Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Nutritional Treatments
2.2. Determination of the Contents of Nitrate, Ammonium, and Total Amino Acids in Roots and Leaves
2.3. Determination of the Contents of Chlorophyll, Total Phenols, and Antioxidant Capacity in Leaves
2.4. Determination of In Vitro Total PAL Activity in Leaves
2.5. Determination of the Contents of Individual (Poly)phenolic Acids and Flavonoids in Leaves
2.6. Statistical Analysis
3. Results
3.1. Experimental Hydroponic Design and N Nutritional Treatments
3.2. Effects of Mineral N Forms on Plant Growth and Nutritional Status of Green and Purple Basil
3.3. Effects of Mineral N Forms on Total Chlorophyll Content, Antioxidant Capacity, Total Phenols, and PAL Activity in Leaves of Green and Purple Basil
3.4. Effects of Mineral N Forms on the Contents of Individual (Poly)phenolic Acids in Leaves of Green and Purple Basil
3.5. Effects of Mineral N Forms on the Contents of Individual Flavonoids in Leaves of Purple Basil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Simon, J.E.; Morales, M.R.; Phippen, W.B.; Vieira, R.F.; Hao, Z. Basil: A Source of Aroma Compounds and a Popular Culinary and Ornamental Herb. In Perspective on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 449–505. [Google Scholar]
- Makri, O.; Kintzios, S. Ocimum Sp. (Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics Composition and Antioxidant Activity of Sweet Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2003, 51, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Scagel, C.F. Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Ch, M.; Naz, S.; Sharif, A.; Akram, M.; Saeed, M. Biological and Pharmacological Properties of the Sweet Basil (Ocimum basilicum). Br. J. Pharm. Res. 2015, 7, 330–339. [Google Scholar] [CrossRef]
- Phippen, W.B.; Simon, J.E. Anthocyanins in Basil (Ocimum basilicum L.). J. Agric. Food Chem. 1998, 46, 1734–1738. [Google Scholar] [CrossRef]
- Miguel, M.G. Anthocyanins: Antioxidant and/or Anti-Inflammatory Activities. J. Appl. Pharm. Sci. 2011, 1, 7–25. [Google Scholar]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant Phenolics: Recent Advances on Their Biosynthesis, Genetics, and Ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Heimler, D.; Romani, A.; Ieri, F. Plant Polyphenol Content, Soil Fertilization and Agricultural Management: A Review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Kim, H.-J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of Chitosan on the Biological Properties of Sweet Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2005, 53, 3696–3701. [Google Scholar] [CrossRef]
- Kim, H.-J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of Methyl Jasmonate on Secondary Metabolites of Sweet Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2006, 54, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Mosadegh, H.; Trivellini, A.; Ferrante, A.; Lucchesini, M.; Vernieri, P.; Mensuali, A. Applications of UV-B Lighting to Enhance Phenolic Accumulation of Sweet Basil. Sci. Hortic. 2018, 229, 107–116. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Hydroponic Greenhouse Basil Production: Comparing Systems and Cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Monroe, A.; Day, M.R. Growth, Yield, Plant Quality and Nutrition of Basil (Ocimum basilicum L.) under Soilless Agricultural Systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- Pardossi, A.; Malorgio, F.; Incrocci, L.; Tognoni, F. Hydroponics Technologies for Greenhouse Crops. In Crops: Growth, Quality and Biotechnology; Dris, R., Ed.; WFL Pub.: Helsinki, Finland, 2005. [Google Scholar]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of Antioxidants and Nutraceuticals in Basil Grown in Hydroponics and Soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Niemeyer, E.D. Effects of Nitrogen Fertilization on the Phenolic Composition and Antioxidant Properties of Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [Green Version]
- Kiferle, C.; Maggini, R.; Pardossi, A. Influence of Nitrogen Nutrition on Growth and Accumulation of Rosmarinic Acid in Sweet Basil (Ocimum basilicum L.) Grown in Hydroponic Culture. Aust. J. Crop Sci. 2013, 7, 321–327. [Google Scholar]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium Rate Alters the Antioxidant Capacity and Phenolic Concentration of Basil (Ocimum basilicum L.) Leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Lea, P.J. Do Plants Need Nitrate? The Mechanisms by Which Nitrogen Form Affects Plants: Do Plants Need Nitrate? Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Rubio-Wilhelmi, M.M.; Sanchez-Rodriguez, E.; Rosales, M.A.; Begoña, B.; Rios, J.J.; Romero, L.; Blumwald, E.; Ruiz, J.M. Effect of Cytokinins on Oxidative Stress in Tobacco Plants under Nitrogen Deficiency. Environ. Exp. Bot. 2011, 72, 167–173. [Google Scholar] [CrossRef]
- Fritz, C.; Palacios-Rojas, N.; Feil, R.; Stitt, M. Regulation of Secondary Metabolism by the Carbon-Nitrogen Status in Tobacco: Nitrate Inhibits Large Sectors of Phenylpropanoid Metabolism. Plant J. 2006, 46, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Prinsi, B.; Negri, A.S.; Pesaresi, P.; Cocucci, M.; Espen, L. Evaluation of Protein Pattern Changes in Roots and Leaves of Zea mays Plants in Response to Nitrate Availability by Two-Dimensional Gel Electrophoresis Analysis. BMC Plant Biol. 2009, 9, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, K.M.; Slimestad, R.; Lea, U.S.; Brede, C.; Løvdal, T.; Ruoff, P.; Verheul, M.; Lillo, C. Temperature and Nitrogen Effects on Regulators and Products of the Flavonoid Pathway: Experimental and Kinetic Model Studies. Plant Cell Environ. 2009, 32, 286–299. [Google Scholar] [CrossRef]
- Miller, A.J.; Cramer, M.D. Root Nitrogen Acquisition and Assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Review: Mechanisms of Ammonium Toxicity and the Quest for Tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Landi, M.; Guidi, L.; Pardossi, A.; Tattini, M.; Gould, K.S. Photoprotection by Foliar Anthocyanins Mitigates Effects of Boron Toxicity in Sweet Basil (Ocimum basilicum). Planta 2014, 240, 941–953. [Google Scholar] [CrossRef]
- Becker, C.; Urlić, B.; Jukić Špika, M.; Kläring, H.-P.; Krumbein, A.; Baldermann, S.; Goreta Ban, S.; Perica, S.; Schwarz, D. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose While Losing Chlorophylls, Β-Carotene and Xanthophylls. PLoS ONE 2015, 10, e0142867. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Ebelhar, M.W.; Rowe, D.E.; Coker, C. Productivity, Oil Content, and Oil Composition of Sweet Basil as a Function of Nitrogen and Sulfur Fertilization. HortScience 2008, 43, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Jakovljević, D.; Topuzović, M.; Stanković, M. Nutrient Limitation as a Tool for the Induction of Secondary Metabolites with Antioxidant Activity in Basil Cultivars. Ind. Crops Prod. 2019, 138, 111462. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Prinsi, B.; Espen, L. Time-Course of Metabolic and Proteomic Responses to Different Nitrate/Ammonium Availabilities in Roots and Leaves of Maize. Int. J. Mol. Sci. 2018, 19, 2202. [Google Scholar] [CrossRef] [Green Version]
