The Rheological Behavior of Polysaccharides from Mulberry Leaves (Morus alba L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Apparent Viscosity of Four MLPs Fractions
2.2. Effect of Different MLPs Concentrations on Apparent Viscosity
2.3. Effect of pH on Apparent Viscosity
2.4. Effect of Temperature Range on Apparent Viscosity
2.5. Effect of Various Temperature Treatments on Apparent Viscosity
2.6. Effect of Various Salts on Apparent Viscosity
2.7. The Linear Viscoelastic Region Measurements of MLPs
2.8. Oscillatory M
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Sequential Extraction and Purification of MLPs
3.3. Rheological Measurements
3.4. Effect of Different MLPs Concentrations on Apparent Viscosity
3.5. Effect of Acidic and Alkaline pH on Apparent Viscosity of MLPs
3.6. Effect of Temperature on Apparent Viscosity of MLPs
3.7. Effect of Various Temperature Treatments on Apparent Viscosity of MLPs
3.8. Effect of Various Salts on Apparent Viscosity of MLPs
3.9. Oscillatory Shear Measurements of MLPs
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salcedo, E.M.; Tassotti, M.; Rio, D.D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.-C.; Jhou, K.-Y.; Tseng, C.-Y. Antihypertensive effect of mulberry leaf aqueous extract containing γ-aminobutyric acid in spontaneously hypertensive rats. Food Chem. 2012, 132, 1796–1801. [Google Scholar] [CrossRef]
- Cui, C.; Lu, J.; Sun-Waterhouse, D.; Mu, L.; Sun, W.; Zhao, M.; Zhao, H. Polysaccharides from Laminaria japonica: Structural characteristics and antioxidant activity. LWT—Food Sci. Technol. 2016, 73, 602–608. [Google Scholar] [CrossRef]
- Shi, J.-J.; Zhang, J.-G.; Sun, Y.-H.; Qu, J.; Li, L.; Prasad, C.; Wei, Z.-J. Physicochemical properties and antioxidant activities of polysaccharides sequentially extracted from peony seed dreg. Int. J. Biol. Macromol. 2016, 91, 23–30. [Google Scholar] [CrossRef]
- Xu, G.Y.; Liao, A.M.; Huang, J.H.; Zhang, J.G.; Thakur, K.; Wei, Z.J. Evaluation of structural, functional, and anti-oxidant potential of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol. 2019, 129, 778–785. [Google Scholar] [CrossRef]
- Ji, Y.H.; Liao, A.M.; Huang, J.H.; Thakur, K.; Li, X.-L.; Wei, Z.J. Physicochemical and antioxidant potential of polysaccharides sequentially extracted from Amana edulis. Int. J. Biol. Macromol. 2019, 131, 453–460. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Ji, Y.H.; Liao, A.M.; Huang, J.H.; Thakur, K.; Li, X.L.; Hu, F.; Zhang, J.G.; Wei, Z.J. Effects of sulfated, phosphorylated and carboxymethylated modifications on the antioxidant activities of polysaccharides sequentially extracted from Amana edulis. Int. J. Biol. Macromol. 2020, 146, 887–896. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, J.J.; Thakur, K.; Hu, F.; Zhang, J.G.; Wei, Z.J. Anti-Cancerous Potential of Polysaccharide fractions extracted from peony seed dreg on various human cancer cell lines via cell cycle arrest and apoptosis. Front. Pharmacol. 2017, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Thakur, K.; Cao, Y.Y.; Liao, B.Y.; Zhang, J.G.; Wei, Z.J. Anticancerous potential of polysaccharides sequential extracted from Polygonatum cyrtonema Hua in Human cervical cancer Hela cells. Int. J. Biol. Macromol. 2020, 148, 843–850. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Wang, F.-Y.; Liu, Y.-L. Hot-compressed water extraction of polysaccharides from soy hulls. Food Chem. 2016, 202, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Y.; Wu, L.; Wu, X.; Huang, Y.; Liu, B. Optimization of polysaccharides extraction from Dictyophora indusiata and determination of its antioxidant activity. Int. J. Biol. Macromol. 2017, 103, 175–181. [Google Scholar] [CrossRef]
