Trifluralin and Atrazine Sensitivity to Selected Cereal and Legume Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Crop Species, Herbicides and Soil Type
2.2. Preparation and Application of Herbicides at Different Concentrations
2.3. Planting and Growing Test Crops
2.4. Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Trifluralin on the Test Crop Species
3.2. Effect of Atrazine on the Test Crop Species
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Congreve, M.; Cameron, J. Soil Behaviour of Pre-Emergent Herbicides in Australian Farming Systems: A Reference Manual for Agronomic Advisers; Grains Research and Development Corporation: Canberra, Australia, 2014. [Google Scholar]
- D’Emden, F.H.; Llewellyn, R.S.; Burton, M.P. Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technol. Forecast. Soc. Chang. 2006, 73, 630–647. [Google Scholar] [CrossRef]
- Lewis, S.E.; Silburn, D.M.; Kookana, R.S.; Shaw, M. Pesticide behavior, fate, and effects in the tropics: An overview of the current state of knowledge. J. Agric. Food Chem. 2016, 64, 3917–3924. [Google Scholar] [CrossRef] [PubMed]
- Dennis, P.G.; Kukulies, T.; Forstner, C.; Orton, T.G.; Pattison, A.B. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep. 2018, 8, 2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APVMA. Gazette of Agricultural and Veterinary Chemicals; Australian Pesticides and Veterinary Medicines Authority: Armidale, Australia, 19 December 2019; p. 16. [Google Scholar]
- Daam, M.A.; Van den Brink, P.J. Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 2010, 19, 24–37. [Google Scholar] [CrossRef]
- Lacher, T.E., Jr.; Goldstein, M.I. Tropical ecotoxicology: Status and needs. Environ. Toxicol. Chem. 1997, 16, 100–111. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Hyne, R.V. Comparison of environmental risks of pesticides between tropical and nontropical regions. Integr. Environ. Assess. Manag. 2011, 7, 577–586. [Google Scholar] [CrossRef]
- Curran, W.S. Persistence of herbicides in soil. Crops and Soils 2016, 49, 16–21. [Google Scholar] [CrossRef]
- Yu, L.; Van Eerd, L.L.; O’Halloran, I.; Sikkema, P.H.; Robinson, D.E. Response of four spring-seeded cover crops to residues of selected herbicides. Can. J. Plant Sci. 2015, 95, 303–313. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Alebrahim, M.T.; Roushani, M. Determination of two sulfonylurea herbicides residues in soil environment using HPLC and phytotoxicity of these herbicides by lentil bioassay. Bull. Environ. Contam. Toxicol. 2017, 99, 93–99. [Google Scholar] [CrossRef]
- Rose, M.; Van Zwieten, L.; Zhang, P.; McGrath, G.; Seymour, N.; Scanlan, C.; Rose, T. Herbicide residues in soil—What is the scale and significance? GRDC project code: DAN00180; 12 Feb 2019. GRDC Grains Research Update, 2019. [Google Scholar]
- Van Zwieten, L.; Rose, M.; Zhang, P.; Nguyen, D.; Scanlan, C.; Rose, T.; McGrath, G.; Vancov, T.; Cavagnaro, T.; Seymour, N. Herbicide residues in soils–are they an issue? GRDC project code: DAN00180; 23 Feb 2016. GRDC Grains Research Update, 2016; 117. [Google Scholar]
- Chen, J.; Goggin, D.; Han, H.; Busi, R.; Yu, Q.; Powles, S. Enhanced trifluralin metabolism can confer resistance in Lolium rigidum. J. Agric. Food Chem. 2018, 66, 7589–7596. [Google Scholar] [CrossRef]
- Blume, Y.B.; Nyporko, A.Y.; Yemets, A.I.; Baird, W.V. Structural modeling of the interaction of plant α-tubulin with dinitroaniline and phosphoroamidate herbicides. Cell Biol. Int. 2003, 27, 171–174. [Google Scholar] [CrossRef]
- Nyporko, A.Y.; Blume, Y.B. Spatial distribution of tubulin mutations conferring resistance to antimicrotubular compounds. In The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology; Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D., Eds.; Springer: Cham, The Netherlands, 2009; pp. 397–417. [Google Scholar]
- Nyporko, A.Y.; Blume, Y.B. Structural mechanisms of interaction of cyanolcrylates with plant tubulin. Cytol. Genet. 2014, 48, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Breviario, D.; Nick, P. Plant tubulins: A melting pot for basic questions and promising applications. Transgenic Res. 2000, 9, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Boutsalis, P.; Gill, G.S.; Preston, C. Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across southeastern Australia. Weed Technol. 2012, 26, 391–398. [Google Scholar] [CrossRef]
