Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Weather Data
2.3. Experimental Setup
2.4. Sampling and Analyses
3. Results
3.1. Sweet Corn
3.2. Soil N
3.2.1. N Treatment
3.2.2. Cover Crop Treatment
3.3. Pennycress Grain Yield, Biomass Production and Nitrogen Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dhaliwal, D.S.; Williams, M.M. Optimum Plant Density for Crowding Stress Tolerant Processing Sweet Corn. PLoS ONE 2019, 14, e0223107. [Google Scholar] [CrossRef] [PubMed]
- Bavec, M.; Fekonja, M. Organic and Mineral Nitrogen Fertilizers in Sweet Maize (Zea mays L. saccharata Sturt.) Production under Temperate Climate. Zemdirbyste-Agriculture 2013, 100, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Li, W.; Ashraf, U.; Lu, W.; Li, Y.; Li, C.; Li, G.; Li, G.; Hu, J. Nitrogen Fertilizer Management and Maize Straw Return Modulate Yield and Nitrogen Balance in Sweet Corn. Agronomy 2020, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- USDA/NASS. 2018 State Agriculture Overview for Minnesota. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MINNESOTA (accessed on 11 January 2020).
- USDA-NASS. United States Department of Agriculture, CropScape—National Agricultural Statistics Service Crop Data Layer Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 2 January 2020).
- Rosen, C.J.; Crants, J.; McNearney, M.; Fritz, V.; Rohwer, C. Establishing Nitrogen Credits Following a Sweet Corn Crop; Minnesota Department of Agricultural Grant Report: Saint Paul, MN, USA, 2017. [Google Scholar]
- Fritz, V.A.; Randall, G.W.; Rosen, C.J. Characterization and Utilization of Nitrogen Contained in Sweet Corn Silage Waste. Agron. J. 2001, 93, 627–633. [Google Scholar] [CrossRef]
- Andraski, T.W.; Bundy, L.G. Cover Crop Effects on Corn Yield Response to Nitrogen on an Irrigated Sandy Soil. Agron. J. 2005, 97, 1239–1244. [Google Scholar] [CrossRef]
- Bundy, L.G.; Andraski, T.W. Recovery of Fertilizer Nitrogen in Crop Residues and Cover Crops on an Irrigated Sandy Soil. Soil Sci. Soc. Am. J. 2005, 69, 640–648. [Google Scholar] [CrossRef]
- Kaiser, D.E.; Fernandez, F.; Coulter, J. Fertilizing Corn in Minnesota; University of Minnesota Extension: Saint Paul, MN, USA, 2018. [Google Scholar]
- Prasad, R.; Hochmuth, G.J. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida. PLoS ONE 2016, 11, e0167558. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. The Minnesota Nutrient Reduction Strategy; Minnesota Pollution Control Agency: Saint Paul, MN, USA, 2014. [Google Scholar]
- Salmerón, M.; Cavero, J.; Quílez, D.; Isla, R. Winter Cover Crops Affect Monoculture Maize Yield and Nitrogen Leaching under Irrigated Mediterranean Conditions. Agron. J. 2010, 102, 1700–1709. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, E.I.; Johnstone, P.; Chakwizira, E.; de Ruiter, J.; Malcolm, B.; Shaw, N.; Zyskowski, R.; Khaembah, E.; Sharp, J.; Meenken, E.; et al. Sources of Variability in the Effectiveness of Winter Cover Crops for Mitigating N Leaching. Agric. Ecosyst. Environ. 2016, 220, 226–235. [Google Scholar] [CrossRef]
- Heggenstaller, A.H.; Anex, R.P.; Liebman, M.; Sundberg, D.N.; Gibson, L.R. Productivity and Nutrient Dynamics in Bioenergy Double-cropping Systems. Agron. J. 2008, 100, 1740–1748. [Google Scholar] [CrossRef]
- Noland, R.L.; Wells, M.S.; Sheaffer, C.C.; Baker, J.M.; Martinson, K.L.; Coulter, J.A. Establishment and Function of Cover Crops Interseeded into Corn. Crop Sci. 2018, 58, 863. [Google Scholar] [CrossRef] [Green Version]
- Staver, K.W.; Brinsfield, R.B. Using Cereal Grain Winter Cover Crops to Reduce Groundwater Nitrate Contamination in the Mid-Atlantic Coastal Plain. J. Soil Water Cons. 1998, 53, 230–240. [Google Scholar]
