Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Selection Protocol for Alfalfa Salinity Tolerance
2.3. Inoculum Production
2.4. Evaluation of Salt Tolerance of Plants Under Controlled Conditions
2.5. Physiological Assessment
2.6. Biochemical Analyses
2.6.1. Carbohydrate Concentrations
2.6.2. Amino Acid Concentrations
2.7. Statistical Analyses
3. Results
3.1. Plant Biomass
3.2. Relative Water Content in Response to Salt Stress (RWC-TSS)
3.3. Nodulation Index of Roots
3.4. Carbohydrate Concentration
3.5. Amino Acid Concentrations in Leaves and Nodules
4. Discussion
4.1. Biomass and Relative Water Content
4.2. Osmoprotectants in Leaves
4.3. Osmoprotectants in Nodules
Amino Acids in Nodules under Severe Salt Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global soil status, processes and trends. In Status of the World’s Soil Resources: Main Report; FAO: Rome, Italy, 2015; pp. 100–167. [Google Scholar]
- Steppuhn, H.; Wall, K. Canada’s salt tolerance testing laboratory. Can. Agric. Eng. 1999, 41, 185–190. [Google Scholar]
- Wall, K.; Steppuhn, H.; Gatzke, M. Agriculture and agri-food Canada’s salinity tolerance testing laboratory. In Soils and Crops Workshop; University Library, University of Saskatchewan: Saskatoon, SK, Cananda, 2015. [Google Scholar]
- Hernandez, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiala, M.A.; Abdelrahman, M.; Burritt, D.J.; Tran, L.-S.P. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad. Dev. 2018, 29, 3812–3822. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A review of soil-improving cropping systems for soil salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Rokebul Anower, M.; Peel, M.; Mott, I.; Wu, Y. Physiological processes associated with salinity tolerance in an alfalfa half-sib family. Journal of agronomy and crop science 2017, 203, 506–518. [Google Scholar] [CrossRef]
- Steppuhn, H.; Acharya, S.N.; Iwaasa, A.D.; Gruber, M.; Miller, D.R. Inherent responses to root-zone salinity in nine alfalfa populations. Can. J. Plant Sci. 2012, 92, 235–248. [Google Scholar] [CrossRef]
- Bertrand, A.; Dhont, C.; Bipfubusa, M.; Chalifour, F.-P.; Drouin, P.; Beauchamp, C.J. Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl. Soil Ecol. 2015, 87, 108–117. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Díaz-Vivancos, P.; Sánchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Flowers, T.J.; Munns, R.; Colmer, T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 2014, 115, 419–431. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Munns, R.; Gilliham, M. Salinity tolerance of crops - what is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhu, D.; Cornacchione, M.V.; Ferreira, J.F.S.; Suarez, D.L. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci. Rep. 2017, 7, 42958. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.; Castonguay, Y.; Bourassa, J. A whole-plant screening test to identify genotypes with superior freezing tolerance. In Plant Cold Acclimation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 35–41. [Google Scholar]
- Bertrand, A.; Claessens, A.; Rocher, S. An Indoor Screening Method for Reduced Fall Dormancy in Alfalfa. In Breeding Grasses and Protein Crops in the Era of Genomics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 209–214. [Google Scholar]
- Bertrand, A.; Castonguay, Y. Molecular changes in recurrently selected populations of forage legumes. In Plant and Microbe Adaptations to Cold in a Changing World; Springer: Berlin/Heidelberg, Germany, 2013; pp. 209–217. [Google Scholar]
- Iraba, A.; Castonguay, Y.; Bertrand, A.; Floyd, D.J.; Cloutier, J.; Belzile, F. Characterization of Populations of Turf-Type Perennial Ryegrass Recurrently Selected for Superior Freezing Tolerance. Crop. Sci. 2013, 53, 2225–2238. [Google Scholar] [CrossRef]
