Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- AFHORFRESH (Asociación Española de Frutas y Hortalizas Lavadas Listas para su Empleo). 2015. Available online: www.afhorla.com (accessed on 16 October 2019).
- CEBAS-CSIC (Centre for Applied Soil Science and Biology of the Segura—Spanish National Research Council) Cienciaceba’s blog. Fresh-cut products. 2015. Available online: www.cienciacebas.wordpress.com (accessed on 20 October 2019).
- Konstantopoulou, E.; Kapotis, G.; Salachas, G.; Petropouls, S.A.; Karapanos, I.C.; Passam, S.A. Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Sci. Hortic. 2010, 125, 93e.1–93e.5. [Google Scholar] [CrossRef]
- Mensinga, T.T.; Speijers, J.A.G.; Meulenbelt, J. Health Implications of Exposure to Environmental Nitrogenous Compounds. Toxicol. Rev. 2003, 22, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- OJEU (Official Journal of the European Union). Commission Regulation (EU) No 1258/2011 of December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Official Journal of the European Union. L. 320/15-17. 2011. Available online: http://eur-lex.europa.eu (accessed on 20 October 2019).
- Pavlou, G.C.; Ehaliotis, C.D.; Kavvadias, V.A. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 2007, 111, 319–325. [Google Scholar] [CrossRef]
- Dapoigny, L.; Tourdonnet, S.; Roger-Estrade, J.; Jeuffroy, M.H.; Fleury, A. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature. Agronomie 2000, 20, 843–855. [Google Scholar] [CrossRef] [Green Version]
- Lillo, C. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 1994, 90, 616–620. [Google Scholar] [CrossRef]
- Maldonado, J.M. Asimilación del nitrógeno y del azufre. In Fundamentos de fisiología vegetal, 2nd ed.; Azcón Bieto, J., Talón, M., Eds.; Mc Graw Hill: Madrid, Spain, 2008; pp. 287–303. [Google Scholar]
- Reinink, K.; Groenwold, R.; Bootsma, A. Genotypical differences in nitrate content in Lactuca sativa L. and related species and correlation with dry matter content. Euphytica 1987, 36, 11–18. [Google Scholar] [CrossRef]
- Behr, U.; Wiebe, H.J. Relation between photosynthesis and nitrate content of lettuce cultivars. Sci. Hortic. 1992, 49, 175–179. [Google Scholar] [CrossRef]
- Santamaria, P.; Gonella, M.; Elia, A.; Parente, A. Ways of reducing rocket salad nitrate content. Acta Hortic. 2001, 548, 529–537. [Google Scholar] [CrossRef]
- Collier, G.F.; Wurr, D.C.E. The relationship of tipburn incidence in head lettuce to evaporative water loss and leaf dimensions. J. Hort. Sci. 1981, 56, 9–13. [Google Scholar] [CrossRef]
- Maroto, J.V. Fisiopatías. En La lechuga y la escarole; Maroto Borrego, J.V., Miguel Gómez, A., Baixauli Soria, C., Eds.; Mundi-Prensa: Madrid, Spain, 2000; pp. 216–229. [Google Scholar]
- Pazkill, D.A.; Tibbits, T.W.; Williams, P.H. Enhancement of Calcium transport to Inner Leaves of Cabbage for Prevention Tipburn. J. Am. Soc. Hort. Sci. 1976, 101, 645–648. [Google Scholar]
- Pazkill, D.A.; Tibbit, T.W. Evidence that Root Pressure Flow Is Required for Calcium Transport to Head Leaves of Cabbage. Plant Physiol. 1977, 60, 854–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, G.F.; Tibbits, T.W. Tipburn of Lettuce. Hortic. Rev. 1982, 4, 49–65. [Google Scholar]