- Lin, L.; Cui, F.; Zhang, J.; Gao, X.; Zhou, M.; Xu, N.; Zhao, H.; Liu, M.; Zhang, C.; Jia, L. Antioxidative and renoprotective effects of residue polysaccharides from Flammulina velutipes. Carbohydr. Polym. 2016, 146, 388–395. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, N.N.; Jin, Y.M.; Jin, Z.Y.; Xu, X.M. Development of a fluidic system for efficient extraction of mulberry leaves polysaccharide using induced electric fields. Sep. Purif. Technol. 2017, 172, 318–325. [Google Scholar] [CrossRef]
- Jia, D.D.; Yang, J.; Zhang, R.; Lan, H.; Sun, Y.Y. A simple preparative method for isolation and purification of polysaccharides from mulberry (Morus alba L.) leaves. Int. J. Food Sci. Technol. 2013, 48, 1275–1281. [Google Scholar] [CrossRef]
- Thirugnanasambandham, K.; Sivakumar, V.; Maran, J.P. Microwave-assisted extraction of polysaccharides from mulberry leaves. Int. J. Biol. Macromol. 2015, 72, 1–5. [Google Scholar] [CrossRef]
- Yang, S.Y.; Li, Y.; Jia, D.Y.; Yao, K.; Liu, W.J. The synergy of Box-Behnken designs on the optimization of polysaccharide extraction from mulberry leaves. Ind. Crop. Prod. 2017, 99, 70–78. [Google Scholar] [CrossRef]
- Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohyd. Polym. 2015, 130, 122–132. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Chen, C.; Fu, X. The Fructus mori L. polysaccharide-iron chelate formed by self-embedded with iron (III) as the core and exhibiting good antioxidant activity. Food Funct. 2019, 10, 3150–3160. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, C.; Huang, Q.; You, L.J.; Chen, C.; Fu, X.; Liu, R.H. Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from Fructus Mori at different temperatures. Food Funct. 2019, 10, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Lin, J.Y. Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio. Food Chem. Toxicol. 2012, 50, 3032–3039. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; You, L.J.; Huang, Q.; Fu, X.; Zhang, B.; Liu, R.H.; Li, C. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct. 2018, 9, 3732–3742. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.-Y.; Hu, H.-M.; Thakur, K.; Chen, G.-H.; Li, L.; Wei, Z.-J. Hypoglycemic activity and the composition analysis of the polysaccharide extracted from the fruit of Mori multicaulis. Curr. Top. Nutraceut. R. 2018, 16, 1–8. [Google Scholar]
- Xu, Q.-X.; Shi, J.-J.; Zhang, J.-G.; Li, L.; Jiang, L.; Wei, Z.-J. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves. Int. J. Biol. Macromol. 2016, 93, 1240–1252. [Google Scholar] [CrossRef]
- Zhu, D.-Y.; Ma, Y.-L.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Effects of extraction methods on the rheological properties of polysaccharides from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 112, 22–32. [Google Scholar] [CrossRef]
- Li, L.; Liao, B.-Y.; Thakur, K.; Zhang, J.-G.; Wei, Z.-J. The rheological behavior of polysaccharides sequential extracted from Polygonatum cyrtonema Hua. Int. J. Biol. Macromol. 2018, 109, 761–771. [Google Scholar] [CrossRef]
- Shi, J.-J.; Zhang, J.-G.; Sun, Y.-H.; Xu, Q.-X.; Li, L.; Prasad, C.; Wei, Z.-J. The rheological properties of polysaccharides sequentially extracted from peony seed dreg. Int. J. Biol. Macromol. 2016, 91, 760–767. [Google Scholar] [CrossRef]
