Do Long-Term Continuous Cropping and Pesticides Affect Earthworm Communities?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Crop Management
2.2. Soil Characteristics
2.3. Meteorological Data
2.4. Sampling
2.4.1. Post-Harvest Residue Sampling and Preparation
2.4.2. Soil Sampling and Preparation
Soil Organic Matter Analysis
Soil pH Determination
2.4.3. Earthworm Sampling and Identification
2.5. Statistical Analysis
3. Results and Discussion
3.1. Post-Harvest Residues
3.2. Soil Organic Matter Content
3.3. Soil pH
3.4. Earthworm Species Richness and Structure
3.5. Earthworm Density and Biomass
3.6. Relationship Between Earthworm Abundance and Post-Harvest Residues, SOM, and Soil pH
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Bottinelli, N.; Henry-des-Tureaux, T.; Hallaire, V.; Mathieu, J.; Benard, Y.; Duc Tran, T.; Jouquet, P. Earthworms accelerate soil porosity turnover under watering conditions. Geoderma 2010, 156, 43–47. [Google Scholar] [CrossRef]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Jouquet, P.; Podwojewski, P.; Bottinelli, N.; Mathieu, J.; Ricoy, M.; Orange, D.; Tran, T.D.; Valentin, C. Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena 2008, 74, 13–21. [Google Scholar] [CrossRef]
- Winding, A.; Rønn, R.; Hendriksen, N.B. Bacteria and protozoa in soil microhabitats as affected by earthworms. Biol. Fertil. Soils 1997, 24, 133–140. [Google Scholar] [CrossRef]
- Scheu, S.; Schlitt, N.; Tiunov, A.V.; Newington, J.E.; Jones, T.H. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 2002, 133, 254–260. [Google Scholar] [CrossRef]
- Jouquet, P.; Bottinelli, N.; Podwojewski, P.; Hallaire, V.; Tran Duc, T. Chemical and physical properties of earthworm casts as compared to bulk soil under a range of different land-use systems in Vietnam. Geoderma 2008, 146, 231–238. [Google Scholar] [CrossRef]
- Vos, H.M.J.; Koopmans, G.F.; Beezemer, L.; de Goede, R.G.M.; Hiemstra, T.; van Groenigen, J.W. Large variations in readily-available phosphorus in casts of eight earthworm species are linked to cast properties. Soil Biol. Biochem. 2019, 138, 107583. [Google Scholar] [CrossRef]
- Eriksen-Hamel, N.S.; Whalen, J.K. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agric. Ecosyst. Environ. 2007, 120, 442–448. [Google Scholar] [CrossRef]
- Fonte, S.J.; Kong, A.Y.Y.; van Kessel, C.; Hendrix, P.F.; Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 2007, 39, 1014–1022. [Google Scholar] [CrossRef]
- Sruthi, S.N.; Ramasamy, E.V. Enrichment of soil organic carbon by native earthworms in a patch of tropical soil, Kerala, India: First report. Sci. Rep. 2018, 8, 5784. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.V.; Vajranabhaiah, S.N. Biological activity of earthworm casts: An assessment of plant growth promotor levels in the casts. Proc. Anim. Sci. 1986, 95, 341–351. [Google Scholar] [CrossRef]
- Muscolo, A.; Bovalo, F.; Gionfriddo, F.; Nardi, S. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biol. Biochem. 1999, 31, 1303–1311. [Google Scholar] [CrossRef]
- Blouin, M.; Zuily-Fodil, Y.; Pham-Thi, A.T.; Laffray, D.; Reversat, G.; Pando, A.; Tondoh, J.; Lavelle, P. Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol. Lett. 2005, 8, 202–208. [Google Scholar] [CrossRef]
- Boyer, J.; Reversat, G.; Lavelle, P.; Chabanne, A. Interactions between earthworms and plant-parasitic nematodes. Eur. J. Soil Biol. 2013, 59, 43–47. [Google Scholar] [CrossRef]
