The Impact of Herbicide Application and Defoliation on Barley Grass (Hordeum murinum subsp. glaucum) Management in Mixed Pasture Legumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.1.1. Defoliation/Herbicide Experiment
2.1.2. Herbicide Experiment
2.1.3. Defoliation/Density Experiment
2.2. Measurements
2.2.1. Defoliation/Herbicide Experiment
2.2.2. Herbicide Experiment
2.2.3. Defoliation/Density Experiment
2.3. Statistical Analyses
3. Results
3.1. Defoliation/Herbicide Experiment
3.1.1. Herbicide-Only Effects
3.1.2. Mowing-Only Effects
3.1.3. Herbicide × Mowing Interaction
3.2. Herbicide Experiment
3.3. Defoliation/Density Experiment
4. Discussion
4.1. Defoliation/Herbicide Experiment
4.2. Herbicide Experiment
4.3. Defoliation/Density Experiment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lodge, G. Management practices and other factors contributing to the decline in persistence of grazed lucerne in temperate Australia: A review. Aust. J. Exp. Agric. 1991, 31, 713–724. [Google Scholar] [CrossRef]
- Puckridge, D.W.; French, R.J. The annual legume pasture in cereal—Ley farming systems of southern Australia: A review. Agric. Ecosyst. Environ. 1983, 9, 229–267. [Google Scholar] [CrossRef]
- Reeves, T.; Ewing, M. Is Ley Farming in Mediterranean Zones Just A Passing Phase. In Proceedings of the XVII International Grassland Congress, Rockhampton, Australia, 26 September–1 October 2004; Fisher, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A., Lloyd, D., Eds.; The Regional Institute Ltd.: Gosford, Australia, 2004; pp. 2169–2177. [Google Scholar]
- Kenny, P.; Reed, K. Effects of pasture type on the growth and wool production of weaner sheep during summer and autumn. Aust. J. Exp. Agric. 1984, 24, 322–331. [Google Scholar] [CrossRef]
- Gramshaw, D.; Reed, J.; Collins, W.; Carter, E. Sown Pastures and Legume Persistence: An Australian Overview. In Persistence of Forage Legumes; Marten, G.C., Matches, A.G., Barnes, R.F., Brougham, R.W., Clements, R.J., Sheath, G.W., Eds.; American Society of Agonomy: Madison, WI, USA, 1989. [Google Scholar]
- Pulsford, J. Trends in fertilizer costs and usage on pastures in tropical and subtropical Australia. Trop. Grassl. 1980, 14, 188–193. [Google Scholar]
- Vere, D.T.; Muir, A. Pasture improvement adoption in south-eastern New South Wales. Review of marketing and Agricultural Economics. J. Agric. Resour. Econ. 1986, 54, 19–31. [Google Scholar]
- Ridley, A.; Helyar, K.; Slattery, W. Soil acidification under subterranean clover (Trifolium subterraneum L.) pastures in north-eastern Victoria. Aust. J. Exp. Agric. 1990, 30, 195–201. [Google Scholar] [CrossRef]
- Kemp, D.; Dowling, P. Towards sustainable temperate perennial pastures. Anim. Prod. Sci. 2000, 40, 125–132. [Google Scholar] [CrossRef]
- Kemp, D.; King, W.; Michalk, D.; Alemseged, Y. Weed-proofing pastures: How can we go about it. In Proceedings of the 12th Australian Weeds Conference, Hobart, Australia, 12–16 September 1999; Bishop, A.C., Boersma, M., Barnes, C.D., Eds.; Tasmanian Weed Society: Hobart, Australia, 1999; pp. 138–143. [Google Scholar]
- Leigh, J.; Halsall, D.; Holgate, M. The role of allelopathy in legume decline in pastures. I. Effects of pasture and crop residues on germination and survival of subterranean clover in the field and nursery. Crop. Pasture Sci. 1995, 46, 179–188. [Google Scholar] [CrossRef]
- Kelly, J.E.; Quinn, J.C.; Loukopoulos, P.; Broster, J.C.; Behrendt, K.; Weston, L.A. Seed contamination in sheep: New investigations into an old problem. Anim. Prod. Sci. 2018, 58, 1538–1544. [Google Scholar] [CrossRef]
- Meat and Livestock Australia. Industry Projections 2019: Australian Sheep. Available online: https://www.mla.com.au/globalassets/mla-corporate/prices--markets/documents/trends--analysis/sheep-projections/mla_australian-sheep-industry-projections-2019.pdf (accessed on 26 February 2018).
