Dicamba Retention in Commercial Sprayers Following Triple Rinse Cleanout Procedures, and Soybean Response to Contamination Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cleanout Procedure Comparisons
2.2. Rinsate Application on Sensitive Soybean Bioassays
2.3. Dicamba Cleanout Survey on Commercial Sprayers
2.4. Soybean Response to Dicamba Concentrations
3. Results
3.1. Comparison of Four Cleanout Procedures for Dicamba Residue Retention
3.2. Application of Fourth Rinsates on Sensitive Soybean Bioassays
3.3. Survey of Commercial Sprayers for Dicamba Residue Retention Following Triple Rinse with Water
3.4. Soybean Dose-Response to Dicamba Concentrations
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bradley, K.W. A Final Report on Dicamba-injured Soybean Acres. University of Missouri. 2017. Available online: https://ipm.missouri.edu/IPCM/2017/10/final_report_dicamba_injured_soybean/ (accessed on 7 March 2020).
- Kniss, A.R. Soybean response to dicamba: A meta-analysis. Weed Technol. 2018, 32, 507–512. [Google Scholar] [CrossRef]
- Egan, J.F.; Barlow, K.M.; Mortensen, D.A. A meta-analysis on the effects of 2, 4-D and dicamba drift on soybean and cotton. Weed Sci. 2014, 62, 193–206. [Google Scholar] [CrossRef]
- Egan, J.F.; Mortensen, D.A. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxicol. Chem. 2012, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Boerboom, C. Field case studies of dicamba movement to soybeans. In Proceedings of the Wisconsin Crop Management Conference: 2004 Proceedings Papers; University of Wisconsin–Madison: Madison, WI, USA, 2004; pp. 406–408. [Google Scholar]
- Griffin, J.L.; Bauerle, M.J.; Stephenson, D.O.; Miller, D.K.; Boudreaux, J.M. Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technol. 2013, 27, 696–703. [Google Scholar] [CrossRef]
- Mueller, T.C.; Wright, D.R.; Remund, K.M. Effect of formulation and application time of day on detecting dicamba in the air under field conditions. Weed Sci. 2013, 61, 586–593. [Google Scholar] [CrossRef]
- Mueller, T.C.; Steckel, L.E. Dicamba volatility in humidomes as affected by temperature and herbicide treatment. Weed Technol. 2019, 33, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Soltani, N.; Nurse, R.E.; Sikkema, P.H. Response of glyphosate-resistant soybean to dicamba spray tank contamination during vegetative and reproductive growth stages. Can. J. Plant Sci. 2016, 96, 160–164. [Google Scholar] [CrossRef]
- Werle, R.; Oliveira, M.C.; Jhala, A.J.; Proctor, C.A.; Rees, J.; Klein, R. Survey of Nebraska Farmers’ Adoption of Dicamba-Resistant Soybean Technology and Dicamba Off-Target Movement. Weed Technol. 2018, 32, 754–761. [Google Scholar]
- Shaner, D.L. Herbicide Handbook of the Weed Science Society of America; Shaner, L., Ed.; Weed Science Society of America: Champagne, IL, USA, 2014; pp. 22–232. [Google Scholar]
- Solomon, C.B.; Bradley, K.W. Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technol. 2014, 28, 454–464. [Google Scholar]
- Robinson, A.P.; Simpson, D.M.; Johnson, W.G. Response of glyphosate-tolerant soybean yield components to dicamba exposure. Weed Sci. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Andersen, S.M.; Clay, S.A.; Wrage, L.J.; Matthees, D. Soybean foliage residues of dicamba and 2, 4-D and correlation to application rates and yield. Agron. J. 2004, 96, 750–760. [Google Scholar] [CrossRef]
- Al-Khatib, K.; Peterson, D. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 1999, 13, 264–270. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Triplett, G.B., Jr.; Sobotka, F.E. Dicamba injury to soybean. Agron. J. 1989, 81, 637–643. [Google Scholar] [CrossRef]
- Kelley, K.B.; Wax, L.M.; Hager, A.G.; Riechers, D.E. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci. 2005, 53, 101–112. [Google Scholar] [CrossRef]
- Anonymous. Xtendimax® with VaporGrip® Technology Label; Monsanto Co.: St. Louis, MO, USA, 2018; Available online: http://www.cdms.net/ldat/ldDF9006.pdf (accessed on 14 February 2020).
- Anonymous. Engenia® Herbicide Label; BASF Corporation: Triangle Park, NC, USA, 2018; Available online: http://www.cdms.net/ldat/ldDG8028.pdf (accessed on 14 February 2020).
