Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. Germination and Cultivation Conditions
2.3. Sample Preparation
2.4. Tissue Mineral Concentration Assessment
2.5. Phosphorus Uptake and Use Efficiency Parameters
2.6. Statistical Analysis
3. Results
3.1. General Treatment Effect on P and Other Minerals Concentrations for Trial 1
3.2. Treatment Effect on P Accumulation and Efficiency Parameters for Trial 1 by Accessions
3.3. Treatment Effect on Root and Shoot Biomass and Morphometrics for Trial 1 by Accessions
3.4. Principal Components Analysis for Trial 1
3.5. Treatment Effect on P Accumulation and Efficiency Parameters for Trial 2 by Accessions
3.6. Treatment Effect on Root and Shoot Biomass and Morphometrics for Trial 2 by Accessions
3.7. Principal Components Analysis for Trial 2
4. Discussion
4.1. Peppers Change Their Mineral Homeostasis and re-Allocate Their P Reserves to Adjust to Low-P Conditions
4.2. P Efficiency Parameters Measure Different Aspects of the Plant Response
4.3. Modifications at Root Level
4.4. A Wide Range of Responses to Breed Efficient Genotypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaggard, K.W.; Qi, A.; Ober, S. Possible changes to arable crop yields by 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2835–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grafton, R.Q.; Daugbjerg, C.; Qureshi, M.E. Towards food security by 2050. Food Secur. 2015, 7, 179–183. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.B.J. Plant Nutrition and Soil Fertility Manual, 2nd ed.; Press, C., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2012; ISBN 9781439816103. [Google Scholar]
- Schnug, E.; Haneklaus, S.H. Assessing the plant phosphorus status. In Phosphorus in Agriculture: 100% Zero; Springer: Dordrecht, The Netherlands, 2016; pp. 95–125. [Google Scholar]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Mogollón, J.M.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Schnug, E.; Haneklaus, S.H. The enigma of fertilizer phosphorus utilization. In Phosphorus in Agriculture: 100% Zero; Springer: Dordrecht, The Netherlands, 2016; pp. 7–26. [Google Scholar]
- Lynch, J.P. Roots of the second green revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Fernández, J.M.; Selma, M.A.E. Estimación de la contaminación agrícola en el Mar Menor mediante un modelo de simulación dinámica. In Proceedings of the El Agua y Sus Usos Agrarios; Universidad de Zaragoza: Zaragoza, Spain, 1998; Volume 9, pp. 1–9. [Google Scholar]
- Kauranne, L.-M.; Kemppainen, M. Urgent need for action in the Baltic sea area. In Phosphorus in Agriculture: 100% Zero; Springer: Dordrecht, The Netherlands, 2016; pp. 1–6. [Google Scholar]
- Fernández, M.C.; Rubio, G. Root morphological traits related to phosphorus-uptake efficiency of soybean, sunflower, and maize. J. Plant Nutr. Soil Sci. 2015, 178, 807–815. [Google Scholar] [CrossRef]
- Fita, A.; Bowen, H.C.; Hayden, R.M.; Nuez, F.; Picó, B.; Hammond, J.P. Diversity in expression of Phosphorus (P) responsive genes in Cucumis melo L. PLoS ONE 2012, 7, e35387. [Google Scholar] [CrossRef]
- Li, J.; Xie, Y.; Dai, A.; Liu, L.; Li, Z. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J. Genet. Genom. 2009, 36, 173–183. [Google Scholar] [CrossRef]
