Energy Potential of Agri Residual Biomass in Southeast Asia with the Focus on Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Secondary Data Analysis
2.2. Origin of Materials and Preparation of Analysis Samples
2.3. Determination of the Biomass Energy Properties
2.4. Calculation of the Total Energy Yield
3. Results and Discussion
3.1. Availability of Paddy Rice Residual Biomass and Possibilities of Energy Use
3.2. Availability of Sugarcane Residual Biomass and Possibilities of Energy Use
3.3. Evaluation of Fuel-Energy Properties of Tested Biomass Materials
3.4. Estimation of Energy Potential
3.4.1. Energy Potential of Paddy Rice Residual Biomass
3.4.2. Energy Potential of Residual Sugarcane Biomass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, W.; Xu, X.; Shen, G.; Chen, J. Effect of Environmental Factors on Germination and Emergence of Aryloxyphenoxy Propanoate Herbicide-Resistant and -Susceptible Asia Minor Bluegrass (Polypogon fugax). Weed Sci. 2015, 63, 669–675. [Google Scholar] [CrossRef]
- Tung, D.T. Changes in the technical and scale efficiency of rice production activities in the Mekong delta, Vietnam. Agric. Food Econ. 2013, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.N.; Viet, V.T.H.; Ho, T.P.; Nguyen, V.T.; Husain, S.T. Optimal Site Selection for a Solar Power Plant in the Mekong Delta Region of Vietnam. Energies 2020, 13, 4066. [Google Scholar] [CrossRef]
- Nong, D.; Wang, C.; Al-Amin, A.Q. A critical review of energy resources, policies and scientific studies towards a cleaner and more sustainable economy in Vietnam. Renew. Sustain. Energy Rev. 2020, 134, 110117. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Ngo, T.; Le, T.D.Q.; Ho, H.; Nguyen, H.T.H. The role of knowledge in sustainable agriculture: Evidence from rice farms’ technical efficiency in Hanoi, Vietnam. Sustainability 2019, 11, 2472. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Crops Yield in Vietnam. 2018. Available online: http://www.fao.org/faostat/en/#data/QC/vietnam/crops/productionquantity/2018 (accessed on 28 August 2020).
- Ukaew, S.; Schoenborn, J.; Klemetsrud, B.; Shonnard, D.R. Effects of torrefaction temperature and acid pre-treatment on the yield and quality of fast pyrolysis bio-oil from rice straw. J. Anal. Appl. Pyrolysis 2018, 129, 112–122. [Google Scholar] [CrossRef]
- FAOSTAT. Paddy Rice Yield in Vietnam. 2018. Available online: http://www.fao.org/faostat/en/#data/QC/vietnam/paddyrice/productionquantity/2018 (accessed on 28 August 2020).
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Das, P.; Ragauskas, A.J. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels Bioprod. Biorefin. 2018, 12, 83–107. [Google Scholar] [CrossRef]
- Keck, M.; Hung, D.T. Burn or bury? A comparative cost–benefit analysis of crop residue management practices among smallholder rice farmers in northern Vietnam. Sustain. Sci. 2019, 14, 375–389. [Google Scholar] [CrossRef]
- FAOSTAT. Sugar Cane Yield in Vietnam. 2018. Available online: http://www.fao.org/faostat/en/#data/QC/vietnam/sugarcane/productionquantity/2018 (accessed on 28 August 2020).
- MARD. Development Chances for Sugar Sector Still Ahead: PM. 2020. Available online: https://www.mard.gov.vn/en/Pages/development-chances-for-sugar-sector-still-ahead-pm.aspx. (accessed on 5 October 2020).
- Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000, 74, 69–80. [Google Scholar] [CrossRef]
- Knoema. Production Statistics—Crops, Crops Processed. 2019. Available online: https://knoema.com/FAOPRDSC2020/production-statistics-crops-crops-processed (accessed on 10 October 2020).