- Saini, R.K.; Kleemann, S.G.; Preston, C.; Gill, G.S. Alternative herbicides for the management of clethodim-resistant rigid ryegrass (Lolium rigidum) in faba bean (Vicia faba L.) in Southern Australia. Weed Technol. 2015, 29, 578–586. [Google Scholar] [CrossRef]
- Chauhan, B.; Gill, G.; Preston, C. Tillage system effects on weed ecology, herbicide activity and persistence: A review. Aust. J. Exp. Agric. 2006, 46, 1557–1570. [Google Scholar] [CrossRef]
- D’Emden, F.H.; Llewellyn, R.S.; Burton, M.P. Factors influencing adoption of conservation tillage in Australian cropping regions. Aust. J. Agric. Resour. Econ. 2008, 52, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Llewellyn, R.S.; D’Emden, F.H.; Kuehne, G. Extensive use of no-tillage in grain growing regions of Australia. Field Crops Res. 2012, 132, 204–212. [Google Scholar] [CrossRef]
- Savage, K.; Barrentine, W. Trifluralin persistence as affected by depth of soil incorporation. Weed Sci. 1969, 17, 349–352. [Google Scholar] [CrossRef]
- Horowitz, M.; Hulin, N.; Blumenfeld, T. Behaviour and persistence of trifluralin in soil. Weed Res. 1974, 14, 213–220. [Google Scholar] [CrossRef]
- Kennedy, J.M.; Talbert, R.E. Comparative persistence of dinitroaniline type herbicides on the soil surface. Weed Sci. 1977, 25, 373–381. [Google Scholar] [CrossRef]
- Messersmith, C.; Burnside, O.; Lavy, T. Biological and non-biological dissipation of trifluralin from soil. Weed Sci. 1971, 19, 285–290. [Google Scholar] [CrossRef]
- Zhang, J.J.; Lu, Y.C.; Yang, H. Chemical modification and degradation of Atrazine in Medicago sativa through multiple pathways. J. Agric. Food Chem. 2014, 62, 9657–9668. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, L.; Ma, F.; Bai, S.; Yang, J.; Qi, S. Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology. J. Environ. Sci. 2017, 54, 152–159. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Wan, J.; Gong, X.; Zhu, Y. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J. Hazard. Mater. 2016, 312, 184–191. [Google Scholar] [CrossRef]
- Qian, H.; Tsuji, T.; Endo, T.; Sato, F. PGR5 and NDH pathways in photosynthetic cyclic electron transfer respond differently to sublethal treatment with photosystem-interfering herbicides. J. Agric. Food Chem. 2014, 62, 4083–4089. [Google Scholar] [CrossRef]
- Ivanov, S.V.; Alexieva, V.S.; Karanov, E.N. Cumulative effect of low and high atrazine concentrations on Arabidopsis thaliana plants. Russ. J. Plant Physiol. 2005, 52, 213–219. [Google Scholar] [CrossRef]
- Wang, Q.; Que, X.; Zheng, R.; Pang, Z.; Li, C.; Xiao, B. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environ. Sci. Pollut. Res. 2015, 22, 9646–9657. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Köppchen, S.; Hofmann, D.; Schäffer, A.; Burauel, P. Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years. Environ. Pollut. 2009, 157, 2126–2131. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wehtje, G.R.; Walker, R.H. Physiological basis for the differential tolerance of Glycine max to sulfentrazone during seed germination. Weed Sci. 2000, 48, 281–285. [Google Scholar] [CrossRef]
- Colquhoun, J. Herbicide Persistence and Carryover; University of Wisconsin Extension A: Madison, WI, USA, 2006; p. 3819. [Google Scholar]
- Yadav, A.; Malik, R.K.; Punia, S.S.; Mehta, R.; Bir, D. Studies on carry-over effects of herbicides applied in wheat on the succeeding crops in rotation. Indian J. Weed Sci. 2004, 36, 15–18. [Google Scholar]
- Frank, R.; Sirons, G.; Anderson, G. Atrazine: The impact of persistent residues in soil on susceptible crop species. Can. J. Soil Sci. 1983, 63, 315–325. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia 2007, 51, 295–299. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Shabala, L.; Brodribb, T.J.; Zhou, M.; Shabala, S. Assessing the suitability of various screening methods as a proxy for drought tolerance in barley. Funct. Plant Biol. 2017, 44, 253–266. [Google Scholar] [CrossRef]
- Rose, T.J.; Van Zwieten, L.; Claassens, A.; Scanlan, C.; Rose, M.T. Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application. Plant. Soil 2018, 422, 455–465. [Google Scholar] [CrossRef]
- Team, R.C. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wilke, C.O. Cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2”. Available online: https://CRAN.R-project.org/package=cowplot (accessed on 16 January 2020).
