Impacts of Recent Climate Change on Potato Yields at a Provincial Scale in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Research Methods
2.3.1. Method of First Difference
2.3.2. Method of Moving Average to Decouple the Climate-Induced Potato Yield
2.4. Statistical Analysis
3. Results
3.1. Changes in Potato Yields and Planting Areas in Northwest China
3.2. Changes in Climate Factors during the Potato Growing Period
3.3. Establishing Relationships between First-Difference Yield and Climatic Factors
3.4. Establishing Relationships between Climate-Induced Potato Yield and Climatic Variables
4. Discussion
4.1. Reasons for the Increase in Potato Yields in Northwest China
4.2. Effects of Different Climatic Factors on Potato Yields
4.3. Study Limitations
4.4. Adaptation Measures to Climate Change
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Luo, Q.Y.; Lin, E. Agricultural vulnerability and adaptation in developing countries: The Asia-Pacific region. Clim. Chang. 1999, 43, 729–743. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-M.; Lee, S.-G.; Kim, K.-H.; Jeon, S.-W.; Jung, S.; Lee, W.-H. The Potential Distribution of the Potato Tuber Moth (Phthorimaea Operculella) Based on Climate and Host Availability of Potato. Agronomy 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J. Food for thought. Proc. Natl. Acad. Sci. USA 2011, 108, 19845–19846. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Wang, J.; Fang, Q.; Dayananda, B.; Yu, Q.; Zhao, P.; Yin, H.; Pan, X. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agric. For. Meteorol. 2019, 272, 91–101. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT Online Database. 2015. Available online: http://www.fao.org/faostat (accessed on 1 January 2017).
- Wang, C.L.; Shen, S.H.; Zhang, S.Y.; Li, Q.Z.; Yao, Y.B. Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China. J. Integr. Agric. 2015, 14, 398–409. [Google Scholar] [CrossRef]
- NBSC. Available online: http://data.stats.gov.cn (accessed on 1 January 2017).
- Li, Q.; Li, H.B.; Zhang, S.Q. Yield and water use efficiency of dryland potato in response to plastic film mulching on the Loess Plateau. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 175–188. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Luo, Y.; Liu, C. Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theor. Appl. Climatol. 2013, 112, 307–316. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Feng, Z.M.; Huang, H.Q.; Lin, Y.M. Climate-induced changes in crop water balance during 1960–2001 in Northwest China. Agric. Ecosyst. Environ. 2008, 127, 107–118. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Angulo, C.; Rotter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric. For. Meteorol. 2013, 170, 32–46. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Lopez, J.R.; Winter, J.M.; Elliott, J.; Ruane, A.C.; Porter, C.; Hoogenboom, G. Integrating growth stage deficit irrigation into a process based crop model. Agric. For. Meteorol. 2017, 243, 84–92. [Google Scholar] [CrossRef]
- Artru, S.; Dumont, B.; Ruget, F.; Launay, M.; Ripoche, D.; Lassois, L.; Garré, S. How does STICS crop model simulate crop growth and productivity under shade conditions? Field Crop. Res. 2018, 215, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Iizumi, T.; Yokozawa, M.; Nishimori, M. Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agric. For. Meteorol. 2009, 149, 333–348. [Google Scholar] [CrossRef]
- Wang, X.H.; Peng, L.Q.; Zhang, X.P.; Yin, G.D.; Zhao, C.; Piao, S.L. Divergence of climate impacts on maize yield in Northeast China. Agric. Ecosyst. Environ. 2014, 196, 51–58. [Google Scholar] [CrossRef]
- Zhang, J.T.; An, P.L.; Pan, Z.H.; Hao, B.Z.; Wang, L.W.; Dong, Z.Q.; Pan, X.B.; Xue, Q.W. Adaptation to a Warming-Drying Trend Through Cropping System Adjustment over Three Decades: A Case Study in the Northern Agro-Pastural Ecotone of China. J. Meteorol. Res. 2015, 29, 496–514. [Google Scholar] [CrossRef]
- Guoju, X.; Fengju, Z.; Zhengji, Q.; Yubi, Y.; Runyuan, W.; Juying, H. Response to climate change for potato water use efficiency in semi-arid areas of China. Agric. Water Manag. 2013, 127, 119–123. [Google Scholar] [CrossRef]