- Bao, H.; You, S.; Cao, L.; Zhou, R.; Wang, Q.; Cui, S.W. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae. Food Hydrocoll. 2016, 57, 30–37. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Lai, L.-S. Isolation and viscometric characterization of hydrocolloids from mulberry (Morus alba L.) leaves. Food Hydrocoll. 2009, 23, 840–848. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Tsai, J.-C.; Lai, L.-S. Effect of salts on the rheology of hydrocolloids from mulberry (Morus alba L.) leaves in concentrated domain. Food Hydrocoll. 2009, 23, 2331–2338. [Google Scholar] [CrossRef]
- Liao, B.-Y.; Zhu, D.-Y.; Thakur, K.; Li, L.; Zhang, J.-G.; Wei, Z.-J. Thermal and Antioxidant Properties of Polysaccharides Sequentially Extracted from Mulberry Leaves (Morus alba L.). Molecules 2017, 22, 2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.H.; Liao, A.M.; Huang, J.H.; Thakur, K.; Li, X.L.; Wei, Z.J. The rheological properties and emulsifying behavior of polysaccharides sequentially extracted from Amana edulis. Int. J. Biol. Macromol. 2019, 137, 160–168. [Google Scholar] [CrossRef]
- Niu, Y.; Li, N.; Xia, Q.; Hou, Y.; Xu, G. Comparisons of three modifications on structural, rheological and functional properties of soluble dietary fibers from tomato peels. LWT—Food Sci. Technol. 2018, 88, 56–63. [Google Scholar]
- Kontogiorgos, V.; Margelou, I.; Georgiadis, N.; Ritzoulis, C. Rheological characterization of okra pectins. Food Hydrocoll. 2012, 29, 356–362. [Google Scholar] [CrossRef]
- Durand, A. Aqueous solutions of amphiphilic polysaccharides: Concentration and temperature effect on viscosity. Eur. Polym. J. 2007, 43, 1744–1753. [Google Scholar] [CrossRef]
- Xu, J.-L.; Zhang, J.-C.; Liu, Y.; Sun, H.-J.; Wang, J.-H. Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain. Carbohydr. Polym. 2016, 139, 43–49. [Google Scholar]
- Vardhanabhuti, B.; Ikeda, S. Isolation and characterization of hydrocolloids from monoi (Cissampelos pareira) leaves. Food Hydrocoll. 2006, 20, 885–891. [Google Scholar] [CrossRef]
- Yang, X.; Nisar, T.; Liang, D.; Hou, Y.; Sun, L.; Guo, Y. Low methoxyl pectin gelation under alkaline conditions and its rheological properties: Using NaOH as a pH regulator. Food Hydrocoll. 2018, 79, 560–571. [Google Scholar] [CrossRef]
- Xu, G.Y.; Liao, A.M.; Huang, J.H.; Zhang, J.G.; Thakur, K.; Wei, Z.J. The rheological properties of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol. 2019, 137, 1–7. [Google Scholar] [CrossRef]
- Bourbon, A.I.; Pinheiro, A.C.; Ribeiro, C.; Miranda, C.; Maia, J.M.; Teixeira, J.A.; Vicente, A.A. Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: Comparison with guar gum and locust bean gum. Food Hydrocoll. 2010, 24, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Farhoosh, R.; Riazi, A. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature. Food Hydrocoll. 2007, 21, 660–666. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, B.; Lin, L.; Zhang, J.Y.; Liu, W.L.; Xie, J.H.; Ding, Y.T. Functional physicochemical properties and structure of cross-linked oxidized maizestarch. Food Hydrocoll. 2014, 36, 45–52. [Google Scholar] [CrossRef]
- Qiao, L.; Li, Y.; Chi, Y.; Ji, Y.; Gao, Y.; Hwang, H.; Akerd, W.G.; Wang, P. Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera. Carbohydr. Polym. 2016, 136, 1307–1314. [Google Scholar] [CrossRef]