- Thomsen, I.K.; Hansen, E.M. Cover Crop Growth and Impact on N Leaching as Affected by Pre- and Postharvest Sowing and Time of Incorporation. Soil Use Manag. 2014, 30, 48–57. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; Moir, J.L. The Effect of Four Different Pasture Species Compositions on Nitrate Leaching Losses under High N Loading. Soil Use Manag. 2014, 30, 58–68. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Moir, J.L.; Cameron, K.C.; Di, H.J.; Edwards, G.R. Influence of Plant Growth and Root Architecture of Italian Ryegrass (Lolium multiflorum) and Tall Fescue (Festuca arundinacea) on N Recovery during Winter. Grass Forage Sci. 2015, 70, 600–610. [Google Scholar] [CrossRef]
- McLenaghen, R.D.; Cameron, K.C.; Lampkin, N.H.; Daly, M.L.; Deo, B. Nitrate Leaching from Ploughed Pasture and the Effectiveness of Winter Catch Crops in Reducing Leaching Losses. N. Z. J. Agric. Res. 1996, 39, 413–420. [Google Scholar] [CrossRef]
- Valkama, E.; Lemola, R.; Känkänen, H.; Turtola, E. Meta-Analysis of the Effects of Undersown Catch Crops on Nitrogen Leaching Loss and Grain Yields in the Nordic Countries. Agric. Ecosyst. Environ. 2015, 203, 93–101. [Google Scholar] [CrossRef]
- Conservation Technology Information Center. Annual Report: 2016–2017 Cover Crop Survey; Conservation Technology Information Center, the North Central Region Sustainable Agriculture Research and Education Program, and the American Seed Trade Association: West Lafayette, IN, USA, 2017. [Google Scholar]
- Roesch-Mcnally, G.E.; Basche, A.D.; Arbuckle, J.G.; Tyndall, J.C.; Miguez, F.E.; Bowman, T.; Clay, R. The Trouble with Cover Crops: Farmers’ Experiences with Overcoming Barriers to Adoption. Renew. Agric. Food Syst. 2018, 33, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, J.G.; Roesch-McNally, G. Cover Crop Adoption in Iowa: The Role of Perceived Practice Characteristics. J. Soil Water Conserv. 2015, 70, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.W.; Nusser, S.M.; Alf, C.J. Are Cover Crops Being Used in the US Corn Belt. J. Soil Water Cons. 2007, 62, 353–358. [Google Scholar]
- Maryland Department of Agriculture. 2016–2017 Cover Crop Program Acres Planted Summary by County; Maryland Department of Agriculture: Annapolis, MD, USA, 2017.
- United States Department of Agriculture–National Agricultural Statistics Service. 2017 Census of Agriculture. United States Summary and State Data; Geographic Area Series Part 51. Publication AC-17-A-51; U.S. Department of Agriculture: Washington, DC, USA, 2019; Volume 1.
- Reimer, A.P.; Weinkauf, D.K.; Prokopy, L.S. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds. J. Rural Stud. 2012, 28, 118–128. [Google Scholar] [CrossRef]
- Gesch, R.W.; Archer, D.W.; Berti, M.T. Dual Cropping Winter Camelina with Soybean in the Northern Corn Belt. Agron. J. 2014, 106, 1735–1745. [Google Scholar] [CrossRef]
- Groeneveld, J.H.; Klein, A.-M. Pollination of Two Oil-Producing Plant Species: Camelina (Camelina Sativa L. Crantz) and Pennycress (Thlaspi arvense L.) Double-cropping in Germany. GCB Bioenergy 2014, 6, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Eberle, C.A.; Thom, M.D.; Nemec, K.T.; Forcella, F.; Lundgren, J.G.; Gesch, R.W.; Riedell, W.E.; Papiernik, S.K.; Wagner, A.; Peterson, D.H.; et al. Using Pennycress, Camelina, and Canola Cash Cover Crops to Provision Pollinators. Ind. Crops Prod. 2015, 75, 20–25. [Google Scholar] [CrossRef]
- Johnson, G.A.; Kantar, M.B.; Betts, K.J.; Wyse, D.L. Field Pennycress Production and Weed Control in a Double Crop System with Soybean in Minnesota. Agron. J. 2015, 107, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Gesch, R.W. Ecosystem Services Provided by Oilseed Cover Crops; University of Minnesota: Saint Paul, MN, USA, 2017. [Google Scholar]