- Collier, G.F.; Tibbits, T.W. Effects on Relative Humidity and Root Temperature on Calcium Concentration and Tipburn Development in Lettuce. J. Am. Soc. Hort. Sci. 1984, 109, 128–131. [Google Scholar]
- Rosen, C.J. Leaf Tipburn in Cauliflower as Affected by Cultivar, Calcium Sprays, and nitrogen Nutrition. HortScience 1990, 25, 660–663. [Google Scholar] [CrossRef] [Green Version]
- Frantz, J.M.; Ritchue, G.; Cometti, N.N.; Robienson, J.; Bugbee, B. Exploring the Limits of Crop Productivity: Beyond the Limits of Tipburn in Lettuce. J. Am. Soc. Hort. Sci. 2004, 129, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Konno, H.; Yamaya, T.; Yamakasi, Y.; Matsumoto, H. Pectic Polysaccharide Breakdown of Cell Walls in Cucumber Rootss Grown with Calcium Starvation. Plant Physiol. 1984, 76, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Barta, J.D.; Tibbits, T.W. Calcium localization in lettuce with and withouth Tipburn: Comparison of controlled environment and field-gorwn plants. J. Am. Soc. Hort. Sci. 1991, 116, 870–875. [Google Scholar] [CrossRef] [Green Version]
- Guardiola Bárcena, J.L.; García Luis, A. Fisiología vegetal I: Nutrición y transporte, 1st ed.; Síntesis: Madrid, Spain, 1990; p. 440. [Google Scholar]
- Wurr, D.C.E.; Fellows, J.R. The influence of solar radiation and temperature on the head weight of crips lettuce. J Hortic. Sci. 1991, 66, 183–190. [Google Scholar] [CrossRef]
- Wheelet, T.R.; Hadley, P.; Morison, J.I.L.; Ellis, R.H. Effects of temperature on the growth of lettuce (Lactuca sativa L.) and the implications for assessing the impacts of potential climate change. Eur. J. Agron. 1993, 2, 305–311. [Google Scholar] [CrossRef]
- San Bautista, A.; López-Galarza, S.; Pascual, B.; Alagarda, J.; Fresquet, J.L.; Bono, M.S.; Palau, V.; Laza, P.; Torres, J.F.; Maroto, J.V. Influencia de distintas dosis de riego y soluciones nutritivas en el rendimiento comercial y la incidencia de Tipburn en cultivo protegido de dos cvs de lechuga Iceberg. Cuadernos de Fitopatología 2003, 78, 112–121. [Google Scholar]
- Bres, W.; Weston, A. Nutrient accumulation and Tipburn in NFT-grown Lettuce at Several Potassium and pH Levels. HortScience 1992, 27, 790–792. [Google Scholar] [CrossRef] [Green Version]
- Drake, B.G.; Raschke, K.; Salisbury, F.B. Temperatures and Transpiration Resistances of Xanthium Leaveas as Affected by Air Temperature, Humidity, and Wind Speed. Plant Physiol. 1970, 46, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Stratton, M.L.; Nagata, R.T. Preliminary determination of parameters to develop and objective procedure for assessing tipburn in lettuce. Proc. Fla. State Hort. Soc. 1993, 106, 157–159. [Google Scholar]
- Mabrouk, A.E.; Cock, J.H. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynth. Res. 1985, 7, 137–149. [Google Scholar]
- Schulze, E. Carbon dioxide and water vapor Exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 1986, 37, 247–274. [Google Scholar] [CrossRef]