- Parakkunnel, R.; Singh, G.P.; Jain, N.; Singh, P.K.; Pandey, M.K.; Sharma, K.; Kumar, A.; Harikrishna; Prabhu, K.V. Effect of Recurrent Selection on Drought Tolerance and Related Morpho-Physiological Traits in Bread Wheat. PLoS ONE 2016, 11, e0156869. [Google Scholar]
- Rémus-Borel, W.; Castonguay, Y.; Cloutier, J.; Michaud, R.; Bertrand, A.; Desgagnés, R.; Laberge, S. Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 2009, 120, 1163–1174. [Google Scholar]
- Dodd, I.C.; Alfocea, F.P. Microbial amelioration of crop salinity stress. J. Exp. Bot. 2012, 63, 3415–3428. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Gomez, M.; Hidalgo-Castellanos, J.; Iribarne, C.; Lluch, C. Proline accumulation has prevalence over polyamines in nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti during the initial response to salinity. Plant Soil 2013, 374, 149–159. [Google Scholar] [CrossRef]
- Zahran, H.H. Conditions for successful Rhizobium-legume symbiosis in saline environments. Biol. Fertil. Soils 1991, 12, 73–80. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, A.; Bipfubusa, M.; Dhont, C.; Chalifour, F.-P.; Drouin, P.; Beauchamp, C.J. Rhizobial strains exert a major effect on the amino acid composition of alfalfa nodules under NaCl stress. Plant Physiol. Biochem. 2016, 108, 344–352. [Google Scholar] [CrossRef]
- Acharya, S.N.; Steppuhn, H. Bridgeview alfalfa. Can. J. Plant Sci. 2012, 92, 203–206. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Bromfield, E.; Wheatcroft, R.; Barran, L. Medium for direct isolation of Rhizobium meliloti from soils. Soil Biol. Biochem. 1994, 26, 423–428. [Google Scholar] [CrossRef]
- Prévost, D.; Bertrand, A.; Juge, C.; Chalifour, F.P. Elevated CO2 induces differences in nodulation of soybean depending on bradyrhizobial strain and method of inoculation. Plant Soil 2009, 331, 115–127. [Google Scholar] [CrossRef]
- SAS. The SAS System for Windows; Version 6.12; Cary, N.C., Ed.; SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.; Bose, J.; Byrt, C.S.; Chen, Z.-H.; Foster, K.; et al. Energy costs of salt tolerance in crop plants. New Phytol. 2019, 225, 1072–1090. [Google Scholar] [CrossRef] [Green Version]
- Groppa, M.D.; Benavides, M.P.; Zawoznik, M.S. Root hydraulic conductance, aquaporins and plant growth promoting microorganisms: A revision. Appl. Soil Ecol. 2012, 61, 247–254. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Baek, K.-H. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. Plant Physiol. Biochem. 2017, 116, 116–126. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, J.; Huan, H.; Bai, C.; Chen, Z.; Liu, G. High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis. Int. J. Mol. Sci. 2017, 18, 1625. [Google Scholar] [CrossRef] [Green Version]
- Elsheikh, E.; Wood, M. Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biol. Biochem. 1995, 27, 657–661. [Google Scholar] [CrossRef]
- Fougère, F.; Le Rudulier, D.; Streeter, J.G. Effects of Salt Stress on Amino Acid, Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosol of Alfalfa (Medicago sativa L.). Plant Physiol. 1991, 96, 1228–1236. [Google Scholar]
- Vishwakarma, K.; Mishra, M.; Patil, G.; Mulkey, S.; Ramawat, N.; Singh, V.P.; Deshmukh, R.; Tripathi, D.K.; Nguyen, H.T.; Sharma, S. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Crit. Rev. Biotechnol. 2019, 39, 861–883. [Google Scholar] [CrossRef] [PubMed]
- Aranjuelo, I.; Molero, G.; Erice, G.; Avice, J.C.; Nogués, S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot. 2010, 62, 111–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, C.-H.; Hossain, A.; Lee, E.; Kanth, B.K.; Park, P.B. Increased salt and drought tolerance by D-pinitol production in transgenic Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2018, 504, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Thalmann, M.; Santelia, D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 2017, 187, 791–951. [Google Scholar] [CrossRef] [Green Version]