- Xiao, G.; Zheng, F.; Qiu, Z.; Yao, Y. Impact of climate change on water use efficiency by wheat, potato and corn in semiarid areas of China. Agric. Ecosyst. Environ. 2013, 181, 108–114. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. Guidelines for computing crop water requirements. Fao Irrig. Drain. Pap. 1998, 300, D05109. [Google Scholar]
- You, J.S.; Hubbard, K.G. Quality control of weather data during extreme events. J. Atmos. Ocean. Tech. 2006, 23, 184–197. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Asner, G.P.; Matson, P.A.; Naylor, R.L.; Falcon, W.P. Analysis of wheat yield and climatic trends in Mexico. Field Crop. Res. 2005, 94, 250–256. [Google Scholar] [CrossRef]
- Tao, F.L.; Yokozawa, M.; Liu, J.Y.; Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 2008, 38, 83–94. [Google Scholar] [CrossRef]
- Liu, Y.A.; Wang, E.L.; Yang, X.G.; Wang, J. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob. Chang. Biol. 2010, 16, 2287–2299. [Google Scholar] [CrossRef]
- Zhao, J.F.; Guo, J.P.; Mu, J. Exploring the relationships between climatic variables and climate-induced yield of spring maize in Northeast China. Agric. Ecosyst. Environ. 2015, 207, 79–90. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Wang, E.; Chen, S.; Shao, L.; Qin, W. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain. Field Crop. Res. 2016, 194, 94–102. [Google Scholar] [CrossRef]
- Pan, X.-Y.; Li, J.-Y.; Deng, K.-Y.; Xu, R.-K.; Shen, R.-F. Four-year effects of soil acidity amelioration on the yields of canola seeds and sweet potato and N fertilizer efficiency in an ultisol. Field Crop. Res. 2019, 237, 1–11. [Google Scholar] [CrossRef]
- Abrougui, K.; Gabsi, K.; Mercatoris, B.; Khemis, C.; Amami, R.; Chehaibi, S. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 2019, 190, 202–208. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp: New York, NY, USA, 2011. [Google Scholar]
- Systat Software, Inc. SYSTAT Version 10.0; Systat Software, Inc.: San Jose, CA, USA, 2008. [Google Scholar]
- Wang, B.A.; Ma, Y.L.; Zhang, Z.B.; Wu, Z.M.; Wu, Y.F.; Wang, Q.C.; Li, M.F. Potato viruses in China. Crop. Prot. 2011, 30, 1117–1123. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Yang, N.; Pan, Z.; Zhao, P.; Tuo, D. Effects of a ridge-furrow micro-field rainwater-harvesting system on potato yield in a semi-arid region. Field Crop. Res. 2014, 166, 92–101. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.Y.; Ma, B.L.; Xiong, Y.C.; Qiang, S.C.; Wang, C.L.; Liu, C.A.; Li, F.M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Condori, B.; Quiroz, R.; Alva, A.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C. A potato model intercomparison across varying climates and productivity levels. Glob. Chang. Biol. 2017, 23, 1258–1281. [Google Scholar] [CrossRef] [PubMed]
- Marinus, J.; Bodlaender, K.B.A. Response of some potato varieties to temperature. Potato Res. 1975, 18, 189–204. [Google Scholar] [CrossRef]
- Rykaczewska, K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am. J. Potato Res. 2015, 92, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Peltonen-Sainio, P.; Jauhiainen, L.; Trnka, M.; Olesen, J.E.; Calanca, P.; Eckersten, H.; Eitzinger, J.; Gobin, A.; Kersebaum, K.C.; Kozyra, J.; et al. Coincidence of variation in yield and climate in Europe. Agric. Ecosyst. Environ. 2010, 139, 483–489. [Google Scholar] [CrossRef]
- Peng, S.B.; Huang, J.L.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.H.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Siddappa, S.; Bhardwaj, V.; Singh, B.; Kumar, D.; Singh, B.P. Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol. Biochem. 2015, 97, 108–116. [Google Scholar] [CrossRef]
- Hassanpanah, D. Evaluation of Potato Cultivars for Resistance Against Water Deficit Stress Under In Vivo Conditions. Potato Res. 2010, 53, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, K.P.; Korup, K.; Nielsen, K.L.; Liu, F.L.; Topbjerg, H.B.; Kirk, H.G.; Andersen, M.N. Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L.) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity. Agric. For. Meteorol. 2014, 187, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Ferro, C.A.T.; Stephenson, D.B. Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric. Ecosyst. Environ. 2007, 119, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, N.; Pan, F.F.; Pan, X.B.; Wang, X.X.; Yang, P.Y. Adjusting Sowing Dates Improved Potato Adaptation to Climate Change in Semiarid Region, China. Sustainability 2017, 9, 615. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, H.B.; Zhang, L.; Zhang, S.Q.; Chen, Y.L. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crop. Res. 2018, 221, 50–60. [Google Scholar] [CrossRef]
