Effects of Beech Bark Extract in the Sage (Salvia Officinalis L.) Plant Growth and Volatile Oil Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Sample and Chemicals
2.2. Extraction
2.3. Working Protocol
2.4. Plant Growth and Development Analysis
2.5. Histo-Anatomical Analysis
2.6. GC-MS Qualitative Analysis of Volatile Compounds
2.7. Statistical Analysis
3. Results and Discussions
3.1. Extract Characterization
3.2. Seed Germination
3.3. Biomass Accumulation
3.4. Photo-Assimilating Pigment Content in Sage (Salvia officinalis L.) Leaves
3.5. Histo-Anatomical Aspects of the Sage (Salvia officinalis L.)
3.6. Volatile Oil Content Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tanase, C.; Bujor, O.; Popa, V.I. Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In Polyphenols in Plants: Isolation, Purification and Extract Preparation, 2nd ed.; Elsevier: London, UK, 2019; pp. 45–58. [Google Scholar]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Colpas, F.T.; Ono, E.O.; Rodrigues, J.D.; Passos, J.R.D.S. Effects of some phenolic compounds on soybean seed germination and on seed-borne fungi. Braz. Arch. Biol. Technol. 2003, 46, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, B.K.; Ghimire, B.; Yu, C.Y.; Chung, I.M. Allelopathic and Autotoxic Effects of Medicago sativa-Derived Allelochemicals. Plants 2019, 8, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Hofmann, T.; Nebehaj, E.; Stefanovits-Bányai, É.; Albert, L. Antioxidant capacity and total phenol content of beech (Fagus sylvatica L.) bark extracts. Ind. Crop. Prod. 2015, 77, 375–381. [Google Scholar] [CrossRef]
- Hofmann, T.; Tálos-Nebehaj, E.; Albert, L.; Németh, L. Antioxidant efficiency of Beech (Fagus sylvatica L.) bark polyphenols assessed by chemometric methods. Ind. Crop. Prod. 2017, 108, 26–35. [Google Scholar] [CrossRef]
- Tanase, C.; Boz, I.; Popa, V.I. Histo-Anatomic Aspects on Zea mays L. Influenced by Spruce Bark Polyphenolic Extract. Rom. Biotechnol. Lett. 2016, 21, 11238–11245. [Google Scholar]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Craft, J.D.; Satyal, P.; Setzer, W.N. The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Dadfar, F.; Bamdad, K. The effect of Saliva officinalis extract on the menopausal symptoms in postmenopausal women: An RCT. Int. J. Reprod. Biomed. 2019, 17, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Nawas, T.; Mitri, S.; Jaafar, M. Inhibition of Gram Negative Bacterial Growth and Biofilm Formation by Alpha Thujone. IOSR J. Pharm. Biol. Sci. 2018, 13, 40–47. [Google Scholar]
- Ehrnhöfer-Ressler, M.M.; Fricke, K.; Pignitter, M.; Walker, J.M.; Walker, J.; Rychlik, M.; Somoza, V. Identification of 1,8-Cineole, Borneol, Camphor, and Thujone as Anti-inflammatory Compounds in a Salvia officinalis L. Infusion Using Human Gingival Fibroblasts. J. Agric. Food Chem. 2013, 61, 3451–3459. [Google Scholar] [CrossRef] [PubMed]