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Logeswaran, J.; Anwar, M.; Silitonga, A.S.; Rahman, S.M.A.; Shamsuddin, A.H. Potential of Rice Industry Biomass as a Renewable Energy Source. Energies 2019, 12, 4116. [Google Scholar] [CrossRef] [Green Version]
- Lasko, K.; Vadrevu, K. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environ. Pollut. 2018, 236, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, S.C.; da Costa, A.C.; Vaz Rossel, C.E. Industrial waste recovery. In Sugarcane: Agricultural Production, Bioenergy and Ethanol; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 365–381. [Google Scholar] [CrossRef]
- Solomon, S.; Swapna, M.; Xuan, V.T.; Mon, Y.Y. Development of Sugar Industry in ASEAN Countries. Sugar Tech. 2016, 18, 559–575. [Google Scholar] [CrossRef]
- BS EN ISO 18135:2017. Solid Biofuels. Sampling; BSI Standards Publication: London, UK, 2017; pp. 1–66. [Google Scholar]
- BS EN ISO 14780:2017. Solid Biofuels. Sample Preparation; BSI Standards Publication: London, UK, 2017; pp. 1–32. [Google Scholar]
- BS EN ISO 18134-3:2015. Solid Biofuels. Determination of Moisture Content. Oven Dry Method Part 3: Moisture in General Analysis Sample; BSI Standards Publication: London, UK, 2015; pp. 1–14. [Google Scholar]
- BS EN ISO 18123:2015. Solid Biofuels. Determination of the Content of Volatile Matter; BSI Standards Publication: London, UK, 2015; pp. 1–20. [Google Scholar]
- BS EN ISO 16559:2014. Solid Biofuels. Terminology, Definitions and Descriptions; BSI Standards Publication: London, UK, 2014; pp. 1–44. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- BS EN ISO 18122:2015. Solid Biofuels. Determination of Ash Content; BSI Standards Publication: London, UK, 2015; pp. 1–18. [Google Scholar]
- BS EN ISO 16948:2015. Solid Biofuels. Determination of Total Content of Carbon, Hydrogen and Nitrogen; BSI Standards Publication: London, UK, 2015; pp. 1–20. [Google Scholar]
- BS EN ISO 16994:2016. Solid Biofuels. Determination of Total Content of Sulphur and Chlorine; BSI Standards Publication: London, UK, 2016; pp. 1–22. [Google Scholar]
- BS EN ISO 18125:2017. Solid Biofuels. Determination of Calorific Value; BSI Standards Publication: London, UK, 2017; pp. 1–68. [Google Scholar]
- Akhmedov, S.; Ivanova, T.; Abdulloeva, S.; Muntean, A.; Krepl, V. Contribution to the Energy Situation in Tajikistan by Using Residual Apricot Branches after Pruning as an Alternative Fuel. Energies 2019, 12, 3169. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Manan, Z.A.; Alwi, S.R.W.; Hashim, H. A review on utilization of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 2012, 16, 3089–3094. [Google Scholar] [CrossRef]
- Jung, D.S.; Ryou, M.H.; Sung, Y.J.; Park, S.B.; Choi, J.W. Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. USA 2013, 30, 12229–12234. [Google Scholar] [CrossRef] [Green Version]
- Rípoli, T.C.C.; Molina, W.F.; Rípoli, M.L.C. Potencial da energia de biomassa da cana-de-açúcar no Brasil. Sci. Agric. 2000, 57, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, S.R.; Arenales, A.; De Souza, A.E.; Magalhães, R.D.S.; Peña, A.F.V.; Aquino, D.; Freire, R. Sugarcane bagasse: Applications for energy production and ceramic materials. J. Solid Waste Technol. Manag. 2015, 41, 229–238. [Google Scholar] [CrossRef]
- Woytiuk, K. Sugar Cane Trash Processing for Heat and Power Production. Master’s Thesis, Lulea University of Technology, Luleå, Sweden, 2006. [Google Scholar]
- Franco, H.C.J.; Pimenta, M.T.B.; Carvalho, J.L.N.; Magalhães, P.S.G.; Rossell, C.E.V.; Braunbeck, O.A.; Vitti, A.C.; Kölln, O.T.; Rossi Neto, J. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Sci. Agric. 2013, 70, 305–312. [Google Scholar] [CrossRef] [Green Version]
- De Beer, A.G.; Hudson, C.; Meyer, E.; Seigmund, B. Green Cane Harvesting and Trash Management; ISSCT, Agricultural Engineering Sectional Committee Workshop, Agriculture, Agricultural Engineering: Basel, Switzerland, 1994. [Google Scholar]