- Weyers, S.; Thom, M.; Forcella, F.; Eberle, C.; Matthees, H.; Gesch, R.; Ott, M.; Feyereisen, G.; Strock, J.; Wyse, D. Reduced Potential for Nitrogen Loss in Cover Crop-Soybean Relay Systems in a Cold Climate. J. Environ. Qual. 2019, 48, 660–669. [Google Scholar] [CrossRef]
- Thom, M.; Forcella, F.; Eberle, C.; Matthees, H.; Weyers, S.; Gesch, R.; Ott, M.; Feyereisen, G.; Strock, J.; Wyse, D. Reduced-Nutrient Leachates in Cash Cover Crop-Soybean Systems. bioRxiv 2018, 254169. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.A.; Wells, M.S.; Anderson, K.; Gesch, R.W.; Forcella, F.; Wyse, D.L. Yield Tradeoffs and Nitrogen between Pennycress, Camelina, and Soybean in Relay- and Double-Crop Systems. Agron. J. 2017, 109, 2128. [Google Scholar] [CrossRef]
- Sedbrook, J.C.; Phippen, W.B.; Marks, M.D. New Approaches to Facilitate Rapid Domestication of a Wild Plant to an Oilseed Crop: Example Pennycress (Thlaspi Arvense L.). Plant Sci. 2014, 227, 122–132. [Google Scholar] [CrossRef]
- Evangelista, R.L.; Cermak, S.C.; Hojilla-Evangelista, M.P.; Moser, B.R.; Isbell, T.A. Field Pennycress: A New Oilseed Crop for the Production of Biofuels, Lubricants, and High-Quality Proteins. In Surfactants in Tribology; CRC Press: Boca Raton, FL, USA, 2017; Volume 5, pp. 369–400. [Google Scholar] [CrossRef]
- Fan, J.; Shonnard, D.R.; Kalnes, T.N.; Johnsen, P.B.; Rao, S. A Life Cycle Assessment of Pennycress (Thlaspi arvense L.) -Derived Jet Fuel and Diesel. Biomass Bioenergy 2013, 55, 87–100. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Schmer, M.R.; Gesch, R.W.; Forcella, F.; Eberle, C.A.; Thom, M.D.; Archer, D.W. Winter Oilseed Production for Biofuel in the US Corn Belt: Opportunities and Limitations. GCB Bioenergy 2017, 9, 508–524. [Google Scholar] [CrossRef]
- Cermak, S.C.; Biresaw, G.; Isbell, T.A.; Evangelista, R.L.; Vaughn, S.F.; Murray, R. New Crop Oils-Properties as Potential Lubricants. Ind. Crops Prod. 2013, 44, 232–239. [Google Scholar] [CrossRef]
- Chopra, R.; Johnson, E.B.; Emenecker, R.; Cahoon, E.B.; Lyons, J.; Kliebenstein, D.J.; Daniels, E.; Dorn, K.M.; Esfahanian, M.; Folstad, N.; et al. Progress toward the Identification and Stacking of Crucial Domestication Traits in Pennycress. bioRxiv 2019, 609990. [Google Scholar] [CrossRef]
- Phippen, W.B.; Phippen, M.E. Soybean Seed Yield and Quality as a Response to Field Pennycress Residue. Crop Sci. 2012, 52, 2767–2773. [Google Scholar] [CrossRef]
- Cubins, J.A. Harvest Time Optimization of Pennycress for Use within the Corn-Soybean Rotation. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2019. [Google Scholar]
- Rukavina, H.; Sahm, D.C.; Manthey, L.K.; Phippen, W.B. The Effect of Nitrogen Rate on Field Pennycress Yield and Oil Content; Western Illinois University: Macomb, IL, USA, 2011. [Google Scholar]
- Phippen, W.; Gallant, J.; Phippen, M. Evaluation of Planting Method and Seeding Rates with Field Pennycress (Thlaspi Arvense L.); Western Illinois University: Macomb, IL, USA, 2010. [Google Scholar]
- Carr, P.M. Potential of Fanweed and Other Weeds as Novel Industrial Oilseed Crops. In New Crops; Janick, J., Simon, J.E., Eds.; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Hazebroek, J.P.; Metzger, J.D. Environmental Control of Seed Germination in Thlaspi arvense (Cruciferae). Am. J. Bot. 1990, 77, 945–953. [Google Scholar] [CrossRef]
- 1981–2010 Normals|Data Tools|Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/normals (accessed on 11 January 2020).
