Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Growth Conditions, Treatments and Experimental Design
2.2. Growth Analysis, Yield, Harvest and Quality Analysis Sampling
2.3. Soil Plant Analysis Development (SPAD) Index and Color Measurements
2.4. Total Chlorophyll and Carotenoid Content Determination
2.5. Dry Matter, Nitrate and Macromineral Content Analysis
2.6. Hydrophilic Antioxidant Activity Determination
2.7. Total Phenols and Total Ascorbic Acid Content Determination
2.8. Statistical Analysis
3. Results
3.1. Soil Temperature Trends
3.2. Yield and Biometric Parameters
3.3. SPAD index, Chlorophyll Content and Colorimetric Indices
3.4. Dry Matter Percentage and Leaf Mineral Profile
3.5. Antioxidant Activity and Bioactive Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreno, M.M.; Moreno, A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hortic. 2008, 116, 256–263. [Google Scholar] [CrossRef]
- Filippi, F.; Magnani, G.; Guerrini, S.; Ranghino, F. Agronomic evaluation of green biodegradable mulch on melon crop. Ital. J. Agron. 2011, 6, e18. [Google Scholar] [CrossRef]
- Morra, L.; Bilotto, M.; Cerrato, D.; Coppola, R.; Leone, V.; Mignoli, E.; Pasquariello, M.S.; Petriccione, M.; Cozzolino, E. The Mater-Bi® biodegradable film for strawberry (Fragaria x ananassa Duch.) mulching: Effects on fruit yield and quality. Ital. J. Agron. 2016, 11, 203–206. [Google Scholar] [CrossRef]
- Cowan, J.S.; Miles, C.; Andrews, K.P.; Inglis, D.A. Biodegradable mulch performed comparably to polyethylene in high tunnel tomato (Solanum lycopersicum L.) production. J. Sci. Food Agric. 2013, 94, 1854–1864. [Google Scholar] [CrossRef] [PubMed]
- Adamczewska-Sowinska, K.; Turczuk, J. Yielding and biological value of garlic chives (Allium tuberosum Rottl. ex Spreng.) depending to the type of mulch. J. Elem. 2016, 21, 7–19. [Google Scholar] [CrossRef]
- Scaringelli, M.A.; Giannoccaro, G.M.; Lopolito, A. Adoption of biodegradable mulching films in agriculture: Is there a negative prejudice towards materials derived from organic wastes? Ital. J. Agron. 2016, 11, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.A.; Samuelson, M.B.; Ignatius Kadoma, I.; Erick Soto-Cantu, E.; Rhae Drijber, R.; Wortman, S.E. Degradation rate of bio-based agricultural mulch is influenced by mulch composition and biostimulant application. J. Polym. Environ. 2019, 27, 498–509. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Vitaglione, P.; Giordano, M.; Pannico, A.; Colantuono, A.; De Pascale, S. Genotypic variation in nutritional and antioxidant profile among iceberg lettuce cultivars. Acta Sci. Pol. Hortorum Cultus 2017, 16, 37–45. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health beneficts of lettuce (Lactuca sativa L.). J. Food Comp. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Baslam, M.; Idoia, G.; Nieves, G. The arbuscular mycorrhizal symbiosis can overcome reductions inyield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci. Hortic. 2013, 164, 145–154. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bassal, A.; Leonardi, C.; Giufrida, F.; Colla, G. Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food Agric. Environ. 2012, 10, 680–688. [Google Scholar]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but di_erentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214. [Google Scholar] [CrossRef]