- Rossiter, R. The effect of phosphate supply on the growth and botanical composition of annual type pasture. Crop. Pasture Sci. 1964, 15, 61–76. [Google Scholar] [CrossRef]
- Groves, R.; Austin, M.; Kaye, P. Competition between Australian native and introduced grasses along a nutrient gradient. Austral. Ecol. 2003, 28, 491–498. [Google Scholar] [CrossRef]
- Cocks, P. Response to nitrogen of three annual grasses. Anim. Prod. Sci. 1974, 14, 167–172. [Google Scholar] [CrossRef]
- Southwood, O.R. The chemical control of barley grass in dryland Lucerne. Weed Res. 1971, 11, 231–239. [Google Scholar] [CrossRef]
- Llewellyn, R.; Ronning, M.; Ouzman, J.; Walker, S.; Mayfield, A.; Clarke, M. Impact of Weeds on Australian Grain Production—The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices; CSIRO: Canberra, Australia, 2016.
- Smith, D. The growth of barley grass (Hordeum leporinum) in annual pasture. 1. Germination and establishment in comparison with other annual pasture species. Aust. J. Exp. Agric. 1968, 8, 478–483. [Google Scholar] [CrossRef]
- Kelly, J.E.; Quinn, J.C.; Loukopoulos, P.; Nielsen, S.G.; Weston, P.; Broster, J.C.; Weston, L.A. Current Perspectives on the Impact of Weed Seed Contamination in Sheep. In Science, Community and Food Security: The Weed Challenge, Proceedings of the 20th Australasian Weeds Conference, Perth, Australia, 11–15 September 2016; Randall, R., Lloyd, S., Borger, C., Eds.; Weeds Society of Western Australia: South Perth, Australia, 2017; pp. 122–126. [Google Scholar]
- Shergill, L.S.; Malone, J.; Boutsalis, P.; Preston, C.; Gill, G. Target-Site Point Mutations Conferring Resistance to ACCase-Inhibiting Herbicides in Smooth Barley (Hordeum glaucum) and Hare Barley (Hordeum leporinum). Weed Sci. 2015, 63, 408–415. [Google Scholar] [CrossRef]
- Shergill, L.S.; Malone, J.; Boutsalis, P.; Preston, C.; Gill, G. Basis of ACCase and ALS inhibitor resistance in Hordeum glaucum Steud. Pest. Manag. Sci. 2017, 73, 1638–1647. [Google Scholar] [CrossRef]
- Fleet, B.; Gill, G. Seed Dormancy and Seedling Recruitment in Smooth Barley (Hordeum murinum ssp. glaucum) Populations in Southern Australia. Weed Sci. 2012, 60, 394–400. [Google Scholar] [CrossRef]
- Shergill, L.S.; Fleet, B.; Preston, C.; Gill, G. Management of ACCase-Inhibiting Herbicide-Resistant Smooth Barley (Hordeum glaucum) in Field Pea with Alternative Herbicides. Weed Technol. 2016, 30, 441–447. [Google Scholar] [CrossRef]
- Thorn, C.; Perry, M. Effect of chemical removal of grasses from pasture leys on pasture and sheep production. Anim. Prod. Sci. 1987, 27, 349–357. [Google Scholar] [CrossRef]
- Peoples, M.B.; Gault, R.R.; Scammell, G.J.; Dear, B.S.; Virgona, J.; Sandral, G.A.; Pau, J.; Wolfe, E.C.; Angus, J.F. Effect of pasture management on the contributions of fixed N to the N economy of ley-farming systems. Aust. J. Agric. Res. 1997, 49, 459–474. [Google Scholar] [CrossRef]
- Leys, A.; Plater, B. Simazine mixtures for control of annual grasses in pastures. Aust. J. Exp. Agric. 1993, 33, 319–326. [Google Scholar] [CrossRef]