- Stephens, P.M.; Davoren, C.W.; Doube, B.M.; Ryder, M.H. Ability of the lumbricid earthworms Aporrectodea rosea and Aporrectodea trapezoides to reduce the severity of take-all under greenhouse and field conditions. Soil Biol. Biochem. 1994, 26, 1291–1297. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; Van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheu, S. Effects of earthworms on plant growth: Patterns and perspectives. Pedobiologia 2003, 47, 846–856. [Google Scholar] [CrossRef]
- Baldivieso-Freitas, P.; Blanco-Moreno, J.M.; Gutiérrez-López, M.; Peigné, J.; Pérez-Ferrer, A.; Trigo-Aza, D.; Sans, F.X. Earthworm abundance response to conservation agriculture practices in organic arable farming under Mediterranean climate. Pedobiologia 2018, 66, 58–64. [Google Scholar] [CrossRef]
- Falco, L.B.; Sandler, R.; Momo, F.; Di Ciocco, C.; Saravia, L.; Coviella, C. Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables. PeerJ 2015, 3, e979. [Google Scholar] [CrossRef] [Green Version]
- Gerard, B.M.; Hay, R.K.M. The effect on earthworms of ploughing, tined cultivation, direct drilling and nitrogen in a barley monoculture system. J. Agric. Sci. 1979, 93, 147–155. [Google Scholar] [CrossRef]
- Curry, J.P.; Byrne, D.; Schmidt, O. Intensive cultivation can drastically reduce earthworm populations in arable land. Eur. J. Soil Biol. 2002, 38, 127–130. [Google Scholar] [CrossRef]
- Emmerling, C. Response of earthworm communities to different types of soil tillage. Appl. Soil Ecol. 2001, 17, 91–96. [Google Scholar] [CrossRef]
- Capowiez, Y.; Cadoux, S.; Bouchant, P.; Ruy, S.; Roger-Estrade, J.; Richard, G.; Boizard, H. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 2009, 105, 209–216. [Google Scholar] [CrossRef]
- Metzke, M.; Potthoff, M.; Quintern, M.; Heß, J.; Joergensen, R.G. Effect of reduced tillage systems on earthworm communities in a 6-year organic rotation. Eur. J. Soil Biol. 2007, 43, 209–215. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Edwards, C.A.; Zhang, Q.; Parmelee, R.W.; Allen, M. Indirect effects of earthworms on microbial assimilation of labile carbon. Appl. Soil Ecol. 2002, 20, 255–261. [Google Scholar] [CrossRef]
- Parmelee, R.W.; Beare, M.H.; Cheng, W.; Hendrix, P.F.; Rider, S.J.; Crossley, D.A.; Coleman, D.C. Earthworms and enchytraeids in conventional and no-tillage agroecosystems: A biocide approach to assess their role in organic matter breakdown. Biol. Fertil. Soils 1990, 10, 1–10. [Google Scholar] [CrossRef]
- Edwards, C.A.; Lofty, J.R. Nitrogenous fertilizers and earthworm populations in agricultural soils. Soil Biol. Biochem. 1982, 14, 515–521. [Google Scholar] [CrossRef]
- Eriksen-Hamel, N.S.; Speratti, A.B.; Whalen, J.K.; Légère, A.; Madramootoo, C.A. Earthworm populations and growth rates related to long-term crop residue and tillage management. Soil Tillage Res. 2009, 104, 311–316. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. The effects of toxic chemicals on earthworms. Rev. Environ. Contam. Toxicol. 1992, 125, 23–100. [Google Scholar]
- Bustos-Obregón, E.; Goicochea, R.I. Pesticide soil contamination mainly affects earthworm male reproductive parameters. Asian J. Androl. 2002, 4, 195–199. [Google Scholar]