- Wild, C.J.; Seber, G.A.F. Nonlinear Regression; John Wiley & Sons: New York, NY, USA, 1989; Volume 46, pp. 86–88. [Google Scholar]
- Almeida, F.S.; Rodrigues, B.N. Guia de Herbicidas-Contribuição Para o Uso Adequado em Plantio Direto e Convencional; Iapar: Fundacão Instituto Agronoˆmico do Parana, Londrina, 1985; p. 482. [Google Scholar]
- Rodrigues, B.N.; Almeida, F.S. Guide of Herbicides; IAPAR: Londrina, Brazil, 2005. [Google Scholar]
- Senseman, S.A. Herbicide Handbook; 1891276565; Weed Science Society of America: Lawrence, KS, USA, 2007; p. 458. [Google Scholar]
- Deuber, R. Botânica das plantas daninhas. Ciência das Plantas Daninhas; Deuber, R., Ed.; FUNEP: Jaboticabal, Brazil, 1992; pp. 31–73. [Google Scholar]
- Fernandes, T.C.C.; Pizano, M.A.; Marin-Morales, M.A. Characterization, modes of action and effects of trifluralin: A review. In Herbicides-Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; IntechOpen: London, UK, 2013; pp. 489–517. [Google Scholar]
- Shaner, D.L. Herbicide Handbook; 0615989373; Weed Science Society of America: Champaign, IL, USA, 2014; p. 315. [Google Scholar]
- Khalil, Y.; Siddique, K.H.M.; Ward, P.; Piggin, C.; Bong, S.H.; Nambiar, S.; Trengove, R.; Flower, K. A bioassay for prosulfocarb, pyroxasulfone and trifluralin detection and quantification in soil and crop residues. Crop. Pasture Sci. 2018, 69, 606–616. [Google Scholar] [CrossRef]
- Appleby, A.P.; Valverde, B.E. Behavior of dinitroaniline herbicides in plants. Weed Technol. 1989, 3, 198–206. [Google Scholar] [CrossRef]
- Rahman, A.; Ashford, R. Selective action of trifluralin for control of green foxtail in wheat. Weed Sci. 1970, 18, 754–759. [Google Scholar] [CrossRef]
- Grichar, W.J.; Sestak, D.C.; Brewer, K.D.; Besler, B.A.; Stichler, C.R.; Smith, D.T. Sesame (Sesamum indicum L.) tolerance and weed control with soil-applied herbicides. Crop. Protect. 2001, 20, 389–394. [Google Scholar] [CrossRef]
- Lawrence, B.H.; Bond, J.A.; Edwards, H.M.; Golden, B.R.; Montgomery, G.B.; Eubank, T.W.; Walker, T.W. Effect of fall-applied residual herbicides on rice growth and yield. Weed Technol. 2018, 32, 526–531. [Google Scholar] [CrossRef]
- Chaudhari, S.; Jennings, K.M.; Culpepper, S.; Batts, R.B.; Bellinder, R. Turnip tolerance to preplant incorporated trifluralin. Weed Technol. 2019, 33, 123–127. [Google Scholar] [CrossRef]
- Nosratti, I.; Mahdavi-Rad, S.; Heidari, H.; Saeidi, M. Differential tolerance of pumpkin species to bentazon, metribuzin, trifluralin, and oxyfluorfen. Planta Daninha 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Roggenbuck, F.C.; Penner, D. Factors influencing corn (Zea mays) tolerance to trifluralin. Weed Sci. 1987, 35, 89–94. [Google Scholar] [CrossRef]
- Vencill, W.K. Herbicide Handbook, 8th ed.; Vencill, W.K., Ed.; Weed Science Society of America: Lawrence, KS, USA, 2002; pp. 457–462. [Google Scholar]
- Savage, K. Persistence of several dinitroaniline herbicides as affected by soil moisture. Weed Sci. 1978, 26, 465–471. [Google Scholar] [CrossRef]
- Kenaga, E.E. Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. Environ. Saf. 1980, 4, 26–38. [Google Scholar] [CrossRef]