- Lichtentahler, H.K.; Buschmann, C. Chlorophylls and carotenoids; Measurement and characterization by UV-VIS spectroscopy. Curr. Protocols Food Anal. Chem. 2001, 1. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.; Goff, W.D.; Dangler, J.M.; Hogue, W.; West, M.S. Plastic mulch color inconsistently affects yield and earliness of tomato. HortScience 1992, 27, 1135. [Google Scholar] [CrossRef] [Green Version]
- Miles, C.; Shuresh Ghimire, S.; Wszelaki, A.; Moore, J. Biodegradable Plastic Mulch in Organic Vegetable Production Systems. In Proceedings of the New England Fruit and Vegetable Conference, Manchester, NH, USA, 17 December 2015. [Google Scholar]
- Cirujeda, A.; Aibar, J.; Anzalone, A.; Martín-Closas, L.; Meco, R.; Moreno, M.M.; Pardo, A.; Pelacho, A.M.; Rojo, F.; Royo-Esnal, A.; et al. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 2012, 2, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, E.; Leone, V.; Lombardi, P.; Piro, F. Telo biodegradabile su fragola, buoni effetti su resa e qualità. L’Informatore Agrario 2011, 29, 46–48. [Google Scholar]
- Cozzolino, E.; Leone, V.; Lombardi, P. Nuovi teli pacciamanti in prova su lattuga sotto terra. L’Informatore Agrario 2014, 24, 37. [Google Scholar]
- Carillo, P.; Colla, G.; El-Nakhel, C.; Bonini, P.; D’Amelia, L.; Dell’Aversana, E.; Pannico, A.; Giordano, M.; Sifola, M.I.; Kyriacou, M.C.; et al. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimens by improving physiological parameters. Agronomy 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 64, 145–158. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Tavormina, P.; De Coninck, B.; Nikonorova, N.; De Smet, I.; Cammue, P.A.B. The plant peptidome: An expanding repertoire of structural features and biological functions. Plant Cell 2015, 27, 2095–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Luziatelli, F.; Ficca, A.G.; Colla, G.; Baldassarre Švecová, E.; Ruzzi, M. Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 2019, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.M.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M.. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Burns, I.G.; Zhang, K.; Turner, M.K.; Meacham, M.; Al-Redhiman, K.; Lynn, J.; Broadley, M.R.; Hand, P.; Pink, D. Screening for genotype and environment effects on nitrate accumulation in 24 species of young lettuce. J. Sci. Food Agric. 2011, 91, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Burns, I.G.; Durnford, J.; Lynn, J.; McClement, S.; Hand, P.; Pink, D. The influence of genetic variation and nitrogen source on nitrate accumulation and iso-osmotic regulation by lettuce. Plant Soil 2012, 352, 321–339. [Google Scholar] [CrossRef]
- López, A.; Javier, G.; Fenoll, J.; Pilar, H.; Pilar, F. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. J. Food Comp. Anal. 2014, 33, 39–48. [Google Scholar] [CrossRef]