- McGowan, A. The effect of four herbicides on pasture yield and composition. Aust. J. Exp. Agric. 1970, 10, 42–47. [Google Scholar] [CrossRef]
- Preston, C.; Holtum, J.A.M.; Powles, S.B. On the Mechanism of Resistance to Paraquat in Hordeum glaucum and H. leporinum. Plant. Physiol. 1992, 100, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, M.; Goggin, D.; Powles, S. Identification of resistance to either paraquat or ALS-inhibiting herbicides in two Western Australian Hordeum leporinum biotypes. Pest. Manag. Sci. 2012, 68, 757–763. [Google Scholar] [CrossRef]
- Shergill, L.S.; Fleet, B.; Preston, C.; Gill, G. Incidence of Herbicide Resistance, Seedling Emergence, and Seed Persistence of Smooth Barley (Hordeum glaucum) in South Australia. Weed Technol. 2015, 29, 782–792. [Google Scholar] [CrossRef]
- George, J. Effects of Grazing by Sheep on Barley Grass (Hordeum leporinum Link) Infestation of Pastures. Proc. Aust. Soc. Anim. Prod. 1972, 9, 221–224. [Google Scholar]
- Hartley, M.; Atkinson, G.; Bimler, K.; James, T.; Popay, A. Control of Barley Grass by Grazing Management. Proc. N. Z. Weed Pest Control Soc. 1974, 31, 198–202. [Google Scholar] [CrossRef]
- Smith, D. The growth of barley grass (Hordeum leporinum) in annual pasture. 4. The effect of some management practices on barley grass content. Aust. J. Exp. Agric. 1968, 8, 706–711. [Google Scholar] [CrossRef]
- Bowcher, A.J. Competition between Temperate Perennial Pasture Species and Annual Weeds: The Effect of Pasture Management on Population Dynamics and Resource Use. Ph.D. Thesis, Charles Sturt University, Wagga Wagga, Australia, 2002. [Google Scholar]
- Zadok, J.; Chang, T.; Konzak, C. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- El-Shatnawi, M.D.K.J.; Ghosheh, H.Z.; Shannag, H.K.; Ereifej, K.I. Defoliation time and intensity of wall barley in the Mediterranean rangeland. J. Range Manag. 1999, 52, 258–262. [Google Scholar] [CrossRef]
- Halloran, G.M.; Pennell, A.L. Regenerative Potential of Barley Grass (Hordeum leporinum). J. Appl. Ecol. 1981, 18, 805–813. [Google Scholar] [CrossRef]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant. Ecol. Evol. Syst. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- White, L. Carbohydrate Reserves of Grasses: A Review. J. Range Manag. 1973, 26, 13–18. [Google Scholar] [CrossRef]
- Bradley, K.W.; Hagood, E.S. Influence of sequential herbicide treatment, herbicide application timing, and mowing on mugwort (Artemisia vulgaris) control. Weed Technol. 2002, 16, 346–352. [Google Scholar] [CrossRef]
- Beltran, J.C.; Pannell, D.J.; Doole, G.J.; White, B. A bioeconomic model for analysis of integrated weed management strategies for annual barnyardgrass (Echinochloa crus-galli complex) in Philippine rice farming systems. Agric. Syst. 2012, 112, 1–10. [Google Scholar] [CrossRef]
- Moore, J.; Douglas, A. Spray Grazing—For Broadleaf Weed Control in Pastures. Available online: https://www.agric.wa.gov.au/feeding-nutrition/spray-grazing-broadleaf-weed-control-pastures (accessed on 30 January 2020).
- Bureau of Meteorology. Climate Data Online. Available online: http://www.bom.gov.au/climate/data/ (accessed on 12 November 2018).
