Spatialization of Actual Grain Crop Yield Coupled with Cultivation Systems and Multiple Factors: From Survey Data to Grid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.2.1. Data Collection and Preprocessing
2.2.2. Key Factors of Yield Spatialization
2.3. The Grain Crop Yield Spatialization Model
2.3.1. Cultivated Land NPP Calculation Module
2.3.2. Agricultural System Construction Module
2.3.3. Key Factors Establishing Module
Soil Available Water Capacity
Mechanized Cultivation
Chemical Fertilizer Application
2.3.4. Integration and Validation Module
2.4. The Application of the GCYS Model
3. Results
3.1. Spatial Pattern Analysis of the Potential Productivity of Grain Crops
3.1.1. Spatial Pattern of Net Primary Productivity
3.1.2. Spatialization of Potential Productivity
3.2. Key Factors Analysis of Actual Yield
3.3. Accuracy Assessment and Spatial Pattern Analysis of Actual Grain Crop Yield
3.3.1. Accuracy Assessment and Calibration at Two Scales
3.3.2. Spatialization Results of Actual Grain Crop Yield
3.4. The Spatio-Temporal Change in Actual Grain Crop Yield
3.5. The Grain Crop Calorie Spatialization Based on the GCYS Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woittiez, L.S.; van Wijk, M.T.; Slingerland, M.; van Noordwijk, M.; Giller, K.E. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Van Ittersum, M.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.A.; Shen, Y.-J.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Liu, J.; Wiberg, D.; Zehnder, A.J.B.; Yang, H. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig. Sci. 2007, 26, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Lüder, R.-M.H.; Qin, R.; Richner, W.; Stamp, P.; Noulas, C. Spatial variability of selected soil properties and its impact on the grain yield of oats (Avena sativa L.) in small fields. J. Plant Nutr. 2018, 41, 2446–2469. [Google Scholar] [CrossRef]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [Green Version]
- Meisner, M.H.; Zaviezo, T.; Rosenheim, J.A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest. Manag. Sci. 2016, 73, 232–239. [Google Scholar] [CrossRef]
- Huff, F.A.; Neill, J.C. Effects of natural climatic fluctuations on the temporal and spatial variation in crop yields. J. Appl. Meteorol. 1982, 21, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Chivasa, W.; Mutanga, O.; Biradar, C. Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: A review. Int. J. Remote Sens. 2017, 38, 6816–6845. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M. Crop yield response to climate change varies with crop spatial distribution pattern. Sci. Rep. 2017, 7, 1463. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, J.; Voegelin, A.; Roberts, L.C.; Hug, S.J.; Saha, G.C.; Ali, M.A.; Badruzzaman, A.B.M.; Kretzschmar, R. Spatial distribution and temporal variability of arsenic in irrigated rice fields in bangladesh. 2. paddy soil. Environ. Sci. Technol. 2007, 41, 5967–5972. [Google Scholar] [CrossRef]
- Peng, D.; Huang, J.; Li, C.; Liu, L.; Huang, W.; Wang, F.; Yang, X. Modelling paddy rice yield using MODIS data. Agric. For. Meteorol. 2014, 184, 107–116. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Wang, P. Management of trade-offs between cultivated land conversions and land productivity in Shandong Province. J. Clean. Prod. 2017, 142, 767–774. [Google Scholar] [CrossRef]
- You, L.; Wood, S.; Wood-Sichra, U.; Wu, W. Generating global crop distribution maps: From census to grid. Agric. Syst. 2014, 127, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Stehfest, E.; Heistermann, M.; Priess, J.; Ojima, D.S.; Alcamo, J. Simulation of global crop production with the ecosystem model DayCent. Ecol. Model. 2007, 209, 203–219. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J. Can wheat yield be assessed by early measurements of normalized difference vegetation index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Fischer, G.; Sun, L.; Tan, M.; Xin, L.; Liang, Z. Impact of the changing area sown to winter wheat on crop water footprint in the North China Plain. Ecol. Indic. 2015, 57, 100–109. [Google Scholar] [CrossRef]
- Qader, S.H.; Dash, J.; Atkinson, P.M. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Sci. Total Environ. 2018, 613, 250–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deryng, D.; Sacks, W.J.; Barford, C.C.; Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Liu, J.; Williams, J.R.; Zehnder, A.J.; Yang, H. GEPIC–modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Zhong, L.; Baoguo, L. Spatial distribution of China grain output based on land use and population density. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- You, L.; Wood, S. An entropy approach to spatial disaggregation of agricultural production. Agric. Syst. 2006, 90, 329–347. [Google Scholar] [CrossRef]