- Yasmin, S.; D’Souza, D. Effects of pesticides on the growth and reproduction of earthworm: A review. Appl. Environ. Soil Sci. 2010, 2010, 678360. [Google Scholar] [CrossRef]
- Ndubuisi, S.O.; Obiezue, R.N.; Amarachi, O.; Onuoha, E. Toxicity and histopathological effect of atrazine (Herbicide) on the earthworm Nsukkadrilus mbae under laboratory conditions. Anim. Res. Int. 2010, 7, 1287–1293. [Google Scholar]
- Xiao, N.; Jing, B.; Ge, F.; Liu, X. The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere 2006, 62, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Correia, F.V.; Moreira, J.C. Effects of glyphosate and 2,4-D on earthworms (Eisenia foetida) in laboratory tests. Bull. Environ. Contam. Toxicol. 2010, 85, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Muthukaruppan, G.; Janardhanan, S.; Vijayalakshmi, G.S. Sublethal toxicity of the herbicide butachlor on the earthworm Perionyx sansibaricus and its histological changes. J. Soils Sediments 2005, 5, 82–86. [Google Scholar] [CrossRef]
- Gobi, M.; Gunasekaran, P. Effect of butachlor herbicide on earthworm Eisenia fetida—Its histological perspicuity. Appl. Environ. Soil Sci. 2010, 2010, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Singh, K. Toxic Effect of herbicide 2,4-D on the earthworm Eutyphoeus waltoni Michaelsen. Environ. Process. 2015, 2, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Givaudan, N.; Wiegand, C.; Le Bot, B.; Renault, D.; Pallois, F.; Llopis, S.; Binet, F. Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications. Soil Biol. Biochem. 2014, 73, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Duc, G. Faba bean (Vicia faba L.). Field Crop. Res. 1997, 53, 99–109. [Google Scholar] [CrossRef]
- Kasprzak, K. Skaposzczety Glebowe, III: Rodzina; dżdżownice (Lumbricidae); MiIZ PAN: Warszawa, Poland, 1986. [Google Scholar]
- Zhang, H.; Wang., J.J. Soil pH Changes During Legume Growth and Application of Plant Material; Southern Extension and Research Activity Information Exchange Group 6; University of Georgia: Athens, Greece, 2014. [Google Scholar]
- Lv, J.; Dong, Y.; Dong, K.; Zhao, Q.; Yang, Z.; Chen, L. Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant Soil. 2020, 448, 153–164. [Google Scholar] [CrossRef]
- Rychcik, B.; Zawiślak, K. Effect of crop rotation and monoculture on faba bean phytosanitary and production. Pam. Puł. 2002, 130, 623–659. [Google Scholar]
- Kotecki, A. The influence of row spacing and quantity of seeds sown on the development and yielding of Tibo cultivar field bean with terminal inflorescence Zesz. Nauk. AR We Wrocławiu. 1994, 238, 133–143. [Google Scholar]
- Rychcik, B. Effect of herbicide and crop sequence on weed infestation of field bean. Prog. Plant Prot. 2004, 44, 1058–1060. [Google Scholar]
- Adamiak, E.; Adamiak, J.; Stępień, A. Wpływ następstwa roślin i stosowania herbicydów na zachwaszczenie jęczmienia jarego. Ann. Univ. Mariae Curie-Skłodowska 2000, 55, 9–15. [Google Scholar]
- Rychcik, B.; Adamiak, J.; Wójciak, H. Dynamics of the soil organic matter in crop rotation and long-term monoculture. Plant Soil Environ. 2006, 52, 12–20. [Google Scholar]
- Yang, X.M.; Kay, B.D. Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in southern Ontario. Soil Tillage Res. 2001, 59, 107–114. [Google Scholar] [CrossRef]