- Combs, S.M.; Nathan, M.V. Soil Organic Matter. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998; pp. 53–58. [Google Scholar]
- Brown, J.R. (Ed.) Recommended Chemical Soil Test Procedures for the North Central Region; Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998. [Google Scholar]
- United States Department of Agriculture–Soil Conservation Service. Method No. 5A3a. Cation Exchange Capacity by Summation. In Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42; United Stated Department of Agriculture–Soil Conservation Service: Washington, DC, USA, 1992. [Google Scholar]
- Watson, M.E.; Brown, J.R. PH and Lime Requirement. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Fassel, V.A.; Kniseley, R.N. Inductively Coupled Plasma. Optical Emission Spectroscopy. Anal. Chem. 1974, 46, 1110A–1120A. [Google Scholar] [CrossRef]
- O’dell, J.W. U.S. Environmental Protection Agency Method 350.1: Determination of Ammonia Nitrogen by Semi-Automated Colorimetry; United States Environmental Protection Agency: Washington, DC, USA, 1993; Volume 45268. [Google Scholar]
- Gelderman, R.H.; Beegle, D. Nitrate-Nitrogen. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998. [Google Scholar]
- Willis, R.B.; Gentry, C.E. Automated Method for Determining Nitrate and Nitrite in Water and Soil Extracts. Commun. Soil Sci. Plant Anal. 1987, 18, 625–636. [Google Scholar] [CrossRef]
- Askew, E.F. Determination of Inorganic Ammonia by Continuous Flow Gas Diffusion and Conductivity Cell Analysis; Timberline Ammonia-001; Timberline Instruments: Boulder, CO, USA, 2011. [Google Scholar]
- USDA/NASS QuickStats Query Tool. Available online: https://quickstats.nass.usda.gov/ (accessed on 11 January 2020).
- Ott, M. Four Cover Crops Dual-Cropped with Soybean: Agronomics, Income, and Nutrient Uptake Across Minnesota. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2018. [Google Scholar]
- Premrov, A.; Coxon, C.E.; Hackett, R.; Kirwan, L.; Richards, K.G. Effects of Over-Winter Green Cover on Soil Solution Nitrate Concentrations beneath Tillage Land. Sci. Total Environ. 2014, 470–471, 967–974. [Google Scholar] [CrossRef]
- United States Department of Agriculture–Natural Resources Conservation Service. Seedbed Preparation and Seed to Soil Contact; United States Department of Agriculture: Spokane, WA, USA, 2005.
- Johnson, S.R. Estimated Costs of Pasture and Hay Production, Iowa State Extension: Ames, IA, USA. Available online: https://www.extension.iastate.edu/agdm/crops/html/a1-15.html (accessed on 2 January 2020).
- Moore, S.A.; University of Minnesota, Saint Paul, MN, USA. Unpublished work. 2020.
- Everett, L.A.; Wilson, M.L.; Pepin, R.J.; Coulter, J.A. Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield. Agronomy 2019, 9, 852. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.L.; Allan, D.L.; Baker, J.M.; Pagliari, P.H. Comparing Methods for Overseeding Winter Rye into Standing Soybean. Agroecosys. Geosci. Environ. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Hively, W.D.; Cox, W.J. Interseeding Cover Crops into Soybean and Subsequent Corn Yields. Agron. J. 2001, 93, 308–313. [Google Scholar] [CrossRef]
- Dean, J.E.; Weil, R.R. Brassica Covers for Nitrogen Retention in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 2009, 38, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Department of Agriculture-National Agriculture Statistics Service. Usual Planting and Harvesting Dates for U.S. Field Crops; United States Department of Agriculture: Washington, DC, USA, 2010.