- Hammond, J.P.; Broadley, M.R.; White, P.J.; King, G.J.; Bowen, H.C.; Hayden, R.M.; Meacham, M.C.; Mead, A.; Overs, T.; Spracklen, W.P.; et al. Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J. Exp. Bot. 2009, 60, 1953–1968. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P.; Brown, K.M. Topsoil foraging—An architectural adaptation of plants to low phosphorus availability. Plant Soil 2001, 237, 225–237. [Google Scholar] [CrossRef]
- Niu, Y.F.; Chai, R.S.; Jin, G.L.; Wang, H.; Tang, C.X.; Zhang, Y.S. Responses of root architecture development to low phosphorus availability: A review. Ann. Bot. 2013, 112, 391–408. [Google Scholar] [CrossRef]
- Fita, A.; Nuez, F.; Picó, B. Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica 2011, 181, 323–339. [Google Scholar] [CrossRef]
- Fan, M.; Zhu, J.; Richards, C.; Brown, K.M.; Lynch, J.P. Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 2003, 30, 493–506. [Google Scholar] [CrossRef]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.R.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- van de Wiel, C.C.M.; van der Linden, C.G.; Scholten, O.E. Improving phosphorus use efficiency in agriculture: Opportunities for breeding. Euphytica 2016, 207, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums; CABI Publishing: Wallingford, Oxon, UK, 2012; ISBN 178064020X. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistics Database; FAO: Rome, Italy, 2019. [Google Scholar]
- DeWitt, D.; Bosland, P.W. Peppers of the World: An Identification Guide; Ten Speed Press: Berkeley, CA, USA, 1996; ISBN 0898158400. [Google Scholar]
- Sahitya, U.L.; Krishna, M.S.R.; Suneetha, P. Integrated approaches to study the drought tolerance mechanism in hot pepper (Capsicum annuum L.). Physiol. Mol. Biol. Plants 2019, 25, 637–647. [Google Scholar] [CrossRef]
- Hwang, E.-W.; Kim, K.-A.; Park, S.-C.; Jeong, M.-J.; Byun, M.-O.; Kwon, H.-B. Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions. J. Biosci. 2005, 30, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Li, C.; Ma, F.; Ma, J.-H.; Khan, A.; Wang, X.; Zhao, L.-Y.; Gong, Z.-H.; Chen, R.-G. Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLoS ONE 2016, 11, e0161073. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Dias, L.; Vilanova, S.; Fita, A.; Prohens, J.; Rodríguez-Burruezo, A. Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Hortic. Res. 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Fita, A.; Alonso, J.; Martínez, I.; Avilés, J.; Mateu, M.; Rodríguez-Burruezo, A. Evaluating Capsicum spp. root architecture under field conditions. In Proceedings of the Breakthroughs in the Genetics and Breeding of Capsicum and Eggplant; Lanteri, S., Rotino, G.L., Eds.; Università degli Studi di Torino: Torino, Italy, 2013; pp. 373–376. [Google Scholar]
- Fita, A.; Picó, B.; Roig, C.; Nuez, F. Performance of Cucumis melo ssp. agrestis as a rootstock for melon. J. Hortic. Sci. Biotechnol. 2007, 82, 184–190. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Métodos Oficiales de Análisis; MAPA: Madrid, Spain, 1994. [Google Scholar]