- Campbell, C.A.; Biederbeck, V.O.; Zentner, R.P.; Lafond, G.P. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem. Can. J. Soil Sci. 1991, 71, 363–376. [Google Scholar] [CrossRef]
- Blair, N.; Crocker, G.J. Crop rotation effects on soil carbon and physical fertility of two Australian soils. Aust. J. Soil Res. 2000, 38, 71–84. [Google Scholar] [CrossRef]
- Hickman, M.V. Long-term tillage and crop rotation effects on soil chemical and mineral properties. J. Plant Nutr. 2002, 25, 1457–1470. [Google Scholar] [CrossRef]
- Van Beusichem, M.L. Nutrient absorption by pea plants during dinitrogen fixation. I. Comparison with nitrate nutrition. Neth. J. Agric. Sci. 1981, 29, 259–272. [Google Scholar]
- Bolan, N.S.; Hedley, M.J.; White, R.E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 1991, 134, 53–63. [Google Scholar] [CrossRef]
- Tang, C.; Unkovich, M.J.; Bowden, J.W. Factors affecting soil acidification under legumes. III. Acid production by N2-fixing legumes as influenced by nitrate supply. New Phytol. 1999, 143, 513–521. [Google Scholar] [CrossRef]
- Lee, B. Farming brings acid soils. Rural Res. 1980, 106, 4–9. [Google Scholar]
- Williams, C.H. Soil acidification under clover pasture. Aust. J. Exp. Agric. 1980, 20, 561–567. [Google Scholar] [CrossRef]
- Valchovski, H. Effect of erosion on biodiversity of earthworms (Lumbricidae) in agroecosystems of Suhodol (Sofia province). Semin. Ecol. 2012, 182–189. [Google Scholar]
- Fragoso, C.; Brown, G.G.; Patrón, J.C.; Blanchart, E.; Lavelle, P.; Pashanasi, B.; Senapati, B.; Kumar, T. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of earthworms. Appl. Soil Ecol. 1997, 6, 17–35. [Google Scholar] [CrossRef]
- Paoletti, M.G. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 1999, 74, 137–155. [Google Scholar] [CrossRef]
- Curry, J.P.; Doherty, P.; Purvis, G.; Schmidt, O. Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Appl. Soil Ecol. 2008, 39, 58–64. [Google Scholar] [CrossRef]
- Edwards, C.A. Earthworm ecology in cultivated soils. In Earthworm Ecology; Springer: Dordrecht, The Netherlands, 1983; pp. 123–137. [Google Scholar]
- Bart, S.; Amossé, J.; Lowe, C.N.; Mougin, C.; Péry, A.R.R.; Pelosi, C. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: Current knowledge and recommendations for culture and experimental design. Environ. Sci. Pollut. Res. 2018, 25, 33867–33881. [Google Scholar] [CrossRef] [Green Version]
- Feledyn-Szewczyk, B.; Radzikowski, P.; Stalenga, J.; Matyka, M. Comparison of the effect of perennial energy crops and arable crops on earthworm populations. Agronomy 2019, 9, 675. [Google Scholar] [CrossRef] [Green Version]
- Holmstrup, M.; Overgaard, J. Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland. Cryobiology 2007, 55, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Zorn, M.I.; Van Gestel, C.A.M.; Morrien, E.; Wagenaar, M.; Eijsackers, H. Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment. Soil Biol. Biochem. 2008, 40, 587–593. [Google Scholar] [CrossRef]
- Nuutinen, V. Earthworm community response to tillage and residue management on different soil types in southern Finland. Soil Tillage Res. 1992, 23, 221–239. [Google Scholar] [CrossRef]
- Holter, P. Effect of earthworms on the disappearance rate of cattle droppings. In Earthworm Ecology; Springer: Dordrecht, The Netherlands, 1983; pp. 49–57. [Google Scholar]
