Wild and Cultivated Sunflower (Helianthus annuus L.) Do Not Differ in Salinity Tolerance When Taking Vigor into Account
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurements
2.3. Ion Analysis
2.4. Statistical Analysis
3. Results
3.1. Differences in Tolerance Between Wild and Cultivated
3.2. Differences in Traits Between Wild and Cultivated
3.3. Differences in Associations Between Traits and Tolerance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flint-Garcia, S.A. Genetics and Consequences of Crop Domestication. J. Agric. Food Chem. 2013, 61, 8267–8276. [Google Scholar] [CrossRef]
- Evans, L.T. Crop Evolution, Adaptation and Yield; Cambridge University Press: Cambridge, UK, 1996; ISBN 978-0-521-29558-1. [Google Scholar]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gepts, P. Crop Domestication as a Long-Term Selection Experiment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Milla, R.; Bastida, J.M.; Turcotte, M.M.; Jones, G.; Violle, C.; Osborne, C.P.; Chacón-Labella, J.; Sosinski, Ê.E.; Kattge, J.; Laughlin, D.C.; et al. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2018, 2, 1808–1817. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.P.; Forster, B.P.; Robinson, D.; Handley, L.L.; Gordon, D.C.; Russell, J.R.; Powell, W. Wild barley: A source of genes for crop improvement in the 21st century? J. Exp. Bot. 2000, 51, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mayrose, M.; Kane, N.C.; Mayrose, I.; Dlugosch, K.M.; Rieseberg, L.H. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress: REDUCED DEFENCES IN AGRICULTURAL SUNFLOWER. Mol. Ecol. 2011, 20, 4683–4694. [Google Scholar] [CrossRef]
- Koziol, E.K.; Rieseberg, L.H.; Kane, N.; Bever, J.D. Reduced drought tolerance during domestication and the evolution of weediness results from tolerance-growth trade-offs. Evolution 2012, 66, 3803–3814. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.-H. Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 2017, 10, 5–24. [Google Scholar] [CrossRef]
- Dinoor, A. Sources of oat crown rust resistance in hexaploid and tetraploid wild oats in Israel. Can. J. Bot. 1970, 48, 153–161. [Google Scholar] [CrossRef]
- Frankel, O.H. Genetic Conservation: Our Evolutionary Responsibility. Genetics 1974, 78, 53–65. [Google Scholar]
- Harlan, J.R. Genetic Resources in Wild Relatives of Crops 1. Crop Sci. 1976, 16, 329–333. [Google Scholar] [CrossRef]
- Feuillet, C.; Langridge, P.; Waugh, R. Cereal breeding takes a walk on the wild side. Trends Genet. 2008, 24, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Brozynska, M.; Furtado, A.; Henry, R.J. Genomics of crop wild relatives: Expanding the gene pool for crop improvement. Plant. Biotechnol. J. 2016, 14, 1070–1085. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Zafar, Z.U.; O’leary, J.W. Genetic Variation for Salt Tolerance in Sunflower (Helianthus annum L.). Hereditas 2004, 123, 141–145. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant. Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milla, R.; Matesanz, S. Growing larger with domestication: A matter of physiology, morphology or allocation? Plant. Biol. 2017, 19, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment1. Crop Sci. 1981, 21. [Google Scholar] [CrossRef]
- Thiry, A.A.; Chavez Dulanto, P.N.; Reynolds, M.P.; Davies, W.J. How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. J. Exp. Bot. 2016, 67, 5593–5603. [Google Scholar] [CrossRef]
- Temme, A.A.; Kerr, K.L.; Masalia, R.R.; Burke, J.M.; Donovan, L.A. Key traits and genes associate with salinity tolerance independent from vigor in cultivated sunflower (Helianthus annuus L.). bioRxiv 2020. [Google Scholar] [CrossRef]
- Chapin, F.S. The Mineral Nutrition of Wild Plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Rebolledo, M.-C.; Dingkuhn, M.; Clément-Vidal, A.; Rouan, L.; Luquet, D. Phenomics of rice early vigour and drought response: Are sugar related and morphogenetic traits relevant? Rice 2012, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temme, A.A.; Burns, V.A.; Donovan, L.A. Element content and distribution has limited, tolerance metric dependent, impact on salinity tolerance in cultivated sunflower (Helianthus annuus). bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Temme, A.A.; Kerr, K.L.; Donovan, L.A. Vigour/tolerance trade-off in cultivated sunflower (Helianthus annuus) response to salinity stress is linked to leaf elemental composition. J. Agron. Crop. Sci. 2019, 205, 508–518. [Google Scholar] [CrossRef]