- General Statistic Office of Vietnam. Statistical Yearbook of Viet Nam; General Statistic Office of Vietnam: Ha Noi, Vietnam, 2019. [Google Scholar]
- Matías, J.; Cruz, V.; García, A.; Gonzáles, D. Evaluation of Rice Straw Yield, Fibre Composition and Collection under Mediterranean Conditions. Acta Technol. Agric. 2019, 22, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Jin, W.; Dong, C.; Bai, Y.; Jin, D.; Hu, Z.; Huang, Y. Effects of rice straw and rice straw ash on rice growth and α-diversity of bacterial community in rare-earth mining soils. Sci. Rep. 2020, 10, 10331. [Google Scholar] [CrossRef]
- Tian, F.; Xu, D.; Xu, X. Extruded Solid Biofuels of Rice Straw Plus Oriented Strand Board Residues at Various Proportions. Energies 2020, 13, 3468. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, K.; Xiao, H.; Xiao, S.; Song, Z.; Yang, Z. Effects of additives and hydrothermal pre-treatment on the pelleting process of rice straw: Energy consumption and pellets quality. Ind. Crops Prod. 2019, 133, 178–184. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, G.; Arya, S.K. Biofuel from rice straw. J. Clean. Prod. 2020, 277, 124101. [Google Scholar] [CrossRef]
- Akhtar, N.; Gupta, K.; Goyal, D.; Goyal, A. Recent advances in pre-treatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ. Prog. Sustain. Energy 2016, 35, 489–511. [Google Scholar] [CrossRef]
- Cao, G.; Sheng, Y. Biobutanol production from lignocellulosic biomass: Prospective and challenges. J. Bioremediat. Biodegrad. 2016, 7, 363. [Google Scholar] [CrossRef]
- Chang, K.L.; Chen, X.M.; Wang, X.Q.; Han, Y.J.; Potprommanee, L.; Liu, J.Y.; Liao, Y.L.; Ning, X.; Sun, S.; Huang, Q. Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresour. Technol. 2017, 227, 388–392. [Google Scholar] [CrossRef]
- Pielhop, T.; Amgarten, J.; von Rohr, P.R.; Studer, M.H. Steam explosion pre-treatment of softwood: The effect of the explosive decompression on enzymatic digestibility. Biotechnol. Biofuels 2017, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Lee, S.; Chandrasekaran, R.; Yang, Y.; Caballes, M.; Alamu, O.; Chen, G. Electricity evaluation and emission characteristics of poultry litter co-combustion process. Appl. Sci. 2019, 9, 4116. [Google Scholar] [CrossRef] [Green Version]
- Weldekidan, H.; Strezov, V.; Town, G.; Kan, T. Production and analysis of fuels and chemicals obtained from rice husk pyrolysis with concentrated solar radiation. Fuel 2018, 233, 396–403. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007, 98, 22–28. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Y.; Cheng, Z.C.; Blanco, P.H.; Liu, R.H.; Bridgwater, A.V. Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy Fuels 2016, 30, 10568–10574. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Jiang, E.C.; Xu, X.W.; Sun, Y.; Wu, Z.X. The complete utilization of rice husk for production of synthesis gas. RSC Adv. 2017, 53, 33532–33543. [Google Scholar] [CrossRef] [Green Version]
- Dunnigan, L.; Asham, P.J.; Zhang, X.; Kwong, C.W. Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles. J. Clean. Prod. 2018, 172, 1639–1645. [Google Scholar] [CrossRef]
- Manatura, K.; Lu, J.H.; Wu, K.T.; Hsu, H.T. Exergy analysis on torrefied rice husk pellet in fluidized bed gasification. Appl. Therm. Eng. 2017, 111, 1016–1024. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C.; Thang, D.N.Q. Economic buy-back rates for electricity from cogeneration: Case of sugar industry in Vietnam. Energy 2004, 29, 1039–1051. [Google Scholar] [CrossRef]
- Doanh, P.Q. An Overview of Sugar Industry Development in Vietnam|News & Insights|Informa Connect Singapore. 2018. Available online: https://www.informaconnect.com.sg/insight/overview-sugar-industry-development-vietnam/ (accessed on 20 October 2020).