- Hills, T.M.L.; Jackson, F. Agricultural Experimentation: Design and Analysis; Wiley: New York, NY, USA, 1978; ISBN 978-0-471-02352-4. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Basel, Switzerland, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Bouain, N.; Shahzad, Z.; Rouached, A.; Khan, G.A.; Berthomieu, P.; Abdelly, C.; Poirier, Y.; Rouached, H. Phosphate and zinc transport and signalling in plants: Toward a better understanding of their homeostasis interaction. J. Exp. Bot. 2014, 65, 5725–5741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, B.-K.; Chen, J.; Yan, Y.; Lucas, W.J. Insights into plant phosphate sensing and signaling. Curr. Opin. Biotechnol. 2018, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.J.; Pariasca-Tanaka, J.; Rose, M.T.; Fukuta, Y.; Wissuwa, M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop. Res. 2010, 119, 154–160. [Google Scholar] [CrossRef]
- Bryant, R.J.; Dorsch, J.A.; Peterson, K.L.; Rutger, J.N.; Raboy, V. Phosphorus and mineral concentrations in whole grain and milled low phytic acid (lpa) 1-1 rice. Cereal Chem. 2005, 82, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Russo, V.M. Peppers: Botany, Production and Uses; Russo, V.M., Ed.; CABI: Wallingford, UK, 2012; ISBN 9781845937676. [Google Scholar]
- Akhtar, M.S.; Oki, Y.; Adachi, T. Genetic variability in phosphorus acquisition and utilization efficiency from sparingly soluble P-sources by Brassica cultivars under P-stress environment. J. Agron. Crop Sci. 2008, 194, 380–392. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, X.; Shi, L.; Duan, H.; Xu, F. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J. Plant Nutr. 2010, 33, 889–901. [Google Scholar] [CrossRef]
- Bates, T.R.; Lynch, J.P. Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 2001, 236, 243–250. [Google Scholar] [CrossRef]
- Strock, C.F.; Morrow de la Riva, L.; Lynch, J.P. Reduction in root secondary growth as a strategy for phosphorus acquisition. Plant Physiol. 2018, 176, 691–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Bucio, J.; Cruz-Ramírez, A.; Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Miguel, M.A.; Postma, J.A.; Lynch, J.P. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. Plant Physiol. 2015, 167, 1430–1439. [Google Scholar] [CrossRef]
Abbreviation | Species | Accession (UPV Genebank Code) | Origin | Fruit Shape | Fruit Taste | Fruit Color | Trial |
---|---|---|---|---|---|---|---|
Traditional varieties | |||||||
fra_DLL | Capsicum annuum | Doux Long des Landes | France (INRA-GEVES, F. Jourdan) | Cayenne, long-sized | Sweet | Red | Trial 2 |
mex_096D | Capsicum annuum | Chile Ancho Poblano | Mexico, Aguascalientes | Triangular, Pochard’s C4 type | Hot | Red | Trial 2 |
mex_103B | Capsicum annuum | Chile Ancho Poblano | Mexico, Aguascalientes | Triangular, Pochard’s C4 type | Hot | Red | Trial 2 |
mex_pas | Capsicum annuum | Pasilla Bajío | Mexico, Reymer Seeds | Cayenne, long-sized | Hot | Brown | Trial 1 and Trial 2 |
mex_ng | Capsicum annuum | Numex Garnet | Mexico, Aguascalientes | Elongated, Pochard’s C2 type | Sweet | Red | Trial 2 |
mu_esp | Capsicum annuum | Jalapeno Espinalteco | Mexico/USA (P. W. Bosland) | Jalapeno | Hot | Red | Trial 1 and Trial 2 |
sp_060 | Capsicum annuum | Pimiento morrón de bola (BGV00060) | Spain, Zamora | Round, Pochard’s F type | Sweet | Red | Trial 2 |
sp_11814 | Capsicum annuum | Dulce Italiano (BGV11814) | Spain, León | Elongated, Pochard’s C2 type | Sweet | Red | Trial 2 |