- Pinto, E.; Fidalgo, F.; Teixeira, J.; Aguiarc, A.A.; Ferreira, I.M.P.L.V.O. Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content inlettuce (Lactuca sativa). Plant Sci. 2014, 219–220, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). Commission Regulation (EU) n° 1258/2011 of 2 of December 2011 amending Regulation (EC) n° 1881/2006 as regards maximum level for nitrates in foodstuffs. Off. J. Eur. Union 2011. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Cocetta, G.; Trivellin, A.; Martinetti, L.; Ferrante, A. Prodotti biostimolanti ed effetti sulle colture ortofloricole. Acta Ital. Horts 2015, 15, 55–63. [Google Scholar]
- Kunicki, E.; Grabowska, A.; Sekara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Iron biofortification of red and green pigmented lettuce in closed soilless cultivation impacts crop performance and modulates mineral and bioactive composition. Agronomy 2019, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Krummel, R.D. Nutricíon en la Hypertension. In 10th Nutricíon y Dietoterapia; De Krause Mahan, L.K., Escott-Stump, S., Eds.; McGraw-Hill: Contadero, Mexico, 2000; pp. 649–664. [Google Scholar]
- Cozzolino, E.; Bilotto, M.; Leone, V.; Zampella, L.; Petriccione, M.; Cerrato, D.; Morra, L. Produzione e qualità di melone retatosu pacciamatura in in Mater-Bi®. Colt. Protette 2015, 6, 66–71. [Google Scholar]
- Khanam, U.K.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Func. Foods 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Subhasree, B.; Baskar, R.; Keerthana, R.L.; Susan, R.L.; Rajasekaran, P. Evaluation of antioxidant potential in selected green leafy vegetables. Food Chem. 2009, 115, 1213–1220. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar]
Source of Variance | Total Yield (g plant−1) | Marketable Yield (g plant−1) | Leaf Number (no. plant−1) | Leaf Area (cm2 plant−1) |
---|---|---|---|---|
Mulch (M) | ||||
Bare soil | 261.3 ± 7 b | 243.9 ± 7 c | 36.5 ± 0.4 c | 3414 ± 58 c |
LDPE | 298.0 ± 18 a | 274.3 ± 17 b | 44.5 ± 1.2 a | 3885 ± 193 a |
Mater-Bi® 1 | 302.8 ± 21 a | 274.7 ± 19 b | 40.6 ± 1.4 b | 3566 ± 168 b |
Mater-Bi® 2 | 319.5 ± 17 a | 296.5 ± 16 a | 41.9 ± 1.0 a | 3667 ± 168 ab |
*** | *** | *** | * | |
Biostimulant (B) | ||||
Control | 266.4 ± 6 | 243.3 ± 5 | 38.9 ± 0.8 | 3375 ± 73 |
Tropical plant extract (PE) | 324.5 ± 12 | 301.4 ± 10 | 42.8 ± 1.1 | 3891 ± 100 |
t-test | 0.000 | 0.000 | 0.009 | 0.000 |
M × B | ||||
Bare soil without biostimulant | 260.6 ± 14 b | 238.0 ± 13 b | 35.5 ± 0.1 | 3433 ± 109 b |
LDPE without biostimulant | 263.9 ± 15 b | 240.3 ± 12 b | 42.7 ± 1.6 | 3545 ± 241 b |
Mater-Bi® 1 without biostimulant | 256.8 ± 5 b | 232.9 ± 4 b | 38.6 ± 0.5 | 3198 ± 47 b |
Mater-Bi® 2 without biostimulant | 284.8 ± 11 b | 262.0 ± 8 b | 38.9 ± 0.6 | 3323 ± 103 b |
Bare soil + PE | 262.0 ± 8 b | 249.9 ± 6 b | 37.4 ± 0.2 | 3395 ± 67 b |
LDPE + PE | 332.2 ± 13 a | 308.4 ± 13 a | 46.4 ± 1.0 | 4226 ± 114 a |
Mater-Bi® 1 + PE | 348.7 ± 9 a | 316.5 ± 7 a | 44.9 ± 0.3 | 3934 ± 57 a |