- Coskun, D.; Britto, D.T.; Jean, Y.-K.; Schulze, L.M.; Becker, A.; Kronzucker, H.J. Silver Ions Disrupt K+ Homeostasis and Cellular Integrity in Intact Barley (Hordeum vulgare L.) Roots. J. Exp. Bot. 2012, 63, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Stein, H.W. A Modified Ninhydrin Reagent for the Photometric Determination of Amino Acids and Related Compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.L. Determination of Total Phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Bulgari, R.; Morgutti, S.; Cocetta, G.; Negrini, N.; Farris, S.; Calcante, A.; Spinardi, A.; Ferrari, E.; Mignani, I.; Oberti, R.; et al. Evaluation of Borage Extracts as Potential Biostimulant Using a Phenomic, Agronomic, Physiological, and Biochemical Approach. Front. Plant Sci. 2017, 8, 935. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Tattini, M.; Landi, M.; Brunetti, C.; Giordano, C.; Remorini, D.; Gould, K.S.; Guidi, L. Epidermal Coumaroyl Anthocyanins Protect Sweet Basil against Excess Light Stress: Multiple Consequences of Light Attenuation. Physiol. Plant. 2014, 152, 585–598. [Google Scholar] [CrossRef]
- Masakapalli, S.K.; Kruger, N.J.; Ratcliffe, R.G. The Metabolic Flux Phenotype of Heterotrophic Arabidopsis Cells Reveals a Complex Response to Changes in Nitrogen Supply. Plant J. 2013, 74, 569–582. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ Toxicity in Higher Plants: A Critical Review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Schortemeyer, M. Ammonium Tolerance and Carbohydrate Status in Maize Cultivars. Ann. Bot. 1997, 79, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Tattini, M.; Sebastiani, F.; Brunetti, C.; Fini, A.; Torre, S.; Gori, A.; Centritto, M.; Ferrini, F.; Landi, M.; Guidi, L. Dissecting Molecular and Physiological Response Mechanisms to High Solar Radiation in Cyanic and Acyanic Leaves: A Case Study on Red and Green Basil. J. Exp. Bot. 2017, 68, 2425–2437. [Google Scholar] [CrossRef]
- Kwee, E.M.; Niemeyer, E.D. Variations in Phenolic Composition and Antioxidant Properties among 15 Basil (Ocimum basilicum L.) Cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Flanigan, P.M.; Niemeyer, E.D. Effect of Cultivar on Phenolic Levels, Anthocyanin Composition, and Antioxidant Properties in Purple Basil (Ocimum basilicum L.). Food Chem. 2014, 164, 518–526. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Gong, X.; Yang, M.; Zhang, C.; Li, M. Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules 2019, 24, 155. [Google Scholar] [CrossRef] [Green Version]
- Luna, M.C.; Bekhradi, F.; Ferreres, F.; Jordán, M.J.; Delshad, M.; Gil, M.I. Effect of Water Stress and Storage Time on Anthocyanins and Other Phenolics of Different Genotypes of Fresh Sweet Basil. J. Agric. Food Chem. 2015, 63, 9223–9231. [Google Scholar] [CrossRef]
- Petersen, M. Rosmarinic Acid: New Aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Kovinich, N.; Kayanja, G.; Chanoca, A.; Otegui, M.S.; Grotewold, E. Abiotic Stresses Induce Different Localizations of Anthocyanins in Arabidopsis. Plant Signal. Behav. 2015, 10, e1027850. [Google Scholar] [CrossRef] [Green Version]