- Ivask, M.; Kuu, A.; Sizov, E. Abundance of earthworm species in Estonian arable soils. Eur. J. Soil Biol. 2007, 43, 39–42. [Google Scholar] [CrossRef]
- Pfiffner, L.; Luka, H. Earthworm populations in two low-input cereal farming systems. Appl. Soil Ecol. 2007, 37, 184–191. [Google Scholar] [CrossRef]
- Jastrzebska, M.; Kostrzewska, M.K.; Makowski, P.; Treder, K.; Marks, M. Effects of ash and bone phosphorus biofertilizers on Bacillus megaterium counts and select biological and physical soil properties. Polish J. Environ. Stud. 2015, 24, 1603–1609. [Google Scholar] [CrossRef]
- Orzech, K.; Załuski, D. Chemical properties of soil and occurrence of earthworms in soil in response to soil compaction and different soil tillage in cereals. J. Elem. 2020, 25, 153–168. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.; Makowski, P.; Treder, K.; Jastrzębski, W. Granulated phosphorus fertilizer made of ash from biomass combustion and bones with addition of Bacillus megaterium in the field assessment. Part 3. Impact on selected properties of soil environment of winter wheat. Przem. Chem. 2017, 96, 2180–2183. [Google Scholar]
- Orzech, K.; Załuski, D. Effect of soil compaction and different soil tillage systems on chemical properties of soil and presence of earthworms in winter oilseed rape fields. J. Elem. 2020, 25, 413–429. [Google Scholar]
- Badawy, M.E.I.; Kenawy, A.; El-Aswad, A.F. Toxicity assessment of buprofezin, lufenuron, and triflumuron to the earthworm Aporrectodea caliginosa. Int. J. Zool. 2013, 2013, 174523. [Google Scholar] [CrossRef] [Green Version]
- Mosleh, Y.Y.; Ismail, S.M.M.; Ahmed, M.T.; Ahmed, Y.M. Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea caliginosa under laboratory conditions. Environ. Toxicol. 2003, 18, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Gaupp-Berghausen, M.; Hofer, M.; Rewald, B.; Zaller, J.G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 2015, 5, 12886. [Google Scholar] [CrossRef] [Green Version]
- Dittbrenner, N.; Triebskorn, R.; Moser, I.; Capowiez, Y. Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology 2010, 19, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Capowiez, Y.; Rault, M.; Costagliola, G.; Mazzia, C. Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora icterica). Biol. Fertil. Soils 2005, 41, 135–143. [Google Scholar] [CrossRef]
- Hodge, S.; Webster, K.M.; Booth, L.; Hepplethwaite, V.; O’Halloran, K. Non-avoidance of organophosphate insecticides by the earthworm Aporrectodea caliginosa (Lumbricidae). Soil Biol. Biochem. 2000, 32, 425–428. [Google Scholar] [CrossRef]
- López-Hernández, D. Earthworm populations in savannas of the Orinoco basin. A review of studies in long-term agricultural-managed and protected ecosystems. Agriculture 2012, 2, 87–108. [Google Scholar] [CrossRef]
- Kladivko, E.J. Earthworms and Crop Management.; Purdue University: West Lafayette, IN, USA, 1993. [Google Scholar]
- Fonte, S.J.; Winsome, T.; Six, J. Earthworm populations in relation to soil organic matter dynamics and management in California tomato cropping systems. Appl. Soil Ecol. 2009, 41, 206–214. [Google Scholar] [CrossRef]
- Haynes, R.J.; Dominy, C.S.; Graham, M.H. Effect of agricultural land use on soil organic matter status and the composition of earthworm communities in Kwazulu-Natal, South Africa. Agric. Ecosyst. Environ. 2003, 95, 453–464. [Google Scholar] [CrossRef]