sp_bola | Capsicum annuum | Pimiento de bola, ñora | Spain, Murcia (P.D.O. Pimentón Murcia) | Round, Pochard’s N type | Sweet | Red | Trial 1 and Trial 2 |
sp_lam | Capsicum annuum | Lamuyo | Spain, Valencia | Blocky, Pochard’s B1 or B2 type | Sweet | Red | Trial 2 |
sp_piq | Capsicum annuum | Pimiento Piquillo de Lodosa | Spain, Navarra (P.D.O. Piquillo Lodosa) | Triangular, Pochard’s C4 type | Sweet | Red | Trial 1 and Trial 2 |
usa_chi | Capsicum annuum | Chimayó | USA, New Mexico (P. W. Bosland) | Blocky small-sized, Pochard’s B4 type | Hot | Red | Trial 1 |
usa_conq | Capsicum annuum | Numex Conquistador | USA, New Mexico | Elongated, Pochard’s C2 type | Sweet | Red | Trial 2 |
usa_jap | Capsicum annuum | Chile Japonés | USA, New Mexico | Cayenne, very short-sized | Hot | Red | Trial 2 |
usa_numex | Capsicum annuum | Numex X | USA, New Mexico | Elongated, Pochard’s C2 type | Hot | Red | Trial 2 |
usa_sandia | Capsicum annuum | Numex Sandia (BGV13293) | USA, New Mexico | Elongated, Pochard’s C2 type | Hot | Red | Trial 2 |
Experimental lines | |||||||
mex_scm | Capsicum annuum | Serrano Criollo de Morellos (SCM334) | Mexico | Serrano | Hot | Red | Trial 1 and Trial 2 |
sp_cwr | Capsicum annuum | California Wonder | Spain, Valencia (COMAV) | Blocky, Pochard’s A type | Sweet | Red | Trial 1 |
Commercial hybrids (F1) | |||||||
sp_anc | Capsicum annuum | Ancares | Spain (Ramiro Arnedo) | Blocky, Pochard’s B1 or B2 type | Sweet | Red | Trial 2 |
sp_cat | Capsicum annuum | Catedral | Spain (Zeraim Ibérica) | Blocky, Pochard’s A type | Sweet | Red | Trial 1 |
sp_lobo | Capsicum annuum | El Lobo | Spain (Zeraim Ibérica) | Blocky, Pochard’s A type | Sweet | Red | Trial 2 |
sp_mel | Capsicum annuum | Melchor | Spain (Ramiro Arnedo) | Blocky, Pochard’s A type | Sweet | Red | Trial 1 |
Other Capsicums | |||||||
bol_037 | Capsicum chinense | Bol–37R (BGV007644) | Chuquisaca, Bolivia | Triangular, small-sized, thin flesh | Hot | Red | Trial 1 |
bol_144 | Capsicum baccatum | Bol–144 (BGV007751) | Bolivia, Santa Cruz | Cayenne, very short-sized | Hot | Red | Trial 1 |
eq_973 | Capsicum chinense | ECU-973 | Ecuador, Napo | Triangular, small-sized, thin flesh | Hot | Red | Trial 1 |
Parameter | Abbreviation | Formula 1 | Units |
---|---|---|---|
Tissue total P content | RootP, ShootP, FruitP | [P]Tissue × DWTissue | G |
Plant total P content | PTP 2 | [P]Root × DWRoot + [P]Shoot × DWShoot + [P]Fruit × DWFruit | mg P |
P uptake efficiency | PUpE 3 | ([P]Control × BWControl)–([P]NoP × BWNoP) | mg P |
P utilization efficiency | PUtE3 | (BWControl–BWNoP) / (([P]Control × BWControl)–([P]NoP × BWNoP)) | g DW g−1 P |
Physiological P use efficiency | PPUE | BWControl/[P]Control and BWNoP/[P]NoP | g2 DW g−1 P |
P efficiency ratio | PER | BWControl/ ([P]Control × BWControl) and BWNoP/ ([P]NoP × BWNoP) | g DW g−1 P |
P Accumulation and Efficiency Traits | Biomass Traits | Root Traits | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accession | [P]Root Ɨ | [P]Shoot | [P]Fruit | RootP | ShootP | FruitP | PTP | PPUE | PER | RW | LRW | RHW | SW | BW | R/S | LRL | LRAD | RHW% | PLFR | LRSL |
bol_037 | −91.62 * | −32.10 | −32.56 * | −93.37 * | −37.32 | −25.00 | −54.72 | 95.23 | 106.37 * | −12.91 | −8.50 | −18.68 | −22.16 | −21.67 | 25.41 | 33.30 | −8.59 | −6.42 | 5.21 | 38.14 |