- Bargali, K.; Bargali, S.S. Germination capacity of seeds of leguminous plants under water deficit conditions: Implication for restoration of degraded lands in Kumaun Himalaya. Trop. Ecol. 2016, 57, 445–453. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls “a” and “b” of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Cosarca, S.-L.; Moaca, E.-A.; Tanase, C.; Muntean, D.L.; Pavel, I.Z.; Dehelean, C.A. Spruce and beech bark aqueous extracts: Source of polyphenols, tannins and antioxidants correlated to in vitro antitumor potential on two different cell lines. Wood Sci. Technol. 2019, 53, 313–333. [Google Scholar] [CrossRef]
- Guzmán-Ortiz, F.A.; Castro-Rosas, J.; Gómez-Aldapa, C.A.; Mora-Escobedo, R.; Rojas-León, A.; Rodríguez-Marín, M.L.; Falfán-Cortés, R.N.; Román-Gutiérrez, A.D. Enzyme activity during germination of different cereals: A review. Food Rev. Int. 2019, 35, 177–200. [Google Scholar] [CrossRef]
- Stingu, A.; Volf, I.; Popa, V.I. Chestnuts (Castanea sativa) Extracts—A Potential Plant Growth Regulator. Bull. Polytech. Inst. Iaşi 2009, 55, 69–77. [Google Scholar]
- Stingu, A.; Volf, I.; Popa, V.I. Physiological changes in seedling germination and growth plant under chemical stress conditions. Environ. Eng. Manag. J. 2009, 8, 1309–1313. [Google Scholar] [CrossRef]
- Pavlovic, D.; Nikolic, B.; Djurovic, S.; Waisi, H.; Andjelkovic, A.; Marisavljevic, D. Chlorophyll as a Measure of Plant Health: Agroecological Aspects; Institute of Pesticides and Environmental Protection: Belgrade, Serbia, 2015. [Google Scholar]
- Anwar, M.; Patra, D.D.; Chand, S.; Alpesh, K.; Naqvi, A.A.; Khanuja, S.P.S. Effect of Organic Manures and Inorganic Fertilizer on Growth, Herb and Oil Yield, Nutrient Accumulation, and Oil Quality of French Basil. Commun. Soil Sci. Plant Anal. 2005, 36, 1737–1746. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 2nd ed.; Council of Europe: Strasbourg, France, 2019. [Google Scholar]
- ISO 9909:1997. Oil of Dalmatian Sage (Salvia officinalis L.); American National Standards Institute (ANSI): New York, NY, USA, 1997. [Google Scholar]
- Longaray Delamare, A.P.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Pinto, E.; Salgueiro, L.R.; Cavaleiro, C.; Palmeira, A.; Gonçalves, M.J. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind. Crop. Prod. 2007, 26, 135–141. [Google Scholar] [CrossRef]
- Naser, B.; Bodinet, C.; Tegtmeier, M.; Lindequist, U. Thuja occidentalis (Arbor vitae): A Review of its Pharmaceutical, Pharmacological and Clinical Properties. Evid. Based Complement. Altern. Med. 2005, 2, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höld, K.M.; Sirisoma, N.S.; Ikeda, T.; Narahashi, T.; Casida, J.E. Alpha-thujone (the active component of absinthe): Gamma-aminobutyric acid type a receptor modulation and metabolic detoxification. Proc. Natl. Acad. Sci. USA 2000, 97, 3826–3831. [Google Scholar] [CrossRef] [Green Version]