- Anonymous. Tavium® Plus VaporGrip™ Technology Label; Syngenta Crop Protection, LLC: Greensboro, NC, USA, 2019; Available online: http://www.cdms.net/ldat/ldFSO000.pdf (accessed on 18 March 2019).
- Cundiff, G.T.; Reynolds, D.B.; Mueller, T.C. Evaluation of dicamba persistence among various agricultural hose types and cleanout procedures using soybean (Glycine max) as a bio-indicator. Weed Sci. 2017, 65, 305–316. [Google Scholar] [CrossRef]
- Steckel, L.; Craig, C.; Thompson, A. Cleaning Plant Growth Regulator (PGR) Herbicides out of Field Sprayers. Knoxville, TN: The University of Tennessee Agricultural Extension Service Pub W071:3 p. 2010. Available online: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1103&context=utk_agexcrop (accessed on 28 May 2020).
- Osborne, P.P.; Xu, Z.; Swanson, K.D.; Walker, T.; Farmer, D.K. Dicamba and 2, 4-D residues following applicator cleanout: A potential point source to the environment and worker exposure. J. Air Waste Manag. Assoc. 2015, 65, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, S.Z.; Streibig, J.C.; Ritz, C. Utilizing R software package for dose-response studies: The concept and data analysis. Weed Technol. 2007, 21, 840–848. [Google Scholar] [CrossRef]
- Inman, M.D.; Vann, M.C.; Fisher, L.R.; Gannon, T.W. Simulated Spray Tank Contamination with Dicamba. Department of Crop and Soil Services, North Carolina State University. 2014. Available online: https://www.coresta.org/sites/default/files/abstracts/2018_TWC23_Inman.pdf (accessed on 2 April 2020).
- Foster, M.R.; Griffin, J.L. Injury criteria associated with soybean exposure to dicamba. Weed Technol. 2018, 32, 608–617. [Google Scholar] [CrossRef]
- Johnson, V.A.; Fisher, L.R.; Jordan, D.L.; Edmisten, K.E.; Stewart, A.M.; York, A.C. Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2, 4-D. Weed Technol. 2012, 26, 195–206. [Google Scholar] [CrossRef]
- Anonymous. Valor® Herbicide EZ Label; Valent U.S.A. LLC: Walnut Creek, CA, USA, 2019; Available online: https://s3-us-west-1.amazonaws.com/agrian-cg-fs1-production/pdfs/ValorR_EZ_Herbicide2_Label.pdf (accessed on 10 April 2020).
Rinse | Cleaning Agent A | Amount Added to Tank |
---|---|---|
Procedure 1 | ||
1 | Water | 378.00 L |
2 | Water | 378.00 L |
3 | Water | 378.00 L |
4 | Water | 378.00 L |
Procedure 2 | ||
1 | Ammonium | 11.34 L |
2 | Glyphosate | 6.24 kg ai |
3 | Water | 378.00 L |
4 | Water | 378.00L |
Procedure 3 | ||
1 | Ammonium | 11.34 L |
2 | Fimco™ detergent | 0.90 kg |
3 | Water | 378.00 L |
4 | Water | 378.00L |
Procedure 4 | ||
1 | Ammonium | 11.34 L |
2 | Protank® detergent | 0.95 L |
3 | Water | 378.00 L |
4 | Water | 378.00 L |
ID No. | Location | Model A,B,C,D | Boom Width (m) | Tank Capacity (L) |
---|---|---|---|---|
1 | Baldwin Co., AL | JD 4630 | 24 | 2271 |
2 | Coffee Co., AL | JD 4730 | 33 | 3028 |
3 | Coffee Co., AL | JD R4030 | 33 | 3028 |
4 | Dallas Co., AL | JD R4030 | 33 | 3785 |
5 | Dallas Co., AL | JD R4030 | 27 | 3028 |
6 | Geneva Co., AL | JD 4730 | 30 | 3028 |
7 | Henry Co., AL | Tractor mounted | 7 | 568 |