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: London, UK, 2010; pp. 237–238. [Google Scholar]
- SPSS IBM Corp. SPSS Statistics for Windows; Version 20.0.; Released 2011; SPSS: Armonk, NY, USA, 2011. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Venn, N. Control of annual grasses in pasture and legume crops with fluazifop-butyl. Aust. J. Exp. Agric. 1984, 24, 612–616. [Google Scholar] [CrossRef]
- Stephenson, D.; Mitchell, G. Barley grass control with herbicides in subterranean clover pasture. 1. Effect on pasture in the year of spraying. Anim. Prod. Sci. 1993, 33, 737–741. [Google Scholar] [CrossRef]
- Kells, J.J.; Meggitt, W.F.; Penner, D. Absorption, Translocation, and Activity of Fluazifop-Butyl as Influenced by Plant Growth Stage and Environment. Weed Sci. 1984, 32, 143–149. [Google Scholar] [CrossRef]
- Akey, W.C.; Morrison, I.N. Effect of Moisture Stress on Wild Oat (Avena fatua) Response to Diclofop. Weed Sci. 1983, 31, 247–253. [Google Scholar] [CrossRef]
- Boydston, R.A. Soil Water Content Affects the Activity of Four Herbicides on Green Foxtail (Setaria viridis). Weed Sci. 1990, 38, 578–582. [Google Scholar] [CrossRef]
- Dortenzio, W.A.; Norris, R.F. The Influence of Soil Moisture on the Foliar Activity of Diclofop. Weed Sci. 2017, 28, 534–539. [Google Scholar] [CrossRef]
- Agenbag, G.A.; de Villiers, O.T.; van Biljon, J.J. The effect of water stress on the efficacy of diclofop-methyl and CGA 184′927+S on wild oat (Avena fatua). S. Afr. J. Plant. Soil 1993, 10, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Malone, J.; Preston, C.; Gill, G.S. Frost Reduces Clethodim Efficacy in Clethodim-Resistant Rigid Ryegrass (Lolium rigidum) Populations. Weed Sci. 2017, 64, 207–215. [Google Scholar] [CrossRef]
- Coupland, D. Influence of environmental factors on the performance of sethoxydim against Elymus repens (L.). Weed Res. 1987, 27, 329–336. [Google Scholar] [CrossRef]
- Bullock, J. Gaps and Seedling Colonization. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed.; Fenner, M., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 375–395. [Google Scholar]
- Fuerst, E.P.; Vaughn, K.C. Mechanisms of paraquat resistance. Weed Technol. 1990, 4, 150–156. [Google Scholar] [CrossRef]
- Scammell, G.; Ronnfeldt, G. Winter Cleaning Subterranean Clover Pastures with Non-Selective Herbicides. In Agronomy, Growing a Greener Future, Proceedings of the 9th Australian Agronomy Conference, Wagga Wagga, Australia, 20–23 July 1998; Michalk, D.L., Pratley, J.E., Eds.; Australian Society of Agronomy: Wagga Wagga, Australia, 1998; pp. 609–610. [Google Scholar]
- Griffin, J.L.; Boudreaux, J.M.; Miller, D.K. Herbicides as Harvest Aids. Weed Sci. 2010, 58, 355–358. [Google Scholar] [CrossRef]
- Steadman, K.J.; Eaton, D.M.; Plummer, J.A.; Ferris, D.G.; Powles, S.B. Late-season non-selective herbicide application reduces Lolium rigidum seed numbers, seed viability, and seedling fitness. Aust. J. Agric. Res. 2006, 57, 133–141. [Google Scholar] [CrossRef]
- Johnston, M.B.; Olivares, A.E.; Calderón, C.E. Effect of Quantity and Distribution of Rainfalls on Hordeum murinum L. Growth and Development. Chil. J. Agric. Res. 2009, 69, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Briske, D.; Noy-Meir, I. Plant Responses to Grazing: A Comparative Evaluation of Annual and Perennial Grasses. In Ecological Basis of Livestock Grazing in Mediterranean Ecosystems, Proceedings of the International Workshop on Ecological Basis of Livestock Grazing in Mediterranean Ecosystems, Thessaloniki, Greece, 23–25 October 1997; Papanastasis, V.P., Peter, D., Eds.; European Commission: Brussels, Belgium, 1997; pp. 13–26. [Google Scholar]
- Davies, S.; Peoples, M. Identifying potential approaches to improve the reliability of terminating a lucerne pasture before cropping: A review. Aust. J. Exp. Agric. 2003, 43, 429–447. [Google Scholar] [CrossRef]
- Gramshaw, D.; Lowe, K.; Lloyd, D. Effect of cutting interval and winter dormancy on yield, persistence, nitrogen concentration, and root reserves of irrigated lucerne in the Queensland subtropics. Aust. J. Exp. Agric. 1993, 33, 847–854. [Google Scholar] [CrossRef]
- Michalk, D.; Byrnes, C.; Robards, G. Effects of grazing management on natural pastures in a marginal area of southeastern Australia. J. Range Manag. 1976, 29, 380–383. [Google Scholar] [CrossRef]
- Duke, S.O. Weed Physiology: Herbicide Physiology; CRC Press Inc.: Boca Raton, FL, USA, 1985; Volume 2, p. 245. [Google Scholar]
- Congreve, M.; Cameron, J. Understanding Post-Emergent Herbicide Weed Control in Australian Farming Systems—A National Reference Manual for Agronomic Advisors; Grains Research and Development Corporation: Kingston, Australia, 2018; pp. 26–48. [Google Scholar]
- NUTURF. Pronamide: Selective Herbicide Product Information. Available online: http://nuturf.com.au/wp-content/uploads/sites/2/2015/09/Pronamide-Product-Information.pdf (accessed on 24 January 2019).