- Weber, J.B. Behavior of dinitroaniline herbicides in soils. Weed Technol. 1990, 4, 394–406. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Datta, A.; Scott, J.; Porpiglia, P.J. Dose–response curves of KIH-485 for preemergence weed control in corn. Weed Technol. 2009, 23, 34–39. [Google Scholar] [CrossRef]
- Su, Y.H.; Zhu, Y.G.; Lin, A.J.; Zhang, X.H. Interaction between cadmium and atrazine during uptake by rice seedlings (Oryza sativa L.). Chemosphere 2005, 60, 802–809. [Google Scholar] [CrossRef]
- Zhang, J.J.; Lu, Y.C.; Zhang, J.J.; Tan, L.R.; Yang, H. Accumulation and toxicological response of atrazine in rice crops. Ecotoxicol. Environ. Saf. 2014, 102, 105–112. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Zheng, Q.; Liu, Z.P.; Yang, Z.M. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide. Plant. and Cell Physiol. 2011, 52, 1665–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huiyun, P.A.N.; Xiaolu, L.I.; Xiaohua, X.U.; Shixiang, G.A.O. Phytotoxicity of four herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii. J. Environ. Sci. 2009, 21, 307–312. [Google Scholar]
- Liu, A.; Zhang, Y.; Chen, D. Effects of salt stress on the growth and the antioxidant enzyme activity of Thellungiella halophila. Bull. Bot. Res. 2006, 26, 216–221. [Google Scholar]
- Burhan, N.; Shaukat, S.S. Effects of atrazine and phenolic compounds on germination and seedling growth of some crop plants. Pak. J. Biol. Sci. 2000, 3, 269–274. [Google Scholar]
- Islam, E.; Yang, X.; Li, T.; Liu, D.; Jin, X.; Meng, F. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater. 2007, 147, 806–816. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, W.; Dai, H.; Cao, F.; Zhang, G.; Wu, F. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 2012, 235, 343–351. [Google Scholar] [CrossRef]
Crops | ED50 (mg/kg dry soil) | d | b | |
---|---|---|---|---|
Germination | Wheat | 0.12 (0.01) | 100 (NA) | 3.12 (0.48) |
Barley | 0.18 (0.02) | 100 (NA) | 1.92 (0.25) | |
Oat | 0.12 (0.01) | 100 (NA) | 2.63 (0.40) | |
Lucerne | 0.07 (0.02) | 100 (NA) | 0.96 (0.18) | |
Lentil | 0.15 (0.02) | 100 (NA) | 1.12 (0.17) | |
Plant height | Wheat | 0.12 (0.01) | 99.73 (3.17) | 1.15 (0.14) |
Barley | 0.19 (0.01) | 98.84 (3.20) | 1.32 (0.15) | |
Oat | 0.10 (0.01) | 99.62 (3.18) | 0.95 (0.12) | |
Lucerne | 0.03 (0.01) | 99.97 (3.16) | 0.41 (0.09) | |
Lentil | 0.15 (0.01) | 99.48 (3.18) | 0.88 (0.10) | |
SPAD index | Wheat | 0.14 (0.01) | 99.50 (3.67) | 1.14 (0.14) |
Barley | 0.09 (0.01) | 99.77 (3.66) | 0.80 (0.13) | |
Oat | 0.09 (0.01) | 100.00 (3.65) | 1.49 (0.26) | |
Lucerne | 0.07 (0.01) | 100.04 (3.65) | 0.93 (0.24) | |
Lentil | 0.19 (0.01) | 97.39 (3.82) | 1.58 (0.22) | |
Shoot dry weight | Wheat | 0.08 (0.01) | 99.83 (2.60) | 0.85 (0.10) |
Barley | 0.09 (0.01) | 99.74 (2.61) | 0.75 (0.08) | |
Oat | 0.06 (0.01) | 100.96 (2.60) | 0.76 (0.13) | |
Lucerne | 0.01 (0.01) | 100.99 (2.60) | 0.37 (0.10) | |
Lentil | 0.06 (0.01) | 97.96 (2.60) | 0.69 (0.10) | |
Root length | Wheat | 0.02 (0.02) | 100.00 (3.16) | 0.65 (0.38) |
Barley | 0.02 (0.01) | 100.00 (3.16) | 0.47 (0.19) | |