- Blackshaw, R.E.; Brandt, R.N.; Janzen, H.H.; Entz, T.; Grant, C.A.; Derksen, D.A. Differential Response of Weed Species to Added Nitrogen. Weed Sci. 2003, 51, 532–539. [Google Scholar] [CrossRef]
- Carlson, R.J. Continuous Living Cover in a Corn-Soybean Rotation: Management Approaches and Environmental Benefits. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2018. [Google Scholar]
- Dorn, K.M.; Fankhauser, J.D.; Wyse, D.L.; Marks, M.D. A Draft Genome of Field Pennycress (Thlaspi arvense) Provides Tools for the Domestication of a New Winter Biofuel Crop. DNA Res. 2015, 22, 121–131. [Google Scholar] [CrossRef]
2017–2018 † | 2018–2019 † | |||||||
---|---|---|---|---|---|---|---|---|
Month | Mean Air Temperature (°C) | Departure from Average ‡ (°C) | Accumulated Precipitation (mm) | Departure from Average ‡ (mm) | Mean air Temperature (°C) | Departure from Average ‡ (°C) | Accumulated Precipitation (mm) | Departure from Average ‡ (mm) |
Rosemount | ||||||||
Jun. | 20.5 | 0.9 | 91.4 | −28.5 | 21.5 | 1.9 | 154.4 | 34.5 |
Jul. | 22.3 | 0.4 | 138.7 | 24.4 | 22.0 | 0.1 | 111.0 | −3.3 |
Aug. | 18.9 | −1.8 | 128.8 | 8.7 | 21.1 | 0.4 | 102.1 | −18.0 |
Sep. | 17.9 | 1.9 | 42.4 | −49.8 | 17.4 | 1.4 | 157.2 | 65.0 |
Oct. | 9.6 | 0.7 | 98.6 | 26.0 | 6.2 | −2.7 | 90.9 | 18.3 |
Nov. | −0.6 | −0.7 | 1.8 | −51.5 | −3.3 | −3.4 | 37.6 | −15.7 |
Dec. | −8.2 | 0.0 | 8.4 | −22.6 | −5.0 | 3.2 | 47.2 | 16.3 |
Jan. | −11.1 | −0.4 | 24.9 | −1.5 | −11.0 | −0.4 | 35.1 | 8.6 |
Feb. | −11.9 | −4.2 | 28.2 | 5.1 | −13.2 | −5.5 | 72.8 | 49.6 |
Mar. | −1.4 | −0.9 | 23.1 | − 35.3 | −4.3 | −3.8 | 59.2 | 0.8 |
Apr. | 1.0 | −6.9 | 50.3 | −23.9 | 6.5 | −1.4 | 129.5 | 55.4 |
May. | 18.6 | 4.3 | 108.7 | 6 .1 | 11.6 | −2.6 | 173.0 | 70.3 |
Jun. | 21.5 | 1.9 | 154.4 | 34.5 | 20.0 | 0.4 | 119.8 | −0.1 |
Waseca | ||||||||
Jun. | 21.1 | 0.9 | 105.6 | −14.0 | 21.5 | 1.2 | 146.9 | 27.3 |
Jul. | 23.1 | 0.9 | 166.7 | 54.0 | 21.7 | −0.5 | 111.1 | −1.6 |
Aug. | 19.1 | −1.9 | 99.3 | −21.8 | 20.7 | −0.3 | 121.7 | 0.6 |
Sep. | 17.7 | 1.4 | 51.5 | −42.1 | 17.8 | 1.5 | 267.7 | 174.1 |
Oct. | 9.8 | 0.8 | 105.1 | 37.0 | 6.4 | −2.6 | 80.4 | 12.3 |
Nov. | −0.4 | −0.8 | 4.4 | −50.7 | −4.2 | −4.6 | 34.2 | −20.9 |
Dec. | −8.4 | −0.5 | 22.9 | −14.8 | −5.1 | 2.8 | 53.3 | 15.6 |
Jan. | −11.7 | −1.3 | 46.9 | 15.0 | −11.2 | −0.7 | 32.5 | 0.6 |
Feb. | −11.7 | −4.2 | 29.5 | 4.0 | −14.1 | −6.6 | 77.0 | 51.5 |
Mar. | −1.6 | −1.2 | 29.6 | −33.9 | −4.2 | −3.7 | 51.0 | −12.5 |
Apr. | 0.6 | −7.2 | 89.4 | 7.5 | 6.9 | −1.0 | 108.0 | 26.1 |
May. | 18.5 | 3.6 | 134.2 | 34.0 | 12.0 | −2.8 | 161.1 | 60.9 |
Jun. | 21.5 | 1.2 | 146.9 | 27.3 | 20.2 | 0.0 | 84.7 | −34.9 |
Environment | W/V | CEC | pH | OM | Ca | Mg | K | P | Nmin |
---|---|---|---|---|---|---|---|---|---|
g cm−3 | cmol kg−1 | mg kg−1 | kg ha−1 | ||||||
Rosemount | |||||||||
2017 | 1.5 | 26.5 | 5.9 | 4.7 | 2889.8 | 586.2 | 194.0 | 23.8 | 217 |
2018 | 1.5 | 16.7 | 6.1 | 3.6 | 1744.1 | 427.3 | 96.1 | 8.5 | 65 |
Waseca | |||||||||