- Strauss, G.; Hauser, H. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Natl. Acad. Sci. USA 1986, 83, 2422–2426. [Google Scholar] [CrossRef] [Green Version]
- Conde, A.; Chaves, M.M.; Geros, H. Membrane Transport, Sensing and Signaling in Plant Adaptation to Environmental Stress. Plant Cell Physiol. 2011, 52, 1583–1602. [Google Scholar] [CrossRef]
- Palma, F.; Tejera, N.A.; Lluch, C. Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environ. Exp. Bot. 2013, 85, 43–49. [Google Scholar] [CrossRef]
- Streeter, J.; Lohnes, D.G.; Fioritto, R.J. Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ. 2001, 24, 429–438. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Zhang, P.; Cao, Y.; Hu, T.; Yang, P. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 2016, 402, 247–261. [Google Scholar] [CrossRef]
- López-Gómez, M.; Palma, F.; Lluch, C. Strategies of salt tolerance in the rhizobia-legume symbiosis. In Beneficial Plant-Microbial Interactions: Ecology and Applications; CRC Press: Boca Ratón, FL, USA, 2013; pp. 99–121. [Google Scholar]
- Tang, W.; Newton, R.J. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul. 2005, 46, 31–43. [Google Scholar] [CrossRef]
- Fàbregas, N.; Fernie, A.R. The metabolic response to drought. J. Exp. Bot. 2019, 70, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prell, J.; White, J.P.; Bourdes, A.; Bunnewell, S.; Bongaerts, R.J.; Poole, P.S. Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc. Natl. Acad. Sci. USA 2009, 106, 12477–12482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podlešáková, K.; Ugena, L.; Spíchal, L.; Doležal, K.; De Diego, N. Phytohormones and polyamines regulate plant stress responses by altering gaba pathway. New biotechnology 2019, 48, 53–65. [Google Scholar] [CrossRef]
- Bertrand, A.; Bipfubusa, M.; Castonguay, Y.; Rocher, S.; Szopinska-Morawska, A.; Papadopoulos, Y.A.; Renaut, J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC Plant Biol. 2016, 16, 65. [Google Scholar] [CrossRef] [Green Version]
Shoot Biomass | Root Biomass | RWC-TSS 1 | Nodulation Index | |||
---|---|---|---|---|---|---|
Effects | DW 2 | DW 2 | Shoot | Root | Shallow (0 to <7 cm) | Deep Root (7 to 20 cm) |
NaCl | *** | *** | * | ** | * | 0.167 |
Cultivars | 0.789 | 0.099 | *** | 0.958 | 0.710 | 0.120 |
NaCl × Cultivars | 0.739 | 0.932 | 0.073 | 0.964 | 0.744 | 0.405 |
Recurrent selection | ** | 0.281 | 0.968 | ** | 0.710 | 0.593 |
NaCl × Recurrent selection | 0.582 | 0.923 | 0.928 | 0.485 | 0.967 | 0.944 |
Cultivars × Recurrent selection | 0.704 | 0.180 | 0.569 | 0.377 | 0.458 | 0.106 |
NaCl × Cultivars × Recurrent selection | 0.088 | 0.921 | 0.979 | 0.843 | 0.694 | 0.324 |
Sucrose | Pinitol | Starch | ||||
---|---|---|---|---|---|---|
Effects | Leaves | Nodules | Leaves | Nodules | Leaves | Nodules |
NaCl | *** | *** | *** | *** | *** | ** |
Cultivars | * | 0.939 | 0.305 | 0.082 | 0.075 | 0.580 |
NaCl × Cultivars | 0.425 | 0.947 | 0.170 | 0.152 | * | * |
Recurrent selection | 0.823 | 0.713 | 0.238 | 0.118 | 0.067 | 0.106 |
NaCl × Recurrent selection | 0.913 | 0.315 | 0.056 | 0.119 | 0.799 | 0.065 |
Cultivars × Recurrent selection | 0.489 | 0.519 | * | 0.448 | * | 0.683 |
NaCl × Cultivars × Recurrent selection | 0.484 | 0.679 | 0.079 | 0.936 | 0.666 | 0.233 |
Effects | Total Free Amino Acids | ||
---|---|---|---|
Leaves | Roots | Nodules | |
NaCl | *** | *** | *** |
Cultivars | 0.206 | 0.175 | 0.293 |
NaCl × Cultivars | * | 0.129 | 0.413 |
Recurrent selection | * | 0.649 | 0.346 |
NaCl × Recurrent selection | 0.878 | 0.291 | 0.663 |
Cultivars × Recurrent selection | 0.236 | 0.696 | 0.211 |
NaCl × Cultivars × Recurrent selection | 0.371 | 0.730 | 0.662 |
Cultivars | NaCl Effect 1 | Recurrent Selection Effect 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Amino Acids | Precursors | Bridgeview | Halo | 0 to 160 mM | Bridgeview | Halo | Metabolic Function 2 | Other | ||