- You, L.; Wood, S.; Wood-Sichra, U. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agric. Syst. 2009, 99, 126–140. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, J.; Shi, W.; Tao, F.; Yan, H. Spatial-temporal changes of cropland and climate potential productivity in northern China during 1990–2010. Food Secur. 2013, 5, 499–512. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; An, T.; Wang, B.; Li, S.; Wang, J.; Li, S. Comparison of the modeled potential yield versus the actual yield of maize in Northeast China and the implications for national food security. Food Secur. 2016, 9, 99–114. [Google Scholar] [CrossRef]
- Gathala, M.K.; Timsina, J.; Islam, S.; Krupnik, T.J.; Bose, T.R.; Islam, N.; Rahman, M.; Hossain, I.; Harun-Ar-Rashid, M.; Ghosh, A.K.; et al. Productivity, profitability, and energetics: A multi-criteria assessment of farmers’ tillage and crop establishment options for maize in intensively cultivated environments of South Asia. Field Crops Res. 2016, 186, 32–46. [Google Scholar] [CrossRef]
- Seo, S.N. Evaluation of the Agro-Ecological Zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa. Eur. J. Agron. 2014, 52, 157–165. [Google Scholar] [CrossRef]
- Ju, W.; Gao, P.; Zhou, Y.; Chen, J.M.; Chen, S.; Li, X. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China. Int. J. Remote Sens. 2010, 31, 1573–1587. [Google Scholar] [CrossRef]
- Marshall, M.; Tu, K.; Brown, J. Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems. Remote Sens. Environ. 2018, 217, 258–271. [Google Scholar] [CrossRef]
- Reeves, M.C.; Zhao, M.; Running, S.W. Usefulness and limits of MODIS GPP for estimating wheat yield. Int. J. Remote Sens. 2005, 26, 1403–1421. [Google Scholar] [CrossRef]
- Zhou, G.; Yin, X. Assessing nitrogen nutritional status, biomass and yield of cotton with ndvi, spad and petiole sap nitrate concentration. Exp. Agric. 2017, 54, 531–548. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, J.; Wang, Y. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Diepen, C.; Wolf, J.; Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Wu, L.; Bai, J.; Xiao, Q.; Du, Y.; Liu, Q.; Xu, L. Research progress and prospect on combining crop growth models with parameters derived from quantitative remote sensing. Trans. Chin. Soc. Agric. Eng. 2017, 33, 155–166. [Google Scholar]
- Sakuma, S.; Schnurbusch, T. Of floral fortune: Tinkering with the grain yield potential of cereal crops. New Phytol. 2019, 225, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate change and global food systems: Potential impacts on food security and undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total. Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Mao, D.; Wang, Z.; Li, H.; Man, W.; Jia, M.; Liu, M.; Zhang, M.; Liu, H. Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images. Trans. Chin. Soc. Agric. Eng. 2017, 33, 147. [Google Scholar]
- Li, J.; Zhang, H.; Xu, E. A two-level nested model for extracting positive and negative terrains combining morphology and visualization indicators. Ecol. Indic. 2020, 109, 105842. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Tian, H. Approaching on the corrected methods of topographic factors for calculating the climatic potential productivity of crops. Chin. J. Agrometeorol. 1996, 17, 24–28. [Google Scholar]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Lieth, H. Modeling the primary productivity of the world. In Primary Productivity of the Biosphere; Springer: Berlin, Germany, 1975. [Google Scholar]
- Zheng, Z.; Fu, B.; Hu, H.; Sun, G. A method to identify the variable ecosystem services relationship across time: A case study on Yanhe Basin, China. Landsc. Ecol. 2014, 29, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Lieth, H.; Box, E. Evapotranspiration and primary productivity: C.W. Thornthwaite memorial model. Pub. Climatol. 1972, 25, 37–46. [Google Scholar]
- Shang, E.; Xu, E.; Zhang, H.; Liu, F. Analysis of spatiotemporal dynamics of the Chinese vegetation net primary productivity from the 1960s to the 2000s. Remote Sens. 2018, 10, 860. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Liu, J.; Cao, M. Spatial pattern and topographic control of China’s agricultural productivity variability. Acta Geogr. Sin. 2007, 62, 171–180. [Google Scholar]
- Lobell, D.B.; Hicke, J.A.; Asner, G.P.; Field, C.; Tucker, C.J.; Los, S. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Glob. Chang. Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 1, 5–14. [Google Scholar]
- Wang, S.; Su, W.; Fan, X.; Li, C.; Shi, X. Influence factors of soil moisture in karst rocky desertification region—A case study of Puding County, Guizhou Province. Res. Soil Water Conserv. 2010, 17, 171–175. [Google Scholar]
- Lv, Z. Study on the Evaluation, Effect, and Consolidation of Cultivated Land Fragmentation—An Empirical Analysis Based on Quzhou County; China Agricultural University: Beijing, China, 2015. [Google Scholar]
- Chen, C. The Mechanization Mode of Rice Cultivation in The Hills and Mountains of Southern China; Chinese Acadeny of Agricultural Scinences: Nanjing, China, 2012. [Google Scholar]