Mater-Bi® 2 + PE | 354.9 ± 4 a | 331.0 ± 4 a | 42.6 ± 0.8 | 4011 ± 112 a |
** | * | NS | * |
Source of Variance | SPAD Index | Total Chlorophyll (mg 100 g−1 fw) | L* | a* | b* |
---|---|---|---|---|---|
Mulch (M) | |||||
Bare soil | 27.3 ± 0.4 c | 38.6 ± 0.0 b | 54.4 ± 1.7 b | −19.4 ± 0.4 | 33.6 ± 0.4 |
LDPE | 29.4 ± 0.4 b | 50.3 ± 0.1 a | 51.8 ± 2.1 c | −19.8 ± 0.4 | 33.3 ± 0.6 |
Mater-Bi® 1 | 30.3 ± 0.6 a | 51.8 ± 0.1 a | 60.2 ± 1.1 a | −18.6 ± 0.6 | 33.9 ± 0.9 |
Mater-Bi® 2 | 29.2 ± 0.4 b | 51.7 ± 0.1 a | 56.5 ± 2.0 b | −18.9 ± 2.0 | 32.8 ± 0.4 |
*** | * | *** | NS | NS | |
Biostimulant (B) | |||||
Control | 28.3 ± 0.4 | 41.9 ± 0.0 | 52.1 ± 1.2 | −19.9 ± 0.2 | 33.9 ± 0.3 |
Tropical plant extract (PE) | 30.0 ± 0.5 | 54.4 ± 0.0 | 59.3 ± 0.9 | −18.3 ± 0.3 | 32.9 ± 0.5 |
t-test | 0.043 | 0.039 | 0.000 | 0.000 | 0.084 |
M × B | |||||
Bare soil without biostimulant | 26.7 ± 0.2 | 34.5 ± 0.0 | 50.6 ± 0.3 | −20.4 ± 0.2 | 34.3 ± 0.4 |
LDPE without biostimulant | 28.7 ± 0.9 | 39.3 ± 0.1 | 47.7 ± 0.5 | −20.6 ± 0.3 | 33.6 ± 0.6 |
Mater-Bi® 1 without biostimulant | 29.5 ± 0.7 | 40.8 ± 0.1 | 58.0 ± 1.0 | −19.3 ± 0.3 | 34.8 ± 0.4 |
Mater-Bi® 2 without biostimulant | 28.4 ± 0.1 | 52.9 ± 0.0 | 52.1 ± 1.2 | −19.7 ± 0.5 | 33.2 ± 0.7 |
Bare soil + PE | 27.9 ± 0.1 | 42.7 ± 0.1 | 58.1 ± 0.7 | −18.5 ± 0.2 | 33.0 ± 0.5 |
LDPE + PE | 30.0 ± 0.4 | 61.4 ± 0.1 | 56.0 ± 2.1 | −19.0 ± 0.4 | 33.2 ± 1.1 |
Mater-Bi® 1 + PE | 31.1 ± 0.6 | 62.9 ± 0.1 | 62.3 ± 0.5 | −17.9 ± 1.0 | 32.9 ± 1.9 |
Mater-Bi® 2 + PE | 30.0 ± 0.2 | 50.5 ± 0.1 | 60.9 ± 0.4 | −18.0 ± 0.2 | 32.6 ± 0.3 |
NS | NS | NS | NS | NS |
Source of Variance | Dry Matter (%) | Nitrate | P | K | Ca | Mg | S | Na |
---|---|---|---|---|---|---|---|---|
(mg kg−1 fw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | ||
Mulch (M) | ||||||||
Bare soil | 3.7 ± 0.1 c | 955 ± 54 d | 7.9 ± 0.3 b | 90.2 ± 2.1 a | 6.4 ± 0.3 b | 3.5 ± 0.2 | 0.8 ± 0.1 | 2.2 ± 0.1 b |
LDPE | 4.2 ± 0.0 a | 1898 ± 74 c | 9.4 ± 0.4a | 77.3 ± 2.7 b | 4.8 ± 0.4 c | 2.7 ± 0.2 | 1.0 ± 0.1 | 2.3 ± 0.2 b |
Mater-Bi® 1 | 4.1 ± 0.1 ab | 1984 ± 152 b | 9.0 ± 0.2 a | 79.6 ± 1.2 b | 5.9 ± 0.4 bc | 3.3 ± 0.1 | 1.1 ± 0.1 | 2.3 ± 0.1 b |
Mater-Bi® 2 | 3.9 ± 0.1 bc | 2368 ± 142 a | 7.5 ± 0.3 b | 88.7 ± 1.2 a | 8.3 ± 0.6 a | 4.0 ± 0.1 | 1.1 ± 0.1 | 2.7 ± 0.0 a |
*** | *** | *** | *** | *** | NS | NS | * | |
Biostimulant (B) | ||||||||
Control | 3.9 ± 0.1 | 2037 ± 180 | 8.1 ± 0.3 | 82.1 ± 2.3 | 5.8 ± 0.5 | 3.3 ± 0.2 | 0.9 ± 0.1 | 2.5 ± 0.1 |
Tropical plant extract (PE) | 4.0 ± 0.1 | 1566 ± 135 | 8.9 ± 0.3 | 85.9 ± 1.8 | 6.8 ± 0.4 | 3.5 ± 0.2 | 1.1 ± 0.1 | 2.2 ± 0.1 |
t-test | 0.758 | 0.048 | 0.050 | 0.206 | 0.049 | 0.320 | 0.157 | 0.024 |
M × B | ||||||||
Bare soil without biostimulant | 3.5 ± 0.1 c | 1075 ± 2 f | 7.3 ± 0.3 | 88.6 ± 2.7 | 6.0 ± 0.6 | 3.4 ± 0.3 | 0.8 ± 0.1 | 2.5 ± 0.1 |
LDPE without biostimulant | 4.2 ± 0.1 a | 2063 ± 10 c | 8.7 ± 0.5 | 72.8 ± 2.7 | 4.1 ± 0.0 | 2.5 ± 0.1 | 1.0 ± 0.1 | 2.5 ± 0.1 |
Mater-Bi® 1 without biostimulant | 4.2 ± 0.1 a | 2325 ± 8 b | 8.9 ± 0.2 | 78.9 ± 2.4 | 5.7 ± 0.4 | 3.3 ± 0.2 | 1.0 ± 0.1 | 2.4 ± 0.2 |
