Laura Ercoli. 2020. "Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety" Agronomy 10, no. 3: 333. https://doi.org/10.3390/agronomy10030333
APA StylePellegrino, E., Piazza, G., Arduini, I., & Ercoli, L. (2020). Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety. Agronomy, 10(3), 333. https://doi.org/10.3390/agronomy10030333