- Zhou, Z.; Mu, N. Study on the influence of agricultural mechanization on grain yield increase in China. China Price 2015, 11, 27–29. [Google Scholar]
- Li, Z. Farmers Use Pesticides and Fertilizers Behavior and Its Influencing Factors—Take Jiangxi Province as An Example; Jiangxi Agricultural University: Nanchang, China, 2015. [Google Scholar]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Rao, E.; Jiang, L.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Yan, X.; Gong, W. The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration—Results of a 19-year experiment. Plant Soil 2010, 331, 471–480. [Google Scholar] [CrossRef]
- Hayashi, K.; Matsumoto, N.; Hayashi, E.T.; Abdoulaye, T.; Shinjo, H.; Tabo, R.; Matsunaga, R.; Tobita, S. Estimation of nitrogen flow within a village-farm model in Fakara region in Niger, Sahelian zone of West Africa. Nutr. Cycl. Agroecosyst. 2012, 92, 289–304. [Google Scholar] [CrossRef]
- Sadras, V.O.; Hayman, P.T.; Rodriguez, D.; Monjardino, M.; Bielich, M.; Unkovich, M.; Mudge, B.; Wang, E. Interactions between water and nitrogen in Australian cropping systems: Physiological, agronomic, economic, breeding and modelling perspectives. Crop Pasture Sci. 2016, 67, 1019–1053. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H.; Yang, Y.; Zhang, Y. Integrating a spatially explicit tradeoff analysis for sustainable land use optimal allocation. Sustainability 2014, 6, 8909–8930. [Google Scholar] [CrossRef] [Green Version]
- Xu, E.; Zhang, H.; Yao, L. An elevation-based stratification model for simulating land use change. Remote Sens. 2018, 10, 1730. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Xin, L.; Li, X.; Tan, M.; Wang, R. Decreasing rice cropping intensity in southern China from 1990 to 2015. Remote Sens. 2018, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Anderson, M.; Gao, F.; Wardlow, B.; Hain, C.R.; Otkin, J.A.; Alfieri, J.; Yang, Y.; Sun, L.; Dulaney, W. Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA. Remote Sens. Environ. 2018, 210, 387–402. [Google Scholar] [CrossRef]
Factors | Spatial Scale | Temporal Scale | Data Source | |
---|---|---|---|---|
Land use data | Spatial pattern of cultivated land | 30 m | 2000 and 2015 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. |
Area of each cultivated land plot | - | 2000 and 2015 | ||
Climatic data | Mean annual temperature | 1 km × 1 km | 2000 and 2015 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. |
Mean annual precipitation | 1 km × 1 km | 2000 and 2015 | ||
Topographic data | Elevation | 30 m × 30 m | 2009 | International Scientific Data Service Platform, Computer Network Information Center, Chinese Academy of Sciences. |
Slope | 30 m × 30 m | 2009 | Derived from DEM in Arcgis. | |
Soil data | Ratio of sandy soil | 1 km × 1 km | 1995 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. |
Ratio of silt soil | 1 km × 1 km | 1995 | ||
Ratio of clay soil | 1 km × 1 km | 1995 | ||
Soil organic matter | 1 km × 1 km | 1995 | ||
Economic data | GDP | 1 km × 1 km | 2000 and 2015 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. |
Index | Mc | HI | fAG |
---|---|---|---|
Rice | 0.1375 | 0.45 | 0.80 |
Wheat | 0.1250 | 0.37 | 0.83 |
Maize | 0.1350 | 0.49 | 0.85 |
Soybean | 0.1250 | 0.25 | 0.87 |
Potato | 0.1330 | 0.50 | 0.20 |
Index | EP (%) | C (kcal/100 g) |
---|---|---|
Rice | 100 | 1405 |
Wheat | 78 | 1532 |
Maize | 100 | 1527 |
Soybean | 100 | 1412 |
Potato | 100 | 77 |
Dominated Factors | 2000 | 2015 | ||
---|---|---|---|---|
Reduction/Increasing of Yield(kg/ha) | Dominated Area Proportion of Total Cultivated Land | Reduction/Increasing of Yield(kg/ha) | Dominated Area Proportion of Total Cultivated Land | |
Available soil water capacity | 0–15334.63(−) | 59.08% | 0–17947.08(−) | 59.29% |
Mechanization | 0–194.90(+) | 0.23% | 0–990.36(+) | 17.47% |
Chemical fertilizer application | 0–2470.50(+) | 40.69% | 48.86–2470.50(+) | 23.24% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, H.; Xu, E. Spatialization of Actual Grain Crop Yield Coupled with Cultivation Systems and Multiple Factors: From Survey Data to Grid. Agronomy 2020, 10, 675. https://doi.org/10.3390/agronomy10050675
Li J, Zhang H, Xu E. Spatialization of Actual Grain Crop Yield Coupled with Cultivation Systems and Multiple Factors: From Survey Data to Grid. Agronomy. 2020; 10(5):675. https://doi.org/10.3390/agronomy10050675
Chicago/Turabian StyleLi, Jingxin, Hongqi Zhang, and Erqi Xu. 2020. "Spatialization of Actual Grain Crop Yield Coupled with Cultivation Systems and Multiple Factors: From Survey Data to Grid" Agronomy 10, no. 5: 675. https://doi.org/10.3390/agronomy10050675
APA StyleLi, J., Zhang, H., & Xu, E. (2020). Spatialization of Actual Grain Crop Yield Coupled with Cultivation Systems and Multiple Factors: From Survey Data to Grid. Agronomy, 10(5), 675. https://doi.org/10.3390/agronomy10050675