- Owen, M.J.; Martinez, N.J.; Powles, S.B. Herbicide resistance in Bromus and Hordeum spp. in the Western Australian grain belt. Crop. Pasture Sci. 2015, 66, 466–473. [Google Scholar] [CrossRef]
- Ferraro, D.O.; Oesterheld, M. Effect of defoliation on grass growth. A quantitative review. Oikos 2002, 98, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D.; Bazzaz, F.A. Effects of defoliation and competition on growth and reproduction in the annual plant Abutilon theophrasti. J. Ecol. 1980, 68, 813–821. [Google Scholar] [CrossRef]
Climate Variable | 2016 | 2017 |
---|---|---|
1 Precipitation (mm) | 607 | 225 |
1 Mean maximum temperature (°C) | 18 | 19 |
1 Mean minimum temperature (°C) | 7 | 5 |
2 Frost events (no. of days) | 8 | 40 |
Treatment | Barley Grass Treatment Descriptions and Application Rates | Date of Herbicide Application | Date of Mowing Application | ||
---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | ||
T1 | No mow/no herbicide (control) | - | - | - | - |
T2 | No mow/herbicide 1 (100 g∙L−1 propaquizafop, 250 mL/ha) | 13 June | 16 May | - | - |
T3 | No mow/herbicide 2 (250 g∙L−1 paraquat, 1.6 L/ha) | 26 August | 13 June | - | - |
T4 | One mow/no herbicide | - | - | 10 August | 11 August |
T5 | One mow/herbicide 1 (100 g∙L−1 propaquizafop, 250 mL/ha) | 13 June | 16 May | 1 *** | *** |
T6 | One mow/herbicide 2 (250 g∙L−1 paraquat, 1.6 L/ha) | 8 September | 30 August | 10 August | 11 August |
T7 | Repeat mow/no herbicide | - | - | 10 August, 7 September | 11 August, 10 September |
T8 | Repeat mow/herbicide 1 (100 g∙L−1 propaquizafop, 250 mL/ha) | 13 June | 16 May | *** | *** |
T9 | Repeat mow/herbicide 2 (250 g∙L−1 paraquat, 1.6 L/ha) | 10 October | 20 September | 10 August, 7 September | 11 August, 10 September |
Herbicide Group | |||||||
---|---|---|---|---|---|---|---|
Treatments | Mode of Action | 1 APVMA | 2 HRAC | 3 WSSA | Rate g ai∙ha−1 | Timing of Application | Additive Rate (Rate/100 L H2O) |
Control | _ | _ | _ | _ | _ | _ | _ |
imazamox | ALS and acetohydroxyacid synthase (AHAS) inhibitor | B | B | 2 | 50 | Post | Hasten® 500 mL |
propyzamide | Inhibitor of microtubule assembly | D | K1 | 3 | 750 | Post | _ |
propaquizafop | ACCase inhibitor (“fop”) | A | A | 1 | 25 | Post | Chemwet 1000 ® 200 mL |
fluazifop-P + butroxydim | ACCase inhibitor (“fop” + “dim”) | A | A | 1 | 320 | Post | Supercharge ® 1 L |
paraquat | Inhibitor of photosynthesis at photosystem I (PS I) | L | D | 22 | 400 | Post | _ |
haloxyfop-R +simazine | ACCase inhibitor (“fop”) + PS II inhibitor. | A + C | A + C1 | 1 + 5 | 52 + 550 | Post | Chemwet 1000 ® 200 mL |
Defoliation Treatment | Barley Grass Stage of Growth at Time of Defoliation | Date |
---|---|---|
SDL | 2–3 leaf seedling stage | 22 May 2018 |
HC1 “Head cut 1” | Post-inflorescence emergence—once all inflorescences emerged | 28 September 2018 |
HC2 “Head cut 2” | Post-inflorescence emergence on previously defoliated plants—once all inflorescences emerged | 3 October 2018 |
Model | Selected Model Description | Model Type (Error Structure) | Link Function |
---|---|---|---|