TS0 | TS3 | TS0 | TS3 | TS0 vs. TS3 | TS0 vs. TS3 | |||||
Glutamate (GLU) | GLU (from 2-oxoglutarate) | 41.93 a | 36.24 a | 41.17 a | 43.26 a | ↑ | = | = | Nitrogen assimilation and transport | |
Proline (Pro) | GLU | 109.59 a | 110.22 a | 112.74 a | 99.43 a | ↑ | = | = | Compatible osmolyte, ROS scavenging | |
GABA | GLU | 19.78 a | 16.18 a | 20.90 a | 21.25 a | = | = | = | ROS scavenging Coordinating carbon–nitrogen balance | Signaling |
Arginine (Arg) | GLU | 16.05 a,b | 32.16 a | 19.22 a | 10.47 b | ↑ | = | = | Nitrogen storage and transport | |
Glutamine (Glu) | GLU | 3.82 a | 3.92 a | 4.38 a | 3.55 a | = | = | = | Nitrogen assimilation and transport | |
Ornithine (Orn) | GLU | 0.49 a | 0.52 a | 0.49 a | 0.37 a | ↑ | = | = | Polyamine synthesis | |
Histidine (His) | GLU | 7.70 a,b | 9.34 a | 8.74 a | 6.07 b | ↑ | = | ↓ | Poorly investigated in plants | |
Aspartate (ASP) | ASP (from oxaloacetate) | 4.11 a | 4.24 a | 5.58 a | 3.69 a | ↑ | = | = | Carbon skeletons | |
Asparagine (Asn) | ASP | 209.24 a | 129.54 a | 187.14 a | 119.96 a | ↑ | = | = | Nitrogen assimilation, transport and storage | |
Lysine (Lys) | ASP | 2.25 b | 5.14 a | 3.86 a,b | 2.05 b | ↑ | ↑ | = | Signaling | |
Threonine (Thr) | ASP | 4.08 b | 7.35 a | 5.56 a,b | 4.01 b | ↑ | ↑ | = | Degradation to Val, Leu, Ile | |
Methionine (Met) | ASP | 0.61 b | 1.95 a | 1.19 a | 0.90 a,b | ↑ | ↑ | = | Sulfate assimilation, polyamine synthesis Degradation to Val, Leu, Ile | |
Isoleucine (Ile) | ASP/Pyruvate | 2.61 b | 8.66 a | 5.73 a,b | 3.01 b | ↑ | ↑ | = | Degraded into TCA cycle 3 | Branched-chain |
Leucine (Leu) | ASP/Pyruvate | 2.72 b | 8.12 a | 4.94 a | 2.57 a,b | ↑ | ↑ | = | Degraded into TCA cycle | Branched-chain |
Valine (Val) | ASP/Pyruvate | 4.63 b | 14.77 a | 10.37 a,b | 6.39 b | ↑ | ↑ | = | Degraded into TCA cycle | Branched-chain |
AABA | GLU | 0.16 | 0.45 | 0.27 | 0.21 | ↑ | ↑ | = | Derivative of Ala Metabolite in Ile biosynthesis Catabolism Met, Tre, Ser | |
Alanine (Ala) | Pyruvate | 19.29 a | 23.91 a | 26.64 a | 27.91 a | = | = | = | N assimilation and transport | |
Tyrosine (Tyr) | Phosphoenol-pyruvate | 1.01 b | 3.79 a | 2.42 a,b | 1.34 a,b | ↑ | ↑ | = | Flavonoid and IAA synthesis 4 | Aromatic |
Phenylalanine (Phe) | Phosphoenol-pyruvate | 2.06 b | 6.54 a | 4.02 a,b | 2.50 b | ↑ | ↑ | = | Flavonoid and IAA synthesis | Aromatic |
Serine (Ser) | 3-Phospho-glycerate | 11.40 a | 13.81 a | 12.07 a | 9.79 a | ↑ | = | = | Carbon skeletons | |
Glycine (Gly) | 3-Phospho-glycerate | 2.75 a,b | 3.74 a | 3.35 a | 2.47 b | ↑ | = | ↓ | Carbon skeletons | |
Total amino acids (AAs) | 473.97 a | 449.94 a | 489.52 a | 377.29 a | ↑ | = | = |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertrand, A.; Gatzke, C.; Bipfubusa, M.; Lévesque, V.; Chalifour, F.P.; Claessens, A.; Rocher, S.; Tremblay, G.F.; Beauchamp, C.J. Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium. Agronomy 2020, 10, 569. https://doi.org/10.3390/agronomy10040569
Bertrand A, Gatzke C, Bipfubusa M, Lévesque V, Chalifour FP, Claessens A, Rocher S, Tremblay GF, Beauchamp CJ. Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium. Agronomy. 2020; 10(4):569. https://doi.org/10.3390/agronomy10040569
Chicago/Turabian StyleBertrand, Annick, Craig Gatzke, Marie Bipfubusa, Vicky Lévesque, Francois P. Chalifour, Annie Claessens, Solen Rocher, Gaëtan F. Tremblay, and Chantal J. Beauchamp. 2020. "Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium" Agronomy 10, no. 4: 569. https://doi.org/10.3390/agronomy10040569
APA StyleBertrand, A., Gatzke, C., Bipfubusa, M., Lévesque, V., Chalifour, F. P., Claessens, A., Rocher, S., Tremblay, G. F., & Beauchamp, C. J. (2020). Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium. Agronomy, 10(4), 569. https://doi.org/10.3390/agronomy10040569