- Leonardia, C.; Guichard, S.; Bertinb, N. High vapour pressure déficit infuences growth transpiration and quality of tomato fruit. Sci. Hortic. 2000, 84, 285–296. [Google Scholar] [CrossRef]
- Maroto, J.V. Etiología y descripción de las principales fisiopatías de la horticultura Mediterránea; Ediciones y promociones L.A.V.: Valencia, Spain, 1997. [Google Scholar]
- Everaarts, A.P.; Blom-Zandstra, M. Internal tipburn of cabbage (Brassica oleracea var. capitae). J. Hort. Sci. Biotechnol. 2001, 76, 515–521. [Google Scholar]
- Kuronuma, T.; Wotanabe, Y.; Ando, M.; Watanabe, H. Tipburn Severity and Calcium Distribution in Lisianthus (Eustoma Grandiflorum (Raf.) Shim) Cultivars Under Different Relative Air Humidity Conditions. Agronomy 2018, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Brumm, I. Einflub des Stickstoffangebots auf das Aufreten von Ca-Mangel bei Kopfsalat (Lactuca sativa L.). Ph.D. Thesis, Universität Hannover, Hannover, Germany, 1992. [Google Scholar]
- Eckerson, S.H. Protein synthesis by plants I. Nitrate reduction. Bot. Gaz. 1924, 77, 377–390. [Google Scholar] [CrossRef]
- Skok, J. Effect of the form of the available nitrogen on the calcium deficiency symptoms in the bean plant. Plant Physiol. 1941, 16, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gromaz, A. Escarola (Cichorium endivia L.): Sistemas de manejo y ciclos como factores de la incidencia de fisiopatias y acumulación de nitratos. Ph.D. Thesis, Universitat Politècnica de València, València, Spain, November 2016. [Google Scholar]
- Stagnari, F.; Di Bitteto, V.; Pisante, M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci. Hortic. 2007, 114, 225–233. [Google Scholar] [CrossRef]
- Govedarica-Lucik, V.; Mojevic, M.; Percovic, G.; Govedarica, B. Yield and nutritional quality of greenhouse lettuce (Lactuca sativa L.) as affected by genotype and production methods. Genetika 2014, 46, 1027–1036. [Google Scholar] [CrossRef]
- Nicholas, J.C.; Harper, J.E.; Hageman, R.H. Nitrate Reductase Activity in Soybeans (Glycine max [L.] Merr.). Plant Physiol. 1976, 58, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Blom-Zandstra, M.; Lampe, J.E.M. The Role of Nitrate in the Osmoregulation of Lettuce (Lactuca sativa L.) Grown at Different Light Intensities. J. Exp. Bot. 1985, 36, 1043–1052. [Google Scholar]
- Fallovo, C.; Rouphael, Y.; Cardelli, M.; Rea, E.; Battistelli, A.; Colla, G. Yield and quality of leafy lettuce in response to nutrient solution and growing season. J. Food Agric. Environ. 2009, 7, 456–462. [Google Scholar]
- Parks, S.E.; Huett, D.O.; Campbell, L.C.; Spohr, L.J. Nitrate and nitrite in Australian leafy vegetables. Aust. J. Agric. Res. 2008, 59, 632–638. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Torres, J.F.; Ndamekele, J.B.; San Bautista, A.; Pascual-España, B.; Bono, M.S.; López Galarza, S.; Pascual-Seva, N.; Alagarda, J.; Maroto, J.V. Influencia de ciclos, fertilización nitrogenada y modalidades de cultivo en la incidencia de diversas fisiopatías y la acumulación de nitratos en cuatro cultivares de minilechuga (I). Phytoma 2013, 245, 16–21. [Google Scholar]