1 | Total fecundity = seed density + defoliation + seed density × defoliation | Ordinary Linear Model (normal) | Identity |
2 | Mature plant density = seed density + defoliation | Generalised Linear Model (Poisson) | Log |
3 | Inflorescences per plant = seed density + defoliation + seed density × defoliation | Generalised Linear Model (gamma) | Inverse |
Treatment | 2016 | 2017 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BG Biomass g∙m−1 | Clover Biomass g∙m−1 | OWS Biomass g∙m−1 | BG Inflorescence Number∙m−2 | BG Density∙m−2 | BG Fecundity∙m−2 | BG Seedling Emergence∙m−2 | BG Biomass g∙m−1 | Clover Biomass g∙m−1 | BG Inflorescence Number∙m−2 | BG Density∙m−2 | BG Fecundity∙m−2 | BG Seedling Emergence∙m−2 | |
No herbicide | 396. a 1 | 173.8 a 2 | 277.6 b | 1296.5 a | 1396.7 a | 33602.6 a | 1635.2 b | 158.04 x 2 | 15.63 y | 552.5 x | 680.0 x | 6212.60 x | 1929.2 x |
Propaquizafop | 1.0 b | 311.8 a | 632.8 a | 5.3 b | 6.7 b | 0.0 b | 89.6 c | 3.63 y | 53.26 x | 1.07 y | 5.0 y | 59.4 z | 50.4 y |
Paraquat | 326.1 a | 112.6 b | 101.5 c | 1264.0 a | 1596.7 a | 31474.2 a | 2662.8 a | 123.49 x | 14.84 y | 348.3 x | 444.4 x | 3580.6 y | 1251.6 x |
Pooled standard error | 33.2 | 33.7 | 32.5 | 183.2 | 109.9 | 4851.8 | 128.9 | 14.7 | 6.4 | 32.4 | 71.5 | 309.1 | 215.6 |
Herbicide Treatment | BG Plant Density∙m−2 (SE = 141.9) 2 | BG Inflorescence Number∙m−2 (SE = 58.9) | BG Fecundity∙m−2 (SE = 10,228.6) |
---|---|---|---|
Untreated control | 842 ab 1 | 427 m | 81650 v |
Imazamox | 950 a | 324 mn | 75828 v |
Propyzamide | 333 abc | 79 no | 12652 xy |
Propaquizafop | 492 ab | 253 mn | 48635 vw |
fluazifop-P + butroxydim | 192 bc | 135 no | 20959 wx |
Paraquat | 67 c | 11 o | 225 z |
Haloxyfop-R + simazine | 50 c | 14 o | 2303 yz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, J.E.; Chambers, A.J.; Weston, P.A.; Brown, W.B.; Robinson, W.A.; Broster, J.C.; Weston, L.A. The Impact of Herbicide Application and Defoliation on Barley Grass (Hordeum murinum subsp. glaucum) Management in Mixed Pasture Legumes. Agronomy 2020, 10, 671. https://doi.org/10.3390/agronomy10050671
Kelly JE, Chambers AJ, Weston PA, Brown WB, Robinson WA, Broster JC, Weston LA. The Impact of Herbicide Application and Defoliation on Barley Grass (Hordeum murinum subsp. glaucum) Management in Mixed Pasture Legumes. Agronomy. 2020; 10(5):671. https://doi.org/10.3390/agronomy10050671
Chicago/Turabian StyleKelly, Jane E., Allison J. Chambers, Paul A. Weston, William B. Brown, Wayne A. Robinson, John C. Broster, and Leslie A. Weston. 2020. "The Impact of Herbicide Application and Defoliation on Barley Grass (Hordeum murinum subsp. glaucum) Management in Mixed Pasture Legumes" Agronomy 10, no. 5: 671. https://doi.org/10.3390/agronomy10050671
APA StyleKelly, J. E., Chambers, A. J., Weston, P. A., Brown, W. B., Robinson, W. A., Broster, J. C., & Weston, L. A. (2020). The Impact of Herbicide Application and Defoliation on Barley Grass (Hordeum murinum subsp. glaucum) Management in Mixed Pasture Legumes. Agronomy, 10(5), 671. https://doi.org/10.3390/agronomy10050671