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: A mechanistic view. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Pyun, H.J.; Wagschal, K.C.; Jung, D.I.; Coates, R.M.; Croteau, R. Stereochemistry of the Proton Elimination in the Formation of (+)- and (−)-α-Pinene by Monoterpene Cyclases from Sage (Salvia officinalis). Arch. Biochem. Biophys. 1994, 308, 488–496. [Google Scholar] [CrossRef]
- Ramak, P.; Osaloo, S.K.; Sharifi, M.; Ebrahimzadeh, H.; Behmanesh, M. Biosynthesis, regulation and properties of plant monoterpenoids. J. Med. Plant Res. 2014, 8, 983–991. [Google Scholar]
- Leite, A.M.; de Lima, E.O.; de Souza, E.L.; Diniz, M.D.F.F.M.; Trajano, V.N.; Medeiros, I.A.D. Inhibitory effect of b-pinene, a-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciências Farmacêuticas 2007, 43, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
- Polatoglu, K.; Demirci, F.; Demirci, B.; Gören, N.; Baser, K.H.C. Antimicrobial Activity and Essential Oil Composition of a New T. argyrophyllum (C. Koch) Tvzel var. argyrophyllum Chemotype. J. Oleo Sci. 2010, 59, 307–313. [Google Scholar] [CrossRef] [Green Version]
Tested Solutions | Pots Number | Seeds Number/Pot | Seeds Number |
---|---|---|---|
C 1 | 66 | 3 | 198 |
BBCE0.5 1 | 66 | 3 | 198 |
BBCE1 1 | 66 | 3 | 198 |
Experimental Variant | Chl a | Chl b | Chl a + Chl b | Chl a/Chl b | Carotens |
---|---|---|---|---|---|
C 1 | 64.3 ± 2.08 | 29.9 ± 1.82 | 94.28 | 2.15 | 0.072 ± 0.01 |
BBCE0.5 1 | 74.1 ± 1.10 | 22.2 ± 1.09 | 96.32 | 3.32 | 0.024 ± 0.02 |
BBCE1 1 | 248.7 ± 15.06 | 61.5 ± 2.03 | 310.2 | 4.04 | 1.135 ± 0.05 |
Vegetative Organs | Microscopic Characteristics | Treated Plants (Mean ± SD) | Control Plants (Mean ± SD) | |
---|---|---|---|---|
BBCE0.5 1 | BBCE1 1 | |||
n = 5 | n = 5 | n = 5 | ||
Root | Central cylinder area (%) | 31.56 ± 5.22 | 35.56 ± 5.33 | 33.02 ± 3.71 |
Cortex area (%) | 68.44 ± 5.22 | 64.44 ± 5.33 | 66.97 ± 3.71 | |
Stem | Cortex area (%) | 32.62 ± 3.76 | 34.05 ± 1.64 | 36.84 ± 3.22 |
Floem area (%) | 14.61 ± 1.15 | 13.35 ± 1.31 | 15.37 ± 1.69 | |
Xylem area (%) | 35.96 ± 4.31 | 34.31 ± 2.51 | 29.09 ± 2.81 | |
Pith area (%) | 16.82 ± 3.25 | 18.31 ± 2.37 | 18.69 ± 1.99 | |
Colenchim area (%) | 5.85 ± 0.84 | 5.09 ± 0.83 | 4.71 ± 1.48 | |
Sclerenchyma sheath area (%) | 1.69 ± 0.19 | 1.49 ± 0.17 | 1.38 ± 0.33 | |
Leaf | Leaf lamina thickness (mm) | 0.062 ± 0.009 | 0.054 ± 0.005 | 0.072 ± 0.006 |
Mesophyll thickness (mm) | 0.045 ± 0.006 | 0.039 ± 0.004 | 0.052 ± 0.004 | |
Vascular bundles area in the main string (%) | 20.37 ± 2.03 | 18.75 ± 3.02 | 26.84 ± 2.64 | |
Cortex area in the main string (%) | 79.62 ± 2.03 | 81.29 ± 3.02 | 73.61 ± 2.64 |
C 1 (Mean ± SD) | BBCE0.5 1 (Mean ± SD) | BBCE1 1 (Mean ± SD) | |
---|---|---|---|
Salviae officinalis herba | 1.26 ± 0.08 | 1.29 ± 0.05 | 1.43 ± 0.09 |
Salviae officinalis folium | 1.69 ± 0.13 | 1.70 ± 0.06 | 1.79 ± 0.11 |
Compounds | Retention Time | Concentration (% of Total Surface Area of Peaks) | ||
---|---|---|---|---|
C 1 | BBCE0.5 1 | BBCE1 1 | ||