(a) Roots | ||||||
CV | con | nit | amm | Two-Way ANOVA | ||
mean ± SEM | mean ± SEM | mean ± SEM | F statistic | |||
NO3− | IC | 4.59 ± 0.14 c | 42.28 ± 0.38 a | 4.23 ± 0.17 cd | N treatment (A) | 8128.43 ** |
(µmol g−1 FW) | RR | 2.87 ± 0.13 d | 32.93 ± 0.53 b | 3.46 ± 0.28 cd | Cultivar (B) | 249.29 ** |
A x B | 118.14 ** | |||||
NH4+ | IC | 2.55 ± 0.26 bc | 0.59 ± 0.11 d | 4.76 ± 0.29 a | N treatment (A) | 115.09 ** |
(µmol g−1 FW) | RR | 1.80 ± 0.26 c | 0.72 ± 0.04 d | 3.13 ± 0.22 b | Cultivar (B) | 17.89 * |
A x B | 8.12 * | |||||
AA | IC | 1.76 ± 0.02 b | 2.21 ± 0.18 b | 16.71 ± 2.17 a | N treatment (A) | 102.75 ** |
(µmol g−1 FW) | RR | 1.63 ± 0.07 b | 1.70 ± 0.11 b | 16.20 ± 1.90 a | Cultivar (B) | 0.16 n.s. |
A x B | 0.02 n.s | |||||
(b) Leaves | ||||||
CV | con | nit | amm | Two-Way ANOVA | ||
mean ± SEM | mean ± SEM | mean ± SEM | F statistic | |||
NO3− | IC | 0.80 ± 0.80 b | 46.84 ± 0.82 a | 0.78 ± 0.39 b | N treatment (A) | 252.36 ** |
(µmol g−1 FW) | RR | 5.26 ± 1.81 b | 40.04 ± 3.88 a | 7.77 ± 2.30 b | Cultivar (B) | 0.86 n.s. |
A x B | 6.44 * | |||||
NH4+ | IC | 3.13 ± 0.44 a B | 2.18 ± 0.07 b B | 5.01 ± 0.08 a B | N treatment (A) | 14.21 ** |
(µmol g−1 FW) | RR | 4.59 ± 0.18 a A | 3.43 ± 0.38 b A | 4.59 ± 0.69 a A | Cultivar (B) | 6.21 * |
A x B | 3.75 n.s. | |||||
AA | IC | 6.93 ± 0.57 c | 6.85 ± 1.17 c | 44.99 ± 2.18 a | N treatment (A) | 404.27 ** |
(µmol g−1 FW) | RR | 6.76 ± 0.27 c | 6.82 ± 0.59 c | 37.14 ± 2.17 b | Cultivar (B) | 5.58 * |
A x B | 5.19 * |
Parameter | CV | Con Mean ± SEM | nit Mean ± SEM | amm Mean ± SEM | Two-Way ANOVA F Statistic | |
---|---|---|---|---|---|---|
Chl | IC | 1.07 ± 0.07 B | 1.05 ± 0.04 B | 1.05 ± 0.03 B | N treatment (A) | 2.35 n.s. |
(mg g−1 FW) | RR | 1.20 ± 0.09 A | 1.05 ± 0.03 A | 1.28 ± 0.03 A | Cultivar (B) | 7.10 * |
A x B | 2.31 n.s. | |||||
AC | IC | 35.6 ± 2.8 a | 23.9 ± 1.1 c | 28.5 ± 2.0 b | N treatment (A) | 21.30 ** |
(µmol AAE g−1 FW) | RR | 33.3 ± 1.1 a | 23.3 ± 1.1 c | 29.8 ± 1.2 b | Cultivar (B) | 0.17 n.s. |
A x B | 0.60 n.s | |||||
TP | IC | 5.48 ± 0.55 aB | 3.62 ± 0.22 bB | 4.52 ± 0.08 aB | N treatment (A) | 24.46 ** |
(mg GAE g−1 FW) | RR | 6.71 ± 0.05 aA | 4.77 ± 0.25 bA | 6.31 ± 0.19 aA | Cultivar (B) | 38.05 ** |
A x B | 0.79 n.s. | |||||
PAL | IC | 535 ± 16 ab | 190 ± 9 c | 245 ± 26 c | N treatment (A) | 66.38 ** |
(nmol CA mg−1prot h−1) | RR | 603 ± 10 a | 485 ± 9 b | 549 ± 24 ab | Cultivar (B) | 180.09 ** |
A x B | 20.33 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinsi, B.; Negrini, N.; Morgutti, S.; Espen, L. Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil. Agronomy 2020, 10, 498. https://doi.org/10.3390/agronomy10040498
Prinsi B, Negrini N, Morgutti S, Espen L. Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil. Agronomy. 2020; 10(4):498. https://doi.org/10.3390/agronomy10040498
Chicago/Turabian StylePrinsi, Bhakti, Noemi Negrini, Silvia Morgutti, and Luca Espen. 2020. "Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil" Agronomy 10, no. 4: 498. https://doi.org/10.3390/agronomy10040498
APA StylePrinsi, B., Negrini, N., Morgutti, S., & Espen, L. (2020). Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil. Agronomy, 10(4), 498. https://doi.org/10.3390/agronomy10040498