- Freitas, F.; Alves, V.D.; Carvalheira, M.; Costa, N.; Oliveira, R.; Reis, M.A.M. Emulsifying behavior and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 2009, 78, 549–556. [Google Scholar] [CrossRef]
- Iagher, F.; Reicher, F.; Ganter, J.L.M.S. Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp. Int. J. Biol. Macromol. 2002, 31, 9–17. [Google Scholar] [CrossRef]
- Ahmed, J.; Singh, A.; Ramaswamy, H.S.; Pandey, P.K.; Raghavan, G.S.V. Effect of high-pressure on calorimetric, rheological and dielectric properties of selected starch dispersions. Carbohydr. Polym. 2014, 103, 12–21. [Google Scholar] [CrossRef]
- Brito, A.C.F.; Sierakowski, M.R.; Reicher, F.; Feitosa, J.P.A.; Paula, R.C.M. Dynamic rheological study of Sterculia stirata and karaya polysaccharides in aqueous solution. Food Hydrocoll. 2005, 19, 861–867. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Du, G.; Zhang, X.; Zhang, H. Characteristics and Rheological Properties of Polysaccharide Nanoparticles from Edible Mushrooms (Flammulina velutipes). J. Food Sci. 2017, 82, 687–693. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, Y.; Liu, N.; Zhang, J.; Tan, G.; Kannan, B.; Liu, X.; Bell, A.E. Rheological properties of polysaccharides from Dioscorea opposita Thunb. Food Chem. 2017, 227, 64–72. [Google Scholar] [CrossRef]
- Lin, L.; Shen, M.; Liu, S.; Tang, W.; Wang, Z.; Xie, M.; Xie, J. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics. Int. J. Biol. Macromol. 2018, 107, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.-G.; Sun, H.-J.; Wei, Z.-J. Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. Int. J. Biol. Macromol. 2014, 70, 498–505. [Google Scholar] [CrossRef] [PubMed]
Concentration (mg/mL) | HBSS | CHSS | DASS | CASS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
m | n | R2 | m | n | R2 | m | n | R2 | m | n | R2 | |
1.0 | 0.0277 | 0.051 | 0.98 | 0.195 | 0.629 | 0.94 | 0.092 | 0.578 | 0.93 | 0.002 | 0.674 | 0.92 |
5 | 0.013 | 0.46 | 0.94 | 0.328 | 0.638 | 0.92 | 0.159 | 0.54 | 0.95 | 0.002 | 0.651 | 0.94 |
10 | 0.017 | 0.418 | 0.96 | 0.682 | 0.535 | 0.95 | 0.285 | 0.511 | 0.93 | 0.004 | 0.569 | 0.95 |
15 | 0.023 | 0.380 | 0.95 | 1.399 | 0.541 | 0.94 | 0.497 | 0.476 | 0.96 | 0.007 | 0.484 | 0.96 |
20 | 0.066 | 0.385 | 0.98 | 2.852 | 0.496 | 0.96 | 0.817 | 0.464 | 0.95 | 0.009 | 0.379 | 0.95 |
25 | 0.3265 | 0.259 | 0.99 | 3.012 | 0.428 | 0.96 | 0.922 | 0.421 | 0.96 | 0.011 | 0.325 | 0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, B.-Y.; Li, L.; Tanase, C.; Thakur, K.; Zhu, D.-Y.; Zhang, J.-G.; Wei, Z.-J. The Rheological Behavior of Polysaccharides from Mulberry Leaves (Morus alba L.). Agronomy 2020, 10, 1267. https://doi.org/10.3390/agronomy10091267
Liao B-Y, Li L, Tanase C, Thakur K, Zhu D-Y, Zhang J-G, Wei Z-J. The Rheological Behavior of Polysaccharides from Mulberry Leaves (Morus alba L.). Agronomy. 2020; 10(9):1267. https://doi.org/10.3390/agronomy10091267
Chicago/Turabian StyleLiao, Bu-Yan, Ling Li, Corneliu Tanase, Kiran Thakur, Dan-Ye Zhu, Jian-Guo Zhang, and Zhao-Jun Wei. 2020. "The Rheological Behavior of Polysaccharides from Mulberry Leaves (Morus alba L.)" Agronomy 10, no. 9: 1267. https://doi.org/10.3390/agronomy10091267
APA StyleLiao, B. -Y., Li, L., Tanase, C., Thakur, K., Zhu, D. -Y., Zhang, J. -G., & Wei, Z. -J. (2020). The Rheological Behavior of Polysaccharides from Mulberry Leaves (Morus alba L.). Agronomy, 10(9), 1267. https://doi.org/10.3390/agronomy10091267