- Lorenz, H.P.; Wiebe, H.J. Effect of temperature on photosynthesis of lettuce adapted to different light and temperature conditions. Sci. Hortic. 1980, 13, 115–123. [Google Scholar] [CrossRef]
- Rincón Sanchez, L.; Pérez Crespo, A.; Pellicer Botía, C.; Sáez Sironi, J.; Abadía Sanchez, A. Influencia de la fertilización nitrogenada en la absorción de nitrógeno y acumulación de nitratos en la lechuga iceberg. Invest. Agric. Prod. Prot. Veg. 2002, 17, 303–318. [Google Scholar]
Year | Seasons | Seeding Date | Transplanting Date | Harvest Date | |
---|---|---|---|---|---|
2013 | Winter | 29/01/13 | 06/03/13 | Greenhouse Open-field | 26/04/13 08/05/13 |
Spring | 03/05/13 | 27/05/13 | Greenhouse Open-field | 16/07/13 22/07/13 | |
2014 | Winter | 04/12/13 | 10/01/14 | Greenhouse Open-field | 10/03/14 to 20/03/14 27/03/14 to 01/04/14 |
Spring | 30/03/14 | 24/04/14 | Greenhouse Open-field | 02/06/14 to 03/06/14 12/06/14 to 13/06/14 |
Temperature (°C) | Humidity Relative (%) | |
---|---|---|
Greenhouse | 26.91± 0.53 [26.38; 27.73] | 57.44± 2.57 [57.87; 60.01] |
Open-field | 23.75± 1.08 [22.67; 24.83] | 67.62± 2.11 [65.51; 69.73] |
Low humidity | 20.22± 0.42 [19.80; 20.64] | 55.37± 1.49 [53.88; 56.86] |
High humidityH | 25.29± 0.55 [24.70; 25.84] | 68.49± 1.23 [67.26; 69.72] |
Biomass of Marketable Plants (g·Plant−1) | |||||
---|---|---|---|---|---|
2013 | 2014 | ||||
Winter | Spring | Winter | Spring | ||
Cultivar (Cv) | |||||
‘Cuartana’ | 669.3 ± 58.2 | 317.4 ± 28.7 | 769.7 ± 27.9 | 694.4 ± 32.5 b | |
‘Natacha’ | 650.7 ± 58.2 | 365.7 ± 49.7 | 755.4 ± 27.9 | 811.0 ± 40.7 a | |
Humidity level (HL) | |||||
Low Humidity | 621.1 ± 58.2 | 422.8 ± 49.7 a | 694.2 ± 28.8 b | 629.8 ± 35.5 | |
High Humidity | 698.9 ± 58.2 | 260.3 ± 28.7 b | 830.9 ± 29.4 a | 709.6 ± 44.5 | |
Cropping system (CS) | |||||
Greenhouse | 539.4 ± 58.2 b | 377.7 ± 49.7 | 477.2 ± 26.3 b | 543.6 ± 31.8 b | |
Open-field | 780.7 ± 58.2 a | 305.7 ± 28.7 | 1047.9 ± 26.3 a | 795.6 ± 52.1 a | |
Analysis of variance Parameters (degrees of freedom) | Significance level | ||||
Cv (n = 1) | ns | ns | ns | ** | |
HL (n = 1) | ns | ** | ** | ns | |
CS (n = 1) | ** | ns | ** | ** | |
Cv × HL (n = 1) | ns | ns | ns | ns | |
Cv × CS (n = 1) | ns | ns | ns | * | |
HL × CS (n = 1) | ns | ** | ** | ns | |
Cv × HL × CS (n = 1) | ns | ns | ns | ns |
Tipburn Incidence (%) | ||||
---|---|---|---|---|
2013 | 2014 | |||
Winter | Spring | Winter | Spring | |
Cultivar (Cv) | ||||
‘Cuartana’ | 6.7 ± 8.4 | 10.8 ± 7.9 b | 1.6 ± 2.1 b | 18.3 ± 7.3 b |
‘Natacha’ | 20.2 ± 25.2 | 46.9 ± 7.9 a | 16.6 ± 20.9 a | 48.3 ± 7.3 a |
Humidity level (HL) | ||||
Low Humidity | 25.0 ± 31.5 a | 29.4 ± 7.9 | 16.6 ± 25.2 a | 57.7 ± 6.0 a |
High Humidity | 1.7 ± 2.1 b | 28.3 ± 7.9 | 1.6 ± 1.3 b | 21.1 ± 6.0 b |
Cropping system (CS) | ||||
Greenhouse | 26.4 ±33.5 a | 47.1 ± 7.9 a | 16.6 ± 25.2 a | 31.1 ± 6.0 b |
Open-field | 0.0 ± 0.0 b | 10.7 ± 7.9 b | 1.6 ± 1.3 b | 47.7 ± 6.0 a |
Analysis of variance Parameters (degrees of freedom) | Significance level | |||
Cv (n = 1) | ns | ** | ** | ** |
HL (n = 1) | ** | ns | ** | ** |
CS (n = 1) | ** | ** | ** | * |