bol_144 | −74.12 * | −34.29 | −27.41 * | −86.11 * | −55.45 | 98.52 | −51.66 | 90.59 | 78.15 | −26.94 | −36.58 | −1.37 | −8.13 | −4.08 | −16.22 | 15.14 | −21.81 * | 51.06 | 9.56 | 112.94 |
eq_973 | −87.67 * | −34.32 | −35.19 * | −87.60 * | −41.15 | 55.56 | −53.92 | 112.72 | 115.10 * | −21.00 | −30.62 | −3.38 | −16.21 | −14.17 | 6.67 | 49.55 | −16.80 | 39.34 | 6.02 | 78.20 |
mex_pas | −78.01 * | 1.51 | −19.10 * | −86.13 * | −52.54 * | −59.45 | −63.36 * | −27.82 | 36.65 * | −36.24 * | −42.38 * | −26.69 | −59.65 * | −54.20 * | 27.89 | −3.07 | −9.83 | 12.06 | 6.63 | 70.84 |
mex_scm | −84.98 * | −44.35 * | −37.94 * | −85.62 * | −62.45 * | −24.63 | −57.57 * | 50.86 | 96.13 * | 0.65 | 9.15 | −8.95 | −18.18 | −12.62 | 21.37 | 8.86 | 7.98 | −11.28 | 1.63 | 16.26 |
mu_esp | −77.38 * | −32.15 * | −33.93 * | −88.61 * | −77.91 * | −72.38 | −76.17 * | −41.31 * | 51.20 * | −46.63 * | −29.39 | −52.87 * | −56.71 * | −55.84 * | 9.88 | 26.88 | −8.57 | −12.76 | 7.36 | 115.25 |
sp_bola | −77.51 * | −4.11 | −17.47 | −75.94 * | −41.77 | −53.31 | −55.46 | −0.75 | 38.47 | −19.85 | −30.22 * | −5.64 | −43.10 | −40.06 | 27.73 | 2.12 | −10.84 | 2.89 | 8.55 | 57.72 |
sp_cat | −83.53 * | −24.27 | −45.63 * | −83.02 * | −56.11 | −78.90 * | −73.96 * | 27.80 | 108.33 * | −2.79 | −23.62 | 31.54 | −33.26 | −41.92 | 50.00 | 3.73 | −13.32 | 25.62 | 6.58 | 20.20 |
sp_cwr | −90.53 * | −45.03 * | −47.21 * | −92.86 * | −55.30 * | −46.11 | −61.87 * | 97.53 * | 132.69 * | −19.90 * | −14.68 | −26.20 | −16.17 | −11.06 | −6.58 | 65.62 * | −7.13 | −6.42 | 4.17 | 91.05 |
sp_mel | −83.67 * | −35.14 * | −49.43 * | −87.27 * | −66.67 | −74.04 | −77.17 * | 24.96 | 137.24 * | −30.17 | −35.41 | −21.27 | −58.18 * | −48.90 | 63.81 | −10.47 | −3.90 | 11.05 | 3.12 | 54.84 |
sp_piq | −75.52 * | −45.26 * | −44.11 * | −78.51 * | −59.93 * | −70.57 | −67.78 * | 24.31 | 98.40 * | −25.14 | −17.60 | −32.96 | −39.38 * | −38.84 * | 18.59 | −19.76 | 4.76 | −14.57 | 0.98 | 6.84 |
usa_chi | −76.56 * | −22.25 | −32.20 * | −88.89 * | −66.88 * | −61.56 * | −65.95 * | −18.94 | 52.95 * | −53.35 * | −53.03 * | −53.63 * | −61.36 * | −59.42 * | 22.73 * | 27.85 | 12.59 | −1.07 | −1.29 | 142.63 |
Global mean | −81.76 * | −29.31 * | −35.18 * | −86.16 * | −56.12 * | −34.32 * | −63.30 * | 36.26 * | 87.64 * | −24.52 * | −26.07 * | −18.34 * | −36.04 * | −33.56 * | 20.94 * | 16.65 * | −6.29 * | 7.46 | 4.88 | 67.08 |
P Accumulation and Efficiency Traits | Biomass Traits | Root Traits | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accession | [P] Shoot Ɨ | PTP | PPUE | PER | RW | LRW | RHW | SW | BW | R/S | RTL | TAD | RHW% | PFR | RSL |
fra_DLL | −31.92 * | −42.13 * | 25.76 | 48.75 * | −31.04 | −20.87 | −34.20 | −14.49 | −15.61 | −20.51 | 6.27 | 4.23 | −6.84 | −0.31 | 58.00 |
mex_096D | −44.10 * | −74.54 * | 8.80 | 87.88 * | −42.62 * | −29.17 * | −50.76 * | −49.18 * | −48.86 * | 27.27 | −0.69 | 2.96 | −19.79 * | −2.46 | 71.79 * |
mex_103B | −25.45 * | −68.35 * | −42.41 * | 33.91 * | −63.97 * | −57.22 * | −68.38 * | −56.97 * | −57.48 * | −4.26 | −10.44 | −7.53 * | −10.29 | 5.91 * | 131.10 * |
mex_ng | −38.75 * | −80.58 * | −53.53 | 66.18 * | −70.25 * | −68.60 * | −71.38 * | −69.72 * | −69.75 * | 7.95 | −0.06 | −13.30 * | −7.35 | 9.79 * | 229.58 * |