- Nguyen, N.L. Sugar Cane Typical Farm in Vietnam. 2015, pp. 1–17. Available online: www.agribenchmark.org (accessed on 25 September 2020).
- Kumar, R.; Kumar, M. An experimental study to evaluate the calorific values of bagasse after open sun drying. Int. J. Sci. Eng. Technol. Res. 2016, 5, 2153–2156. [Google Scholar]
- Brunerová, A.; Roubík, H.; Brožek, M.; Van Dung, D.; Phung, L.D.; Hasanudin, U.; Iryani, D.A.; Herak, D. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam. Waste Manag. Res. 2020, 38, 1239–1250. [Google Scholar] [CrossRef]
- Kanwal, S.; Chaudhry, N.; Munir, S.; Sana, H. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manag. 2019, 88, 280–290. [Google Scholar] [CrossRef]
- Gómez, E.O.; Torres, R.; De Souza, G.; Jackson, G. Sugarcane Trash as Feedstock for Second Generation Processes. In Sugarcane Bioethanol—R&D for Productivity and Sustainability; Cortez, L.A.B., Ed.; Bluche: Sao Paulo, Brazil, 2010; pp. 637–660. [Google Scholar] [CrossRef] [Green Version]
- Waldheim, L.; Monis, M.; Verde Leal, M.R. Biomass Power Generation: Sugar Cane Bagasse and Trash. In Progress in Thermochemical Biomass Conversion; Blackwell Science Ltd.: Oxford, UK, 2008; pp. 509–523. [Google Scholar] [CrossRef]
- Nakashima, G.T.; Martins, M.P.; Hansted, A.L.S.; Yamamoto, H.; Yamaji, F.M. Sugarcane trash for energy purposes: Storage time and particle size can improve the quality of biomass for fuel? Ind. Crops Prod. 2017, 108, 641–648. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Yu, Z.; Fang, S.; Lin, Y.; Liao, Y.; Ma, X. Investigation of Rice Straw Combustion by Using Thermogravimetric Analysis. Energy Procedia 2015, 75, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, X.; Fei, Z.; Jiang, Z.; Cai, Z.; Yu, Y. The properties of pellets from mixing bamboo and rice straw. Renew. Energy 2013, 55, 1–5. [Google Scholar] [CrossRef]
- Špunarová, M. Quality Evaluation of Solid Biofuels Based on Rice Straw Waste Biomass. Master’s Thesis, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic, 2016. [Google Scholar]
- Pietka, J.; Gendek, A.; Malaťák, J.; Velebil, J.; Moskalik, T. Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.). Biomass Bioenergy 2019, 127, 105290. [Google Scholar] [CrossRef]
- Jasinskas, A.; Streikus, D.; Vonžodas, T. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes. Renew. Energy 2020, 149, 11–21. [Google Scholar] [CrossRef]
- Afra, E.; Abyaz, A.; Saraeyan, A. The production of bagasse biofuel briquettes and the evaluation of natural binders (LNFC, NFC, and lignin) effects on their technical parameters. J. Clean. Prod. 2021, 278, 123543. [Google Scholar] [CrossRef]
- Jamora, J.B.; Gudia, S.E.L.; Go, A.W.; Giduquio, M.B.; Orilla, J.W.A.; Loretero, M.E. Potential reduction of greenhouse gas emission through the use of sugarcane ash in cement-based industries: A case in the Philippines. J. Clean. Prod. 2019, 239, 118072. [Google Scholar] [CrossRef]
- Szczerbowski, D.; Pitarelo, A.P.; Zandoná Filho, A.; Ramos, L.P. Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym. 2014, 114, 95–101. [Google Scholar] [CrossRef]