α-Tricyclene | 7.519 | n.i. | 0.17 ± 0.03 | n.i. |
α-Thujene | 7.639 | 0.71 ± 0.04 | 0.37 ± 0.06 | 0.43 ± 0.05 |
α-Pinene | 7.887 | 11.72 ± 0.06 | 11.38 ± 0.11 | 13.93 ± 0.20a |
Camphene | 8.466 | 1.61 ± 0.05 | 6.9 ± 0.13 | 2.51 ± 0.11 |
β-Pinene | 9.458 | 12.86 ± 0.11 | 6.88 ± 0.31 | 4.97 ± 0.10 |
β-Myrcene | 9.88 | 5.31 ± 0.14 | 3.55 ± 0.17 | 4.89 ± 0.13 |
3-Carene * | 10.512 | 0.35 ± 0.04 | 0.11 ± 0.01 | n.i. |
α-Terpinene | 10.91 | 1.65 ± 0.14 | 0.47 ± 0.02 | 0.75 ± 0.08 |
p-Cymene | 11.207 | 3.58 ± 0.11 | 1.46 ± 0.13 | 1.96 ± 0.04 |
d-Limonene | 11.381 | 6.72 ± 0.11 | 5.05 ± 0.13 | 6.08 ± 0.14 |
Eucalyptol | 11.503 | 11.13 ± 0.22 | 20.28 ± 0.35 | 16.9 ± 0.12 |
β-trans-Ocimene | 11.639 | 5.74 ± 0.03 | 3.49 ± 0.12 | 4.93 ± 0.11 |
β-cis-Ocimene | 12.042 | 1.55 ± 0.09 | 0.99 ± 0.06 | 1.09 ± 0.14 |
γ-Terpinene | 12.494 | 2.15 ± 0.54 | 0.68 ± 0.03 | 1.01 ± 0.07 |
Terpinolene | 13.537 | 0.58 ± 0.08 | 0.29 ± 0.17 | 0.49 ± 0.04 |
β-Linalool * | 14.119 | 0.39 ± 0.01 | 0.22 ± 0.02 | 0.39 ± 0.05 |
α-Thujone | 14.383 | 16.21 ± 0.16 | 16.66 ± 0.12 | 20.36 ± 0.18 |
β-Thujone | 14.818 | 7.15 ± 0.03 | 2.31 ± 0.14 | 2.2 ± 0.10 |
allo-Ocimene | 15.189 | 2.12 ± 0.08 | 1.24 ± 0.09 | 1.71 ± 0.08 |
Camphor | 15.953 | 1.59 ± 0.34 | 5.18 ± 0.22 | 4.19 ± 0.08 |
Pinocamphone | 16.462 | 0.3 ± 0.03 | n.i. | 0.18 ± 0.04 |
Borneol | 16.907 | 0.4 ± 0.05 | 2.98 ± 0.07 | 0.77 ± 0.06 |
Isocamphopinone * | 17.061 | 0.17 ±0.04 | n.i. | n.i. |
Isobornyl acetate * | 21.091 | n.i. | 0.38 ± 0.04 | 0.63 ± 0.03 |
Copaene * | 24.354 | n.i. | n.i. | 0.12 ± 0.02 |
Caryophyllene | 25.872 | 2.42 ± 0.04 | 3.22 ± 0.09 | 2.08 ± 0.06 |
Spatulenol * | 26.502 | 0.17 ± 0.01 | 0.6 ± 0.11 | n.i. |
α-Caryophyllene | 27.083 | 3.46 ± 0.04 | 5.05 ± 0.05 | 7.3 ± 0.18 |
Unknown | 31.159 | n.i. | 0.1 ± 0.04 | 0.12 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanase, C.; Ștefănescu, R.; Gheorghieș, D.G.; Dandu, L.; Nisca, A.; Darkó, B.; Socaci, S.A. Effects of Beech Bark Extract in the Sage (Salvia Officinalis L.) Plant Growth and Volatile Oil Profile. Agronomy 2020, 10, 676. https://doi.org/10.3390/agronomy10050676
Tanase C, Ștefănescu R, Gheorghieș DG, Dandu L, Nisca A, Darkó B, Socaci SA. Effects of Beech Bark Extract in the Sage (Salvia Officinalis L.) Plant Growth and Volatile Oil Profile. Agronomy. 2020; 10(5):676. https://doi.org/10.3390/agronomy10050676
Chicago/Turabian StyleTanase, Corneliu, Ruxandra Ștefănescu, Diana Gabriela Gheorghieș, Loredana Dandu, Adrian Nisca, Béla Darkó, and Sonia Ancuța Socaci. 2020. "Effects of Beech Bark Extract in the Sage (Salvia Officinalis L.) Plant Growth and Volatile Oil Profile" Agronomy 10, no. 5: 676. https://doi.org/10.3390/agronomy10050676
APA StyleTanase, C., Ștefănescu, R., Gheorghieș, D. G., Dandu, L., Nisca, A., Darkó, B., & Socaci, S. A. (2020). Effects of Beech Bark Extract in the Sage (Salvia Officinalis L.) Plant Growth and Volatile Oil Profile. Agronomy, 10(5), 676. https://doi.org/10.3390/agronomy10050676