8 | Henry Co., AL | Tractor mounted | 11 | 568 |
9 | Henry Co., AL | Tractor mounted | 7 | 568 |
10 | Henry Co., AL | JD 6700 | 11 | 1136 |
11 | Henry Co., AL | Tractor mounted | 11 | 1136 |
12 | Henry Co., AL | JD 6700 | 11 | 1136 |
13 | Limestone Co, AL | MudMaster™ | 9 | 416 |
14 | Limestone Co, AL | JD 6700 | 11 | 1590 |
15 | Macon Co., AL | Tractor mounted | 7 | 454 |
16 | Jackson Co., FL | JD 4730 | 27 | 3028 |
17 | Santo Rosa Co., FL | Tractor mounted | 7 | 454 |
18 | Berrien Co., GA | Tractor mounted | 11 | 1136 |
19 | Berrien Co., GA | JD 4730 | 33 | 3028 |
20 | Irwin Co., GA | Tractor mounted | 16 | 1136 |
21 | Irwin Co., GA | JD 4730 | 33 | 3028 |
22 | Tift Co., GA | Tractor mounted | 11 | 1893 |
23 | Tift Co., GA | JD R4030 | 33 | 3028 |
24 | Tift Co., GA | JD R4030 | 33 | 3028 |
25 | Worth Co., GA | JD R4030 | 33 | 3028 |
Year | Location | Planting Date | Application Date | Harvest Date | Temperature at Application °C | Relative Humidity at Application % |
---|---|---|---|---|---|---|
2017 | Macon Co., AL | 6/15/2017 | 8/15/2017 | 11/29/2017 | 33 | 72 |
2018 | Macon Co., AL | 6/21/2018 | 8/08/2018 | 11/06/2018 | 34 | 48 |
2019 | Macon Co., AL | 5/29/2019 | 7/10/2019 | 11/17/2019 | 35 | 55 |
2019 | Lincoln Co., NE | 6/03/2019 | 7/15/2019 | 10/14/2019 | 33 | 54 |
Cleaning Procedure | Rinse | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Concentration (µg mL−1) | ||||||||
Triple rinse with water | 298.32 | a | 21.12 | a | 3.56 | a | 1.25 | a |
Ammonium fb glyphosate fb water | 521.98 | a | 16.67 | a | 0.72 | b | 0.67 | a |
Ammonium fb Fimco™ fb water | 373.13 | a | 29.75 | a | 1.21 | ab | 0.90 | a |
Ammonium fb Protank™ fb water | 472.65 | a | 29.96 | a | 1.28 | ab | 0.50 | a |
Sprayer | ||||||||
Hagie Upfront STS 10 | 543.05 | A | 31.75 | A | 2.55 | A | 1.09 | A |
John Deere 6700 | 270.34 | B | 16.94 | A | 0.75 | B | 0.91 | A |
SprayCoup 4660 | 436.16 | AB | 24.44 | A | 1.78 | AB | 0.48 | A |
ID No. | Rinse | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Dicamba Concentration (µg mL−1) C | ||||
1 | 27.76 | 0.86 | 0.10 | <0.10 |
2 | 44.13 | 0.10 | 0.74 | 0.17 |
3 | 294.96 | 9.10 | 2.18 | 0.68 |
4 | 0.54 | 0.20 | 0.17 | <0.10 |
5 | 24.08 | 3.55 | 0.00 | 0.00 |
6 | 41.83 | 0.62 | 0.14 | <0.10 |
7 | 57.87 | 0.10 | 0.10 | <0.10 |
8 | 55.20 | 0.10 | 0.25 | <0.10 |
9 | 82.31 | 1.51 | 0.07 | <0.10 |
10 | 154.28 | 7.13 | 0.12 | <0.10 |
11 | 31.28 | 0.10 | 0.10 | 0.12 |
12 | 146.78 | 10.90 | 0.15 | 0.07 |
13 | 60.41 | 0.12 | 0.17 | <0.10 |
14 | 70.22 | 3.18 | 0.23 | <0.10 |
15 | 17.25 | 0.10 | 0.10 | <0.10 |
16 | 2.70 | 0.10 | 0.10 | <0.10 |
17 | 73.77 | 0.10 | 0.10 | <0.10 |
18 | 287.17 | 18.61 | 6.89 | <0.10 |
19 | 74.91 | 5.75 | 0.08 | 0.16 |
20 | 145.09 | 8.41 | 0.10 | <0.10 |
21 | 14.97 | 0.43 | 0.21 | <0.10 |
22 | 0.10 | 0.77 | 0.10 | <0.10 |
23 | 96.79 | 4.97 | 1.02 | <0.10 |
24 | 49.59 | 7.70 | 1.18 | 1.00 |
25 | 664.82 | 84.69 | 5.35 | 0.47 |
Average | 100.75 | 6.78 | 0.79 | 0.17 |
Concentration (µg mL−1) | 14 DAT | 21 DAT | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AL 2017 | AL 2018 | AL 2019 | NE 2019 | AL 2017 | AL 2018 | AL 2019 | NE 2019 | |||||||||