- Le, V.T.; Pitts, A. A survey on electrical appliance use and energy consumption in Vietnamese households: Case study of Tuy Hoa city. Energy Build. 2019, 197, 229–241. [Google Scholar] [CrossRef]
Production Quantity (t) | |
---|---|
Crop | Value |
Rice, paddy | 44,046,250 |
Sugarcane | 17,945,204 |
Vegetables, fresh | 14,879,631 |
Cassava | 9,847,074 |
Maize | 4,874,054 |
Fruit, fresh | 2,835,078 |
Production of Paddy by Regions and Provinces (t) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Red River Delta | 6,298,000 | Northern Middlands and Mountain Areas | 3,382,800 | Northern Central Area and Central Coastal Area | 7,059,600 | Central Highlands | 1,379,800 | Mekong River Delta | 24,506,900 | South East | 1,418,900 |
Province | Ha Noi | 1,024,600 | Ha Giang | 212,800 | Thanh Hoa | 1,413,500 | Kon Tum | 91,600 | Long An | 2,802,600 | Binh Phuoc | 42,600 |
Ha Tay | no data | Cao Bang | 132,500 | Nghe An | 1,009,100 | Gia Lai | 362,100 | Tien Giang | 1,254,500 | Tay Ninh | 813,000 | |
Vinh Phuc | 330,600 | Bac Kan | 114,700 | Ha Tinh | 535,300 | Dak Lak | 697,500 | Ben Tre | 236,700 | Binh Duong | 29,100 | |
Bac Ninh | 410,400 | Tuyen Quang | 262,400 | Quang Binh | 284,700 | Dak Nong | 78,700 | Tra Vinh | 1,268,000 | Dong Nai | 325,300 | |
Quang Ninh | 208,600 | Lao Cai | 172,900 | Quang Tri | 275,500 | Lam Dong | 149,900 | Vinh Long | 969,500 | Ba Ria—Vung Tau | 129,800 | |
Hai Duong | 702,500 | Yen Bai | 210,000 | Thua Thien-Hue | 334,400 | Dong Thap | 3,330,200 | Ho Chi Minh city | 79,100 | |||
Hai Phong | 440,800 | Thai Nguyen | 386,400 | Da Nang | 31,900 | An Giang | 3,926,900 | |||||
Hung Yen | 415,400 | Lang Son | 205,200 | Quang Nam | 462,600 | Kien Giang | 4,267,400 | |||||
Thai Binh | 1,030,400 | Bac Giang | 599,500 | Quang Ngai | 440,200 | Can Tho | 1,426,300 | |||||
Ha Nam | 386,300 | Phu Tho | 365,800 | Binh Dinh | 666,500 | Hau Giang | 1,246,100 | |||||
Nam Dinh | 891,200 | Dien Bien | 185,300 | Phu Yen | 392,200 | Soc Trang | 2,132,700 | |||||
Ninh Binh | 457,200 | Lai Chau | 143,800 | Khanh Hoa | 261,100 | Bac Lieu | 1,115,300 | |||||
Son La | 184,300 | Ninh Thuan | 243,300 | Ca Mau | 530,700 | |||||||
Hoa Binh | 207,200 | Binh Thuan | 709,300 | |||||||||
WHOLE COUNTRY 44,046,000 |
Pretreatment Method | Compound | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Chemical | Dilute acid | Cost-effective | Expensive acid | [44] |
Increase yield | Corrosion-resistant equipment | |||
Alkali | Efficient removal of lignin | Expensive alkali catalyst | [45] | |
Ionic liquids | Mild processing conditions | Expensive chemicals | [46] | |
Physico-chemical | Steam explosion | Eco-friendly approach | The bulk requirement of energy and water | [47] |
Eco-friendly approach | ||||
Physical | Extrusion | Reduction in crystal nature of cellulose | Not cost-effective | [44] |
Microwave | Better yield | Expensive | [45] | |
Milling | Reduction in size and degree of crystallinity | More consumption of power and energy | [44] |