Oat | 0.01 (0.05) | 100.00 (3.16) | 0.57 (1.48) | |
Lucerne | 0.09 (0.01) | 100.04 (3.16) | 1.12 (0.20) | |
Lentil | 0.03 (0.01) | 100.00 (3.16) | 0.59 (0.20) | |
Root dry weight | Wheat | 0.01 (0.01) | 100.00 (3.72) | 1.10 (0.59) |
Barley | 0.02 (0.10) | 100.00 (3.72) | 0.92 (0.43) | |
Oat | 0.01 (0.03) | 100.00 (3.72) | 1.33 (2.26) | |
Lucerne | 0.05 (0.01) | 100.01 (3.72) | 1.93 (0.53) | |
Lentil | 0.02 (0.02) | 100.00 (3.72) | 1.31 (0.61) | |
Number of nodules | Lucerne | 0.09 (0.01) | 99.92 (3.22) | 1.02 (0.16) |
Lentil | 0.05 (0.01) | 99.98 (3.21) | 0.76 (0.19) |
Crops | ED50 (mg/kg dry soil) | d | b | |
---|---|---|---|---|
Plant height | Wheat | 0.51 (0.07) | 99.45 (4.91) | 0.66 (0.08) |
Barley | 1.21 (0.23) | 99.45 (4.93) | 0.42 (0.07) | |
Oat | 0.51 (0.07) | 99.53 (4.91) | 0.69 (0.09) | |
Lucerne | 0.004 (0.001) | 100.00 (5.32) | 0.79 (0.34) | |
Lentil | 0.03 (0.01) | 98.22 (5.43) | 0.71 (0.12) | |
SPAD index | Wheat | 0.48 (0.09) | 99.25 (5.60) | 0.57 (0.08) |
Barley | 1.46 (0.24) | 99.76 (5.64) | 0.61 (0.10) | |
Oat | 0.61 (0.08) | 100.33 (5.47) | 0.86 (0.11) | |
Lucerne | 0.01 (0.001) | 100.01 (7.21) | 2.63 (1.99) | |
Lentil | 0.05 (0.01) | 100.27 (6.66) | 1.06 (0.24) | |
Shoot dry weight | Wheat | 0.14 (0.02) | 99.94 (3.57) | 0.99 (0.12) |
Barley | 0.10 (0.03) | 100.06 (3.57) | 0.63 (0.08) | |
Oat | 0.13 (0.02) | 100.04 (3.57) | 1.40 (0.24) | |
Lucerne | 0.01 (0.001) | 100.00 (5.50) | 1.11 (0.38) | |
Lentil | 0.02 (0.003) | 99.44 (5.55) | 0.55 (0.11) | |
Root length | Wheat | 0.08 (0.08) | 100.03 (6.32) | 0.22 (0.11) |
Barley | 0.41 (0.10) | 100.13 (6.31) | 0.46 (0.11) | |
Oat | 0.18 (0.04) | 100.09 (6.31) | 0.60 (0.19) | |
Lucerne | 0.01 (0.001) | 99.89 (3.34) | 0.79 (0.11) | |
Lentil | 0.003 (0.001) | 99.93 (3.32) | 0.35 (0.06) | |
Root dry weight | Wheat | 0.03 (0.03) | 100.02 (3.78) | 0.19 (0.07) |
Barley | 0.11 (0.04) | 100.09 (3.78) | 0.33 (0.08) | |
Oat | 0.15 (0.01) | 100.01 (3.78) | 1.14 (0.30) | |
Lucerne | 0.02 (0.001) | 99.46 (3.56) | 1.06 (0.13) | |
Lentil | 0.004 (0.001) | 99.96 (3.41) | 0.38 (0.07) | |
Number of nodules | Lucerne | 0.01 (0.001) | 99.88 (2.52) | 0.58 (0.07) |
Lentil | 0.01 (0.01) | 100.00 (2.58) | 1.68 (19.27) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, I.F.; Doran, G.S.; Stodart, B.J.; Chen, C.; Wu, H. Trifluralin and Atrazine Sensitivity to Selected Cereal and Legume Crops. Agronomy 2020, 10, 587. https://doi.org/10.3390/agronomy10040587
Chowdhury IF, Doran GS, Stodart BJ, Chen C, Wu H. Trifluralin and Atrazine Sensitivity to Selected Cereal and Legume Crops. Agronomy. 2020; 10(4):587. https://doi.org/10.3390/agronomy10040587
Chicago/Turabian StyleChowdhury, Imtiaz Faruk, Gregory S. Doran, Benjamin J. Stodart, Chengrong Chen, and Hanwen Wu. 2020. "Trifluralin and Atrazine Sensitivity to Selected Cereal and Legume Crops" Agronomy 10, no. 4: 587. https://doi.org/10.3390/agronomy10040587
APA StyleChowdhury, I. F., Doran, G. S., Stodart, B. J., Chen, C., & Wu, H. (2020). Trifluralin and Atrazine Sensitivity to Selected Cereal and Legume Crops. Agronomy, 10(4), 587. https://doi.org/10.3390/agronomy10040587