0.25 | 1 | d | 5 | d | 4 | e | 10 | d | 2.5 | c | 10 | de | 5 | e | 7 | e |
1.00 | 8 | cd | 1 | d | 16 | de | 17 | d | 4 | c | 3 | e | 18 | de | 17 | e |
5.00 | 10 | cd | 20 | cd | 31 | d | 33 | c | 13 | c | 15 | de | 31 | d | 37 | d |
10.00 | 15 | c | - | 31 | d | 37 | c | 14 | c | - | 30 | d | 40 | cd | ||
25.00 | 16 | c | 30 | bc | 26 | d | - | 13 | c | 29 | cd | 26 | d | - | ||
100.00 | 20 | c | 44 | bc | 55 | c | 47 | b | 15 | c | 44 | bc | 59 | c | 48 | bc |
250.00 | 49 | b | 53 | b | 76 | b | 48 | b | 50 | b | 56 | b | 78 | b | 55 | b |
1000.00 | 80 | a | 84 | a | 100 | a | 89 | a | 91 | a | 83 | a | 100 | a | 88 | a |
Concentration (µg mL−1) | Yield (kg ha−1) B,C | |||||||
---|---|---|---|---|---|---|---|---|
AL 2017 | AL 2018 | AL 2019 | NE 2019 | |||||
0.00 | 3652 | a | 1150 | abc | 852 | ab | 4934 | abc |
0.25 | 3524 | a | 1337 | a | 921 | ab | 5019 | ab |
1.00 | 3371 | a | 1280 | ab | 931 | ab | 5117 | a |
5.00 | 3289 | ab | 1268 | ab | 999 | a | 4307 | bc |
10.00 | 2927 | bc | - | 921 | ab | 4112 | c | |
25.00 | 3219 | abc | 832 | bcd | 885 | ab | - | |
100.00 | 2833 | c | 712 | cd | 842 | ab | 2908 | d |
250.00 | 1319 | d | 405 | d | 648 | b | 1539 | e |
1000.00 | 376 | e | 442 | d | 0 | c | 124 | f |
Data Type | c ± SE | p Value | b ± SE | p Value | e ± SEM C | p Value | ED5 (g ae ha−1) | ED10 (g ae ha−1) |
---|---|---|---|---|---|---|---|---|
Visual injury | 0 | - | −0.5971 ±0.0530 | <0.0001 | 16.4181 ±2.0377 | <0.0001 | 0.1185 ±0.0535 | 0.4143 ±0.1434 |
Yield loss | −1.5831 ±2.2259 | 0.4782 | −1.1190 ±0.1677 | <0.0001 | 30.9877 ±3.8327 | <0.0001 | 2.8525 ±1.1123 | 4.9602 ±1.5494 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Browne, F.B.; Li, X.; Price, K.J.; Wang, J.; Wang, Y.; Kruger, G.R.; Golus, J.; Macedo, G.d.C.; Vieira, B.C.; Sandlin, T. Dicamba Retention in Commercial Sprayers Following Triple Rinse Cleanout Procedures, and Soybean Response to Contamination Concentrations. Agronomy 2020, 10, 772. https://doi.org/10.3390/agronomy10060772
Browne FB, Li X, Price KJ, Wang J, Wang Y, Kruger GR, Golus J, Macedo GdC, Vieira BC, Sandlin T. Dicamba Retention in Commercial Sprayers Following Triple Rinse Cleanout Procedures, and Soybean Response to Contamination Concentrations. Agronomy. 2020; 10(6):772. https://doi.org/10.3390/agronomy10060772
Chicago/Turabian StyleBrowne, Frances B., Xiao Li, Katilyn J Price, Jianping Wang, Yi Wang, Greg R Kruger, Jeff Golus, Gabrielle de Castro Macedo, Bruno C. Vieira, and Tyler Sandlin. 2020. "Dicamba Retention in Commercial Sprayers Following Triple Rinse Cleanout Procedures, and Soybean Response to Contamination Concentrations" Agronomy 10, no. 6: 772. https://doi.org/10.3390/agronomy10060772
APA StyleBrowne, F. B., Li, X., Price, K. J., Wang, J., Wang, Y., Kruger, G. R., Golus, J., Macedo, G. d. C., Vieira, B. C., & Sandlin, T. (2020). Dicamba Retention in Commercial Sprayers Following Triple Rinse Cleanout Procedures, and Soybean Response to Contamination Concentrations. Agronomy, 10(6), 772. https://doi.org/10.3390/agronomy10060772