- Yeo, A.; Flowers, T. Salinity Resistance in Rice (Oryza sativa L.) And a Pyramiding Approach to Breeding Varieties for Saline Soils. Funct. Plant. Biol. 1986, 13, 161. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative physiology of salt and water stress. Plant. Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; James, R.A.; Gilliham, M.; Flowers, T.J.; Colmer, T.D. Tissue tolerance: An essential but elusive trait for salt-tolerant crops. Funct. Plant. Biol. 2016, 43, 1103. [Google Scholar] [CrossRef] [Green Version]
- Akram, N.A.; Ashraf, M. Pattern of accumulation of inorganic elements in sunflower (helianthus annuus l.) Plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak. J. Bot. 2011, 43, 521–530. [Google Scholar]
- Ebrahimi, R.; Bhatla, S.C. Effect of Sodium Chloride Levels on Growth, Water Status, Uptake, Transport, and Accumulation Pattern of Sodium and Chloride Ions in Young Sunflower Plants. Commun. Soil Sci. Plant. Anal. 2011, 42, 815–831. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant. Biol. 2003, 30, 239. [Google Scholar] [CrossRef]
- Katerji, N.; van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 2003, 62, 37–66. [Google Scholar] [CrossRef]
- Poormohammad Kiani, S.; Grieu, P.; Maury, P.; Hewezi, T.; Gentzbittel, L.; Sarrafi, A. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2007, 114, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Skoric, D. Sunflower breeding for resistance to abiotic stresses. Helia 2009, 32, 1–15. [Google Scholar] [CrossRef]
- Mandel, J.R.; Dechaine, J.M.; Marek, L.F.; Burke, J.M. Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor. Appl. Genet. 2011, 123, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.M.; Marañón, T. Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): Effects of NaCl salinity and plant age. New Phytol. 1996, 132, 565–573. [Google Scholar] [CrossRef]
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.1. 2018. Available online: https://cran.r-project.org/package=emmeans (accessed on 20 May 2020).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft 2015, 67. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Welch, M.E.; Rieseberg, L.H. Habitat divergence between a homoploid hybrid sunflower species, Helianthus paradoxus (Asteraceae), and its progenitors. Am. J. Bot. 2002, 89, 472–478. [Google Scholar] [CrossRef]
- Blumwald, E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 2000, 12, 431–434. [Google Scholar] [CrossRef]
- Bernstein, L. Osmotic Adjustment of Plants to Saline Media. Ii. Dynamic Phase. Am. J. Bot. 1963, 50, 360–370. [Google Scholar] [CrossRef]
- Turner, N.; Begg, J.; Tonnet, M. Osmotic Adjustment of Sorghum and Sunflower Crops in Response to Water Deficits and Its Influence on the Water Potential at Which Stomata Close. Aust. J. Plant. Physiol. 1978, 5, 597. [Google Scholar] [CrossRef]
- Wu, G.-Q.; Jiao, Q.; Shui, Q.-Z. Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). Plant. Soil Environ. 2016, 61, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Matesanz, S.; Milla, R. Differential plasticity to water and nutrients between crops and their wild progenitors. Environ. Exp. Bot. 2018, 145, 54–63. [Google Scholar] [CrossRef]
- Kholová, J.; Hash, C.T.; Kakkera, A.; Kočová, M.; Vadez, V. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J. Exp. Bot. 2010, 61, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tal, M.; Shannon, M.C. Salt Tolerance in the Wild Relatives of the Cultivated Tomato: Responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 Hybrids to High Salinity. Funct. Plant. Biol. 1983, 10, 109–117. [Google Scholar] [CrossRef]