Production of Sugarcane by Regions and Provinces (t) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Red River Delta | 105,757 | Northern Midlands and Mountain Areas | 2,105,331 | Northern Central Area and Central Coastal Area | 6,343,687 | Central Highlands | 3,942,434 | Mekong River Delta | 3,335,210 | South East | 1,985,158 |
Province | Ha Noi | 1751 | Ha Giang | 23,652 | Thanh Hoa | 1,700,627 | Kon Tum | 84,890 | Long An | 480,878 | Binh Phuoc | 6984 |
Ha Tay | no data | Cao Bang | 227,336 | Nghe An | 1,517,114 | Gia Lai | 2,577,719 | Tien Giang | 11,412 | Tay Ninh | 1,132,009 | |
Vinh Phuc | 4050 | Bac Kan | 5711 | Ha Tinh | 8350 | Dak Lak | 1,251,331 | Ben Tre | 59,190 | Binh Duong | 23,791 | |
Bac Ninh | 676 | Tuyen Quang | 535,530 | Quang Binh | 3300 | Dak Nong | 4,740 | Tra Vinh | 454,484 | Dong Nai | 787,680 | |
Quang Ninh | 25,084 | Lao Cai | 9295 | Quang Tri | 2459 | Lam Dong | 23,754 | Vinh Long | 14,681 | Ba Ria-Vung Tau | 14,002 | |
Hai Duong | 2827 | Yen Bai | 12,333 | Thua Thien-Hue | 4789 | Dong Thap | 1994 | Ho Chi Minh city | 20,692 | |||
Hai Phong | 3893 | Thai Nguyen | 9126 | Da Nang | no data | An Giang | 395 | |||||
Hung Yen | 45 | Lang Son | 8451 | Quang Nam | 9562 | Kien Giang | 367,307 | |||||
Thai Binh | 4747 | Bac Giang | 9946 | Quang Ngai | 166,183 | Can Tho | no data | |||||
Ha Nam | no data | Phu Tho | 18,553 | Binh Dinh | 66,787 | Hau Giang | 1,039,337 | |||||
Nam Dinh | 4278 | Dien Bien | 1368 | Phu Yen | 1,738,111 | Soc Trang | 843,587 | |||||
Ninh Binh | 58,406 | Lai Chau | 6358 | Khanh Hoa | 865,051 | Bac Lieu | 17,365 | |||||
Son La | 621,765 | Ninh Thuan | 201,300 | Ca Mau | 44,580 | |||||||
Hoa Binh | 615,907 | Binh Thuan | 60,054 | |||||||||
WHOLE COUNTRY 17,945,500 |
Parameters | Units | Material | ||
---|---|---|---|---|
Rice Straw | Rice Husks | Sugarcane Bagasse | ||
Moisture, M | wt.% ar | 13.76 | 9.14 | 32.14 |
Volatile matter, VM | wt.% d | 73.65 | 70.78 | 72.41 |
Non-volatile matter Fixed carbon, FC | wt.% d | 15.98 | 15.43 | 15.72 |
Ash, A | wt.% ar | 8.94 | 12.53 | 8.08 |
Ash, A | wt.% d | 10.37 | 13.79 | 11.91 |
Carbon, C | wt.% d | 44.90 | 43.89 | 45.19 |
Hydrogen, H | wt.% d | 5.56 | 5.43 | 6.08 |
Nitrogen, N | wt.% d | 0.80 | 0.91 | 1.30 |
Sulphur, S | wt.% d | 0.23 | 0.09 | 0.02 |
Chlorine, Cl | wt.% d | 0.04 | 0.03 | 0.06 |
Oxygen, O | wt.% d | 38.10 | 35.86 | 35.44 |
Net calorific value, Q | MJ kg−1 ar | 14.15 | 14.45 | 10.40 |
Net calorific value, Q | MJ kg−1 d | 16.80 | 16.15 | 16.47 |
Gross calorific value, Qgr | MJ kg−1 ar | 15.53 | 15.74 | 12.07 |
Gross calorific value, Qgr | MJ kg−1 d | 18.01 | 17.33 | 17.80 |
Region | Rice Straw | Rice Husks | ||||
---|---|---|---|---|---|---|
Production (t) | Energy Potential | Production (t) | Energy Potential | |||
(TJ) | (TWh) | (TJ) | (TWh) | |||
Mekong River Delta | 53,915,180 | 762,900 | 211.92 | 4,901,400 | 70,825 | 19.67 |
Northern Central area and Central coastal area | 15,531,120 | 219,765 | 61.05 | 1,411,920 | 20,402 | 5.67 |
Red River Delta | 13,855,600 | 196,057 | 54.46 | 1,259,600 | 18,201 | 5.06 |