Mater-Bi® 2 without biostimulant | 3.9 ± 0.2 b | 2685 ± 3 a | 7.3 ± 0.2 | 88.0 ± 2.4 | 7.9 ± 1.2 | 3.9 ± 0.2 | 0.9 ± 0.1 | 2.7 ± 0.1 |
Bare soil + PE | 3.9 ± 0.1 b | 836 ± 9 g | 8.5 ± 0.2 | 91.9 ± 3.6 | 6.9 ± 0.4 | 3.6 ± 0.2 | 0.9 ± 0.1 | 2.0 ± 0.1 |
LDPE + PE | 4.2 ± 0.1 a | 1733 ± 10 d | 10.0 ± 0.3 | 81.8 ± 3.1 | 5.5 ± 0.8 | 2.9 ± 0.3 | 1.1 ± 0.1 | 1.9 ± 0.3 |
Mater-Bi® 1 + PE | 3.9 ± 0.1 b | 1643 ± 13 e | 9.0 ± 0.4 | 80.4 ± 0.5 | 6.2 ± 0.7 | 3.3 ± 0.2 | 1.1 ± 0.1 | 2.2 ± 0.2 |
Mater-Bi® 2 + PE | 3.8 ± 0.0 b | 2051 ± 3 c | 7.9 ± 0.5 | 89.4 ± 1.0 | 8.7 ± 0.4 | 4.2 ± 0.1 | 1.1 ± 0.1 | 2.7 ± 0.1 |
* | *** | NS | NS | NS | NS | NS | NS |
Source of Variance | Hydrophilic Antioxidant Activity (mmol ascorbate eq. 100 g−1 dw) | Total Phenols (mg gallic acid eq. 100 g−1 dw) | Ascorbic Acid (mg 100 g−1 fw) | Carotenoids (mg g−1 fw) |
---|---|---|---|---|
Mulch (M) | ||||
Bare soil | 7.3 ± 0.1 | 3.9 ± 0.2 | 7.2 ± 0.6 b | 18.4 ± 2.2 ab |
LDPE | 6.4 ± 0.3 | 3.1 ± 0.3 | 8.1 ± 1.1 b | 13.1 ± 1.4 b |
Mater-Bi® 1 | 6.8 ± 0.4 | 3.4 ± 0.3 | 7.7 ± 2.3 b | 17.4 ± 1.4 ab |
Mater-Bi® 2 | 7.2 ± 0.3 | 3.3 ± 0.1 | 13.7 ± 3.1 a | 21.0 ± 2.1 a |
NS | NS | * | * | |
Biostimulant (B) | ||||
Control | 6.6 ± 0.2 | 3.3 ± 0.2 | 6.0 ± 0.7 | 16.0 ± 1.3 |
Tropical plant extract (PE) | 7.2 ± 0.2 | 3.6 ± 0.2 | 12.3 ± 1.6 | 18.9 ± 1.6 |
t-test | 0.036 | 0.241 | 0.002 | 0.158 |
M × B | ||||
Bare soil without biostimulant | 7.1 ± 0.2 | 3.7 ± 0.5 | 6.1 ± 0.3 c | 14.3 ± 1.9 |
LDPE without biostimulant | 5.6 ± 0.1 | 3.0 ± 0.3 | 7.1 ± 0.8 bc | 12.7 ± 3.1 |
Mater-Bi® 1 without biostimulant | 6.7 ± 0.3 | 3.3 ± 0.6 | 3.0 ± 0.4 c | 16.2 ± 1.1 |
Mater-Bi® 2 without biostimulant | 6.9 ± 0.2 | 3.2 ± 0.2 | 8.0 ± 1.4 bc | 20.8 ± 1.5 |
Bare soil + PE | 7.5 ± 0.1 | 4.1 ± 0.0 | 8.3 ± 0.6 bc | 22.5 ± 2.0 |
LDPE + PE | 7.0 ± 0.1 | 3.1 ± 0.6 | 9.1 ± 1.9 bc | 13.4 ± 0.6 |
Mater-Bi® 1 + PE | 6.9 ± 0.8 | 3.6 ± 0.1 | 12.4 ± 2.0 b | 18.6 ± 2.6 |
Mater-Bi® 2 + PE | 7.5 ± 0.4 | 3.5 ± 0.1 | 19.3 ± 3.7 a | 21.2 ± 4.3 |
NS | NS | * | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, E.; Giordano, M.; Fiorentino, N.; El-Nakhel, C.; Pannico, A.; Di Mola, I.; Mori, M.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value. Agronomy 2020, 10, 427. https://doi.org/10.3390/agronomy10030427
Cozzolino E, Giordano M, Fiorentino N, El-Nakhel C, Pannico A, Di Mola I, Mori M, Kyriacou MC, Colla G, Rouphael Y. Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value. Agronomy. 2020; 10(3):427. https://doi.org/10.3390/agronomy10030427
Chicago/Turabian StyleCozzolino, Eugenio, Maria Giordano, Nunzio Fiorentino, Christophe El-Nakhel, Antonio Pannico, Ida Di Mola, Mauro Mori, Marios C. Kyriacou, Giuseppe Colla, and Youssef Rouphael. 2020. "Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value" Agronomy 10, no. 3: 427. https://doi.org/10.3390/agronomy10030427
APA StyleCozzolino, E., Giordano, M., Fiorentino, N., El-Nakhel, C., Pannico, A., Di Mola, I., Mori, M., Kyriacou, M. C., Colla, G., & Rouphael, Y. (2020). Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value. Agronomy, 10(3), 427. https://doi.org/10.3390/agronomy10030427