Cv × HL (n = 1) | * | * | ** | ** |
Cv × CS (n = 1) | * | * | ** | ns |
HL × CS (n = 1) | ** | ns | ** | ** |
Cv × HL × CS (n = 1) | * | * | ** | ** |
Nitrate Content (mg/kg Fresh Product) | ||||
---|---|---|---|---|
2013 | 2014 | |||
Winter | Spring | Winter | Spring | |
Cultivar (Cv) | ||||
‘Cuartana’ | 2253.8 ± 206.2 a | 3690.4 ± 412.8 | 2172.9 ± 159.4 | 2733.7 ± 283.2 |
‘Natacha’ | 1656.3 ± 206.2 b | 3595.1 ± 412.8 | 1847.0 ± 159.4 | 2849.1 ± 283.2 |
Humidity level (HL) | ||||
Low Humidity | 2019.3 ± 206.2 | 3260.9 ± 412.8 | 2178.0 ± 130.2 | 3061.8 ± 231.3 a |
High Humidity | 1890.7 ± 206.2 | 4020.6 ± 412.8 | 1935.9 ± 130.2 | 2443.5 ± 231.3 b |
Cropping system (CS) | ||||
Greenhouse | 2411.1 ± 206.2 a | 3567.9 ± 412.8 | 2634.2 ± 130.2 a | 3130.8 ± 231.3 a |
Open-field | 1498.8 ± 206.2 b | 3713.5 ± 412.8 | 1479.8 ± 130.2 b | 2374.4 ± 231.3 b |
Analysis of variance Parameters (degrees of freedom) | Significance level | |||
Cv (n = 1) | * | ns | ns | ns |
HL (n = 1) | ns | ns | ns | ** |
CS (n = 1) | * | ns | ** | ** |
Cv × HL (n = 1) | ns | ns | ns | ns |
Cv × CS (n = 1) | ns | ns | * | ns |
HL × CS (n = 1) | ns | ns | ns | ns |
Cv × HL × CS (n = 1) | ns | ns | ns | ns |
Chlorophyll Content (mg/g Fresh Product) | ||||
---|---|---|---|---|
2013 | 2014 | |||
Winter | Spring | Winter | Spring | |
Cultivar (Cv) | ||||
‘Cuartana’ | 1.07 ± 0.009 a | 1.17 ± 0.01 a | 1.01 ± 0.006 a | 1.02 ± 0.01 a |
‘Natacha’ | 1.00 ± 0.009 b | 1.12 ± 0.01 b | 0.96 ± 0.006 b | 0.99 ± 0.01 b |
Humidity level (HL) | ||||
Low Humidity | 1.06 ± 0.009 a | 1.14 ± 0.01 | 0.99 ± 0.006 | 1.01 ± 0.01 |
High Humidity | 1.01 ± 0.009 b | 1.15 ± 0.01 | 0.98 ± 0.006 | 1.00 ± 0.01 |
Cropping system (CS) | ||||
Greenhouse | 1.01 ± 0.009 b | 1.08 ± 0.01 b | 0.96 ± 0.006 b | 0.96 ± 0.01 b |
Open-field | 1.06 ± 0.009 a | 1.21 ± 0.01 a | 1.01 ± 0.006 a | 1.05 ± 0.01 a |
Analysis of variance Parameters (degrees of freedom) | Significance level | |||
Cv (n = 1) | * | * | ** | * |
HL (n = 1) | * | ns | ns | ns |
CS (n = 1) | ** | ** | ** | ** |
Cv × HL (n = 1) | ns | ns | ns | ns |
Cv × CS (n = 1) | ns | ns | ns | ns |
HL × Cv (n = 1) | ns | ns | ns | ns |
Cv × HL × CS (n = 1) | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Bautista, A.; Gromaz, A.; Ferrarezi, R.S.; López-Galarza, S.; Pascual, B.; Maroto, J.V. Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy 2020, 10, 749. https://doi.org/10.3390/agronomy10050749
San Bautista A, Gromaz A, Ferrarezi RS, López-Galarza S, Pascual B, Maroto JV. Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy. 2020; 10(5):749. https://doi.org/10.3390/agronomy10050749
Chicago/Turabian StyleSan Bautista, Alberto, Andrea Gromaz, Rhuanito Soranz Ferrarezi, Salvador López-Galarza, Bernardo Pascual, and José Vicente Maroto. 2020. "Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive" Agronomy 10, no. 5: 749. https://doi.org/10.3390/agronomy10050749
APA StyleSan Bautista, A., Gromaz, A., Ferrarezi, R. S., López-Galarza, S., Pascual, B., & Maroto, J. V. (2020). Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy, 10(5), 749. https://doi.org/10.3390/agronomy10050749