- Su, Y.Z.; Wang, F.; Suo, D.R.; Zhang, Z.H.; Du, M.W. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China. Nutr. Cycl. Agroecosyst. 2006, 75, 285–295. [Google Scholar] [CrossRef]
- Yang, X.M.; Drury, C.F.; Wander, M.M. A wide view of no-tillage practices and soil organic carbon sequestration. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 523–530. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Li, Y.L.; Wang, K.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil Tillage Res. 2015, 153, 28–35. [Google Scholar] [CrossRef]
Region | Change Trends of Potato Yield | Change Trends of Planting Area |
---|---|---|
Gansu | y = 69.09x − 135,568.37, R2 = 0.90, P < 0.01 | y = 16.19x − 31,925.44, R2 = 0.93, P < 0.01 |
Shaanxi | y = 26.62x − 51,221.67, R2 = 0.47, P < 0.01 | y = 1.47x − 2685.22, R2 = 0.32, P < 0.01 |
Qinghai | y = 59.67x − 115,725.95, R2 = 0.67, P < 0.01 | y = 2.07x − 4084.67, R2 = 0.77, P < 0.01 |
Ningxia | y = 38.61x − 75,378.34, R2 = 0.54, P < 0.01 | y = 6.24x − 12,371.59, R2 = 0.79, P < 0.01 |
Xinjiang | y = 113.38x − 221,744.13, R2 = 0.71, P < 0.01 | y = 0.89x − 1756.29, R2 = 0.76, P < 0.01 |
Overall | y = 54.30x − 106,133.81, R2 = 0.90, P < 0.01 | y = 26.87x − 52,823.21, R2 = 0.94, P < 0.01 |
Climatic Factor | Gansu | Shaanxi | Qinghai | Ningxia | Xinjiang |
---|---|---|---|---|---|
Tave (°C decade−1) | 0.519 ** | 0.332 ** | 0.490 ** | 0.414 ** | 0.445 ** |
Tmax (°C decade−1) | 0.491 ** | 0.351 ** | 0.511 ** | 0.365 ** | 0.383 ** |
Tmin (°C decade−1) | 0.560 ** | 0.323 ** | 0.476 ** | 0.456 ** | 0.531 ** |
DTR (°C decade−1) | −0.071 | 0.032 | 0.031 | −0.080 | −0.160 ** |
Prec (mm decade−1) | 0.088 | 6.836 | 5.895 | −0.851 | 4.807 |
S (h decade−1) | 0.035 | 0.125 | −0.139 ** | −0.060 | 0.115 ** |
Rs (MJ m−2 decade−1) | 15.905 | 42.712 | −33.416 * | −4.821 | 31.409 * |
Province | Regression Model |
---|---|
Gansu | ∆Y = 2.38 ∆Prec − 15.67 ∆Tmax + 69.62, R2 = 0.33, P < 0.01 |
Shaanxi | ∆Y = −288.81 ∆Tmax + 39.95, R2 = 0.21, P < 0.01 |
Qinghai | ∆Y = 3.75 ∆Prec + 63.04, R2 = 0.20, P < 0.01 |
Ningxia | ∆Y = 1.36 ∆Prec − 133.05 ∆Tmax + 55.88, R2 = 0.26, P < 0.05 |
Xinjiang | ∆Y = −339.14 ∆Tmax + 150.20, R2 = 0.21, P < 0.01 |
Climatic Variables | Correlation Coefficient | ||||
---|---|---|---|---|---|
Gansu | Shaanxi | Qinghai | Ningxia | Xinjiang | |
Tave (°C decade−1) | 0.015 | −0.452 * | −0.107 | −0.147 | −0.355 |
Tmax (°C decade−1) | −0.031 | −0.463 * | −0.207 | −0.182 | −0.374 * |
Tmin (°C decade−1) | 0.062 | −0.255 | 0.033 | −0.042 | −0.277 |
DTR (°C decade−1) | −0.140 | −0.349 | −0.374 * | −0.188 | −0.215 |
Prec (mm decade−1) | 0.387 * | 0.336 | 0.532 ** | 0.369 * | 0.156 |
S (h decade−1) | −0.075 | −0.332 | −0.215 | −0.223 | −0.256 |
Rs (MJ m−2 decade−1) | −0.080 | −0.342 | −0.209 | −0.218 | −0.226 |
Province | Regression Model |
---|---|
Gansu | Yc = 1.399 Prec − 448.041, R2 = 0.15, P < 0.05 |
Shaanxi | Yc = −64.741 Tave − 129.354 Tmax + 4589.871, R2 = 0.22, P < 0.05 |
Qinghai | Yc = 4.123 Prec + 14.088 DTR − 1447.137, R2 = 0.28, P < 0.05 |
Ningxia | Yc = 1.323 Prec − 404.417, R2 = 0.14, P < 0.05 |
Xinjiang | Yc = −202.769 Tmax + 5102.801, R2 = 0.14, P < 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, S. Impacts of Recent Climate Change on Potato Yields at a Provincial Scale in Northwest China. Agronomy 2020, 10, 426. https://doi.org/10.3390/agronomy10030426
Li Q, Zhang S. Impacts of Recent Climate Change on Potato Yields at a Provincial Scale in Northwest China. Agronomy. 2020; 10(3):426. https://doi.org/10.3390/agronomy10030426
Chicago/Turabian StyleLi, Qiang, and Suiqi Zhang. 2020. "Impacts of Recent Climate Change on Potato Yields at a Provincial Scale in Northwest China" Agronomy 10, no. 3: 426. https://doi.org/10.3390/agronomy10030426
APA StyleLi, Q., & Zhang, S. (2020). Impacts of Recent Climate Change on Potato Yields at a Provincial Scale in Northwest China. Agronomy, 10(3), 426. https://doi.org/10.3390/agronomy10030426