mex_pas | −11.63 | −54.71 * | −39.68 * | 14.69 | −45.43 * | −37.30 * | −52.56 * | −48.13 * | −47.97 * | 13.16 | 6.22 | −0.80 | −11.40 | 1.83 | 81.25 * |
mex_scm | −24.46 * | −84.16 * | −72.75 * | 30.99 * | −71.09 * | −53.17 * | −79.62 * | −79.40 * | −78.97 * | 60.71 | −15.45 | −0.72 | −21.79 | 2.51 | 96.42 |
mu_esp | −28.78 * | −76.55 * | −45.93 | 41.15 * | −58.48 * | −36.78 * | −66.55 * | −64.64 * | −64.02 * | 33.93 | 83.39 | −8.37 * | −16.18 | 6.53 * | 293.57 * |
sp_060 | −23.21 * | −57.00 * | −19.84 | 30.93 * | −58.36 * | −32.94 * | −64.94 * | −41.59 * | −41.30 * | −24.24 * | 17.90 | −1.52 | −18.90 | 5.90 | 181.31 * |
sp_11814 | −27.72 * | −66.80 * | −40.61 | 34.34 * | −54.26 * | −9.84 * | −65.36 * | −55.36 * | −54.65 * | −6.46 | 110.07 | −0.85 | −21.27 * | 3.37 | 282.31 * |
sp_anc | −35.55 * | −66.88 * | −20.37 | 53.60 * | −47.93 * | −37.11 * | −53.30 * | −48.66 * | −48.08 * | 2.94 | −9.82 | −5.51 | −7.61 | 6.16 | 44.62 |
sp_bola | −29.23 * | −78.82 * | −59.09 * | 41.52 * | −63.73 * | −6.21 * | −73.15 * | −70.90 * | −70.35 * | 23.08 | 52.67 | −3.10 | −26.14 * | 4.62 | 261.22 * |
sp_lam | −30.84 * | −36.71 | 29.12 | 42.54 * | −35.96 | −24.57 | −42.23 | −7.24 | −10.66 | −30.56 * | −7.73 | 2.45 | −8.40 | 0.22 | 38.68 |
sp_lobo | −24.83 | −35.31 | 16.75 | 31.29 | −13.58 | −9.56 | −15.06 | −14.14 | −10.95 | 6.90 | 20.75 | −7.69 | −0.93 | 8.97 * | 27.40 |
sp_piq | −42.48 * | −86.93 * | −50.75 * | 91.29 * | −72.33 * | −51.80 * | −79.12 * | −75.78 * | −75.48 * | 8.33 | 4.58 | 3.29 | −21.96 * | 2.35 | 220.45 * |
usa_conq | −38.95 * | −79.74 * | −47.09 | 61.46 * | −59.27 * | −41.08 * | −65.12 * | −67.50 * | −66.97 * | 13.04 | 3.73 | −8.02 | −14.25 | 8.23 | 122.83 * |
usa_jap | −39.15 * | −49.02 * | 45.04 | 68.30 * | −48.83 | −23.47 | −60.76 | −13.55 | −15.53 | −45.95 * | 9.01 | −0.44 | −21.29 | 0.00 | 72.51 * |
usa_numex | −33.47 * | −64.88 * | −17.21 | 50.09 * | −49.78 * | −38.25 * | −53.04 * | −45.86 * | −46.10 * | −9.52 | −39.33 * | 8.76 | −7.89 | −3.70 | 21.77 |
usa_sandia | −36.52 * | −87.88 * | −65.94 * | 57.77 * | −66.39 * | −59.05 * | −68.20 * | −80.15 * | −79.31 * | 66.67 | 10.55 | 1.80 | −10.35 | 0.10 | 262.06 |
Global mean | −31.50 * | −66.17 * | −24.98 * | 49.26 * | −52.96 * | −35.39 * | −59.10 * | −50.18 * | −50.11 * | 6.80 | 13.42 | −1.91 | −14.03 * | 3.33 * | 138.71 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-Dias, L.; Gil-Villar, D.; Castell-Zeising, V.; Quiñones, A.; Calatayud, Á.; Rodríguez-Burruezo, A.; Fita, A. Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy 2020, 10, 637. https://doi.org/10.3390/agronomy10050637
Pereira-Dias L, Gil-Villar D, Castell-Zeising V, Quiñones A, Calatayud Á, Rodríguez-Burruezo A, Fita A. Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy. 2020; 10(5):637. https://doi.org/10.3390/agronomy10050637
Chicago/Turabian StylePereira-Dias, Leandro, Daniel Gil-Villar, Vincente Castell-Zeising, Ana Quiñones, Ángeles Calatayud, Adrián Rodríguez-Burruezo, and Ana Fita. 2020. "Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions" Agronomy 10, no. 5: 637. https://doi.org/10.3390/agronomy10050637
APA StylePereira-Dias, L., Gil-Villar, D., Castell-Zeising, V., Quiñones, A., Calatayud, Á., Rodríguez-Burruezo, A., & Fita, A. (2020). Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy, 10(5), 637. https://doi.org/10.3390/agronomy10050637