2017 | 1.5 | 24.0 | 6.2 | 3.9 | 2504.2 | 548.7 | 212.5 | 16.0 | 146 |
2018 | 1.4 | 36.9 | 6.3 | 5.3 | 4068.3 | 643.9 | 164.5 | 8.5 | 89 |
Environment | Fixed Effects | Residual Soil Nmin | Pennycress † | |||
---|---|---|---|---|---|---|
Seeding | Harvest | Yield | Biomass | N Uptake | ||
Rosemount 2017 | N | <0.001 | <0.001 | 0.625 | 0.634 | 0.678 |
Cover Crop | - | <0.001 | 0.834 | 0.574 | 0.396 | |
N × Cover Crop | - | 0.022 | 0.978 | 0.837 | 0.844 | |
Rosemount 2018 | N | <0.001 | 0.718 | 0.277 | 0.627 | 0.665 |
Cover crop | - | <0.001 | 0.073 | 0.490 | 0.299 | |
N × Cover crop | - | 0.360 | 0.766 | 0.987 | 0.864 | |
Waseca 2017 | N | <0.001 | 0.116 | <0.001 | 0.057 | 0.047 |
Cover crop | - | <0.001 | 0.572 | 0.105 | 0.097 | |
N × Cover crop | - | 0.537 | 0.225 | 0.808 | 0.590 | |
Waseca 2018 | N | <0.001 | 0.197 | 0.265 | 0.909 | 0.780 |
Cover crop | - | 0.295 | 0.791 | 0.474 | 0.961 | |
N × Cover crop | - | 0.211 | 0.430 | 0.706 | 0.611 |
N Treatment | Rosemount † | Waseca † | ||||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | |||||
(kg ha−1) | ||||||||
0 | 28.0 | C | 33.8 | C | 33.8 | C | 52.9 | C |
65 | 33.8 | C | 47.9 | C | 42.1 | BC | 54.6 | BC |
135 | 61.1 | B | 85.1 | B | 45.6 | B | 62.4 | B |
135s | 73.1 | AB | 77.3 | B | 42.4 | BC | 79.7 | A |
200 | 88.6 | A | 172.1 | A | 70.9 | A | 85.1 | A |
Cover Crop Treatment | Rosemount | Waseca | |||||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | ||||
(kg ha−1) | |||||||
No Pennycress | 45.6 A † | 55.1 | A | 78.4 | A | 41.0 | A |
DBC+INC | 31.2 A | 32.2 | B | 58.1 | B | 38.8 | A |
DRILL | 30.2 A | 32.1 | B | 56.9 | B | 41.4 | A |
N Treatment | Rosemount | Waseca | ||||||
---|---|---|---|---|---|---|---|---|
Seed Yield | N Uptake | Seed Yield | N Uptake | |||||
2017 | 2018 | 2017 | 2018 | 2017 † | 2018 | 2017 † | 2018 | |
kg ha−1 | ||||||||
0 | 666 | 287 | 22 | 15 | 329 BC | 546 | 18 B | 21 |
65 | 553 | 380 | 23 | 20 | 260 D | 487 | 17 B | 17 |
135 | 631 | 381 | 28 | 18 | 345 AB | 581 | 18 B | 21 |
135s | 594 | 442 | 28 | 20 | 266 CD | 681 | 18 B | 21 |
200 | 643 | 420 | 28 | 20 | 397 A | 559 | 22 A | 24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, S.A.; Wells, M.S.; Gesch, R.W.; Becker, R.L.; Rosen, C.J.; Wilson, M.L. Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy 2020, 10, 614. https://doi.org/10.3390/agronomy10050614
Moore SA, Wells MS, Gesch RW, Becker RL, Rosen CJ, Wilson ML. Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy. 2020; 10(5):614. https://doi.org/10.3390/agronomy10050614
Chicago/Turabian StyleMoore, Sarah A., M. Scott Wells, Russ W. Gesch, Roger L. Becker, Carl J. Rosen, and Melissa L. Wilson. 2020. "Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems" Agronomy 10, no. 5: 614. https://doi.org/10.3390/agronomy10050614
APA StyleMoore, S. A., Wells, M. S., Gesch, R. W., Becker, R. L., Rosen, C. J., & Wilson, M. L. (2020). Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy, 10(5), 614. https://doi.org/10.3390/agronomy10050614