Northern midlands and Mountain areas | 7,442,160 | 105,307 | 29.25 | 676,600 | 9776 | 2.72 |
South East | 3,121,580 | 44,170 | 12.27 | 283,800 | 4101 | 1.14 |
Central Highlands | 3,035,560 | 42,953 | 11.93 | 275,960 | 3988 | 1.11 |
Vietnam | 96,901,200 | 1,371,152 | 380.88 | 8,809,200 | 127,293 | 35.36 |
Province | Rice Straw | Rice Husks | ||||
---|---|---|---|---|---|---|
Production (t) | Energy Potential | Production (t) | Energy Potential | |||
(TJ) | (TWh) | (TJ) | (TWh) | |||
Kien Giang | 9,388,280 | 132,844 | 36.90 | 853,480 | 12,333 | 3.43 |
An Giang | 8,639,180 | 122,244 | 33.96 | 785,380 | 11,349 | 3.15 |
Dong Thap | 7,326,440 | 103,669 | 28.80 | 666,040 | 9624 | 2.67 |
Long An | 6,165,720 | 87,245 | 24.23 | 560,520 | 8100 | 2.25 |
Soc Trang | 4,691,940 | 66,391 | 18.44 | 426,540 | 6164 | 1.71 |
Region | Sugarcane Bagasse | Sugarcane Trash | ||||
---|---|---|---|---|---|---|
Production (t) | Energy Potential | Production (t) | Energy Potential | |||
(TJ) | (TWh) | (TJ) | (TWh) | |||
Northern Central area and Central coastal area | 1,903,106 | 19,792 | 5.50 | 1,268,737 | 14,717 | 4.09 |
Central Highlands | 1,182,730 | 12,300 | 3.42 | 788,487 | 9146 | 2.54 |
Mekong River Delta | 1,000,563 | 10,406 | 2.89 | 667,042 | 7738 | 2.15 |
Northern midlands and Mountain areas | 631,599 | 6569 | 1.82 | 421,066 | 4884 | 1.36 |
South East | 595,547 | 6194 | 1.72 | 397,032 | 4606 | 1.28 |
Red River Delta | 31,727 | 330 | 0.09 | 21,151 | 245 | 0.07 |
Vietnam | 5,383,650 | 55,989.96 | 15.55 | 3,589,100 | 41,633.56 | 11.56 |
Province | Sugarcane Bagasse | Sugarcane Trash | ||||
---|---|---|---|---|---|---|
Production (t) | Energy Potential | Production (t) | Energy Potential | |||
(TJ) | (TWh) | (TJ) | (TWh) | |||
Gia Lai | 773,316 | 8042 | 2.23 | 515,544 | 5980 | 1.66 |
Phu Yen | 521,433 | 5423 | 1.51 | 347,622 | 4032 | 1.12 |
Thanh Hoa | 510,188 | 5306 | 1.47 | 340,125 | 3945 | 1.10 |
Nhge An | 455,134 | 4733 | 1.31 | 303,423 | 3520 | 0.98 |
Dak Lak | 375,399 | 3904 | 1.08 | 250,266 | 2903 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beňová, D.; Mareš, K.; Hutla, P.; Ivanova, T.; Banout, J.; Kolaříková, M. Energy Potential of Agri Residual Biomass in Southeast Asia with the Focus on Vietnam. Agronomy 2021, 11, 169. https://doi.org/10.3390/agronomy11010169
Beňová D, Mareš K, Hutla P, Ivanova T, Banout J, Kolaříková M. Energy Potential of Agri Residual Biomass in Southeast Asia with the Focus on Vietnam. Agronomy. 2021; 11(1):169. https://doi.org/10.3390/agronomy11010169
Chicago/Turabian StyleBeňová, Denisa, Kryštof Mareš, Petr Hutla, Tatiana Ivanova, Jan Banout, and Michel Kolaříková. 2021. "Energy Potential of Agri Residual Biomass in Southeast Asia with the Focus on Vietnam" Agronomy 11, no. 1: 169. https://doi.org/10.3390/agronomy11010169
APA StyleBeňová, D., Mareš, K., Hutla, P., Ivanova, T., Banout, J., & Kolaříková, M. (2021). Energy Potential of Agri Residual Biomass in Southeast Asia with the Focus on Vietnam. Agronomy, 11(1), 169. https://doi.org/10.3390/agronomy11010169