- Marron, N.; Delay, D.; Petit, J.-M.; Dreyer, E.; Delmotte, F.M.; Brignolas, F. Physiological traits of two Populus × euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle. Tree Physiol. 2002, 22, 10. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.M. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust. J. Agric. Res. 1983, 34, 607–614. [Google Scholar] [CrossRef]
- Ludlow, M.M.; Muchow, R.C. A Critical Evaluation of Traits for Improving Crop Yields in Water-Limited Environments. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1990; Volume 43, pp. 107–153. [Google Scholar]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant. Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Khanna-Chopra, R. Osmotic Adjustment in Chickpea in Relation to Seed Yield and Yield Parameters. Crop. Sci. 2004, 44, 449–455. [Google Scholar] [CrossRef]
- Maleki, P.; Bahrami, H.A.; Saadat, S.; Sharifi, F.; Dehghany, F.; Salehi, M. Salinity threshold value of Quinoa (Chenopodium Quinoa Willd.) at various growth stages and the appropriate irrigation method by saline water. Commun. Soil Sci. Plant. Anal. 2018, 49, 1815–1825. [Google Scholar] [CrossRef]
- Jenks, M.A.; Hasegawa, P.M.; Jain, S.M. (Eds.) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-5577-5. [Google Scholar]
Trait | Cultivated Control Mean | Wild Control Mean | Cultivated Stress Mean | Wild Stress Mean | Treatment Effect | Domestication Effect | Interaction |
---|---|---|---|---|---|---|---|
ln Total Biomass (g) | 2.011 | 1.235 | 0.51 | 0.187 | <0.001 | <0.001 | 0.001 |
Young Leaf mass (g) | 0.956 | 0.568 | 0.39 | 0.343 | <0.001 | <0.001 | <0.001 |
Old Leaf mass (g) | 3.483 | 1.639 | 0.594 | 0.552 | <0.001 | <0.001 | <0.001 |
Stem mass (g) | 2.872 | 1.405 | 0.451 | 0.3 | <0.001 | <0.001 | <0.001 |
Root mass (g) | 0.997 | 0.438 | 0.348 | 0.238 | <0.001 | <0.001 | <0.001 |
Young Leaf Mass Fraction (YLMF) | 0.131 | 0.147 | 0.222 | 0.242 | <0.001 | 0.172 | 0.834 |
Old Leaf Mass Fraction (OLMF) | 0.412 | 0.391 | 0.34 | 0.386 | 0.003 | 0.49 | 0.009 |
Stem Mass Fraction (SMF) | 0.335 | 0.35 | 0.246 | 0.209 | <0.001 | 0.544 | <0.001 |
Root Mass Fraction (RMF) | 0.122 | 0.113 | 0.192 | 0.163 | <0.001 | 0.01 | 0.042 |
Specific Leaf Area (SLA) (mm2/g) | 323.988 | 311.44 | 247.851 | 206.81 | <0.001 | 0.006 | 0.027 |
Leaf Succulence (g/mm2) | 0.025 | 0.028 | 0.026 | 0.031 | 0.061 | <0.001 | 0.112 |
Osmotic Potential (MPa) | −0.847 | −0.819 | −1.143 | −1.008 | <0.001 | 0.034 | 0.067 |
Proportional-Reduction Tolerance | Expectation-Deviation Tolerance | |||||||
---|---|---|---|---|---|---|---|---|
Trait Type | Response to | Trait | Trait Effect | Domestication Effect | Interaction | Trait Effect | Domestication Effect | Interaction |
Morph PCA | Stress | PC1 Axis | 0.026 | 0.660 | 0.154 | 0.091 | 0.140 | 0.001 |
Morph PCA | Stress | PC2 Axis | 0.390 | 0.029 | 0.865 | 0.799 | 0.968 | 0.850 |
Morph PCA | Delta | PC1 Axis | 0.039 | 0.405 | 0.145 | 0.681 | 0.756 | 0.451 |
Morph PCA | Delta | PC2 Axis | 0.011 | 0.015 | 0.907 | 0.145 | 0.913 | 0.091 |
Osmotic Potential | Stress | Stress Value | 0.429 | 0.313 | 0.538 | 0.288 | 0.844 | 0.059 |
Osmotic Potential | Delta | Delta Value | 0.283 | 0.328 | 0.142 | 0.061 | 0.851 | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, V.H.; Temme, A.A.; Donovan, L.A. Wild and Cultivated Sunflower (Helianthus annuus L.) Do Not Differ in Salinity Tolerance When Taking Vigor into Account. Agronomy 2020, 10, 1013. https://doi.org/10.3390/agronomy10071013
Tran VH, Temme AA, Donovan LA. Wild and Cultivated Sunflower (Helianthus annuus L.) Do Not Differ in Salinity Tolerance When Taking Vigor into Account. Agronomy. 2020; 10(7):1013. https://doi.org/10.3390/agronomy10071013
Chicago/Turabian StyleTran, Vivian H., Andries A. Temme, and Lisa A. Donovan. 2020. "Wild and Cultivated Sunflower (Helianthus annuus L.) Do Not Differ in Salinity Tolerance When Taking Vigor into Account" Agronomy 10, no. 7: 1013. https://doi.org/10.3390/agronomy10071013
APA StyleTran, V. H., Temme, A. A., & Donovan, L. A. (2020). Wild and Cultivated Sunflower (Helianthus annuus L.) Do Not Differ in Salinity Tolerance When Taking Vigor into Account. Agronomy, 10(7), 1013. https://doi.org/10.3390/agronomy10071013