Item | Spring Barley | Faba Bean |
---|---|---|
Soil tillage system | Plow tillage (with crop residues incorporation after harvest) | |
Mineral fertilisation | ||
-P2O5 (kg/ha) | 70 1 | 60 1 |
-K2O (kg/ha) | 100 1 | 100 1 |
-N (kg/ha) | 70 (50 1 + 20 2) | 40 1 |
Plant protection | ||
herbicides | ||
Mustang 306 SE; florasulam + 2,4-D EHE; 0.5 l/ha; stem elongation * | Corum 502.4 SL; bentazon + imazamox; 1.25 l/ha; 16 leaf unfolded | |
Dash HC; fatty acid esters + alkoxylated alcohols-phosphate esters; 0.6 l/ha; 16 leaf unfolded | ||
fungicides | ||
Capalo 337.5 SE; fenpropimorph + epoxiconazole + metrafenone; 1.5 l/ha; stem elongation | Dithane NeoTec 75 WG; mancozeb; 2.0 kg/ha; flower buds visible outside leaves | |
Amistar 250 SC; azoxystrobin; 0.6 l/ha; flowering | ||
Artea 330 EC; propiconazole + cyproconazole; 0.4 l/ha; flowering |
Treatments | Total | Shoots | Roots | Weeds |
---|---|---|---|---|
Spring Barley | ||||
cropping system | ||||
CR * | 2.82a ** ± 0.15 | 2.07a ± 0.10 | 0.62a ± 0.07 | 0.13a ± 0.04 |
CC | 2.74a ± 0.39 | 2.04a ± 0.33 | 0.49a ± 0.09 | 0.20a ± 0.03 |
plant protection | ||||
HF− | 2.37b ± 0.21 | 1.70b ± 0.16 | 0.45a ± 0.07 | 0.23a ± 0.02 |
HF+ | 3.18a ± 0.26 | 2.42a ± 0.21 | 0.66a ± 0.07 | 0.11b ± 0.04 |
interaction | ||||
CR-HF− | 2.74ab ± 0.27 | 2.02b ± 0.14 | 0.52a ± 0.10 | 0.21a ± 0.03 |
CR-HF+ | 2.89ab ± 0.17 | 2.12ab ± 0.18 | 0.71a ± 0.05 | 0.05b ± 0.01 |
CC-HF− | 2.00b ± 0.16 | 1.37c ± 0.05 | 0.38a ± 0.11 | 0.24a ± 0.02 |
CC-HF+ | 3.48a ± 0.46 | 2.71a ± 0.28 | 0.61a ± 0.14 | 0.16ab ± 0.05 |
Faba Bean | ||||
cropping system | ||||
CR | 1.24b ± 0.15 | 0.42b ± 0.09 | 0.47a ± 0.13 | 0.35b ± 0.08 |
CC | 1.93a ± 0.18 | 0.70a ± 0.17 | 0.49a ± 0.14 | 0.73a ± 0.13 |
plant protection | ||||
HF− | 1.29b ± 0.17 | 0.29b ± 0.05 | 0.26b ± 0.07 | 0.74a ± 0.13 |
HF+ | 1.87a ± 0.19 | 0.82a ± 0.11 | 0.70a ± 0.10 | 0.34b ± 0.07 |
interaction | ||||
CR-HF− | 0.97c ± 0.05 | 0.25c ± 0.07 | 0.26a ± 0.09 | 0.46b ± 0.12 |
CR-HF+ | 1.51b ± 0.18 | 0.59b ± 0.05 | 0.69a ± 0.17 | 0.23b ± 0.06 |
CC-HF− | 1.62b ± 0.21 | 0.34c ± 0.06 | 0.27a ± 0.13 | 1.01a ± 0.04 |
CC-HF+ | 2.23a ± 0.16 | 1.06a ± 0.09 | 0.72a ± 0.16 | 0.45b ± 0.12 |
Treatments | Spring Barley | Faba Bean |
---|---|---|
cropping system | ||
CR * | 1.86 ** ± 0.10 | 1.98 ± 0.04 |
CC | 1.88 ± 0.06 | 2.08 ± 0.08 |
plant protection | ||
HF− | 1.89 ± 0.11 | 2.11 ± 0.05 |
HF+ | 1.85 ± 0.03 | 1.95 ± 0.07 |
interaction | ||
CR-HF− | 1.84 ± 0.21 | 2.03 ± 0.06 |
CR-HF+ | 1.87 ± 0.08 | 1.93 ± 0.06 |
CC-HF− | 1.93 ± 0.11 | 2.20 ± 0.03 |
CC-HF+ | 1.83 ± 0.03 | 1.96 ± 0.13 |
Treatments | Spring Barley | Faba Bean |
---|---|---|
cropping system | ||
CR * | 6.37b ** ± 0.11 | 6.73a ± 0.06 |
CC | 6.89a ± 0.04 | 6.32b ± 0.03 |
plant protection | ||
HF− | 6.74a ± 0.09 | 6.55a ± 0.09 |
HF+ | 6.51b ± 0.17 | 6.50a ± 0.12 |
interaction | ||
CR-HF− | 6.56b ± 0.06 | 6.75a ± 0.05 |
CR-HF+ | 6.18c ± 0.16 | 6.72a ± 0.13 |
CC-HF− | 6.92a ± 0.06 | 6.35b ± 0.03 |
CC-HF+ | 6.85ab ± 0.05 | 6.28b ± 0.05 |
Treatments | Spring Barley | Faba Bean | ||
---|---|---|---|---|
Individuals | Biomass | Individuals | Biomass | |
cropping system | ||||
CR * | 15.3 ± 1.90 | 7.4 ± 0.94 | 8.0b ** ± 2.07 | 4.3b ± 1.28 |
CC | 14.7 ± 3.37 | 5.9 ± 2.14 | 13.3a ± 3.21 | 9.0a ± 2.07 |
plant protection | ||||
HF− | 14.0 ± 2.47 | 5.9 ± 1.52 | 15.3 a ±2.81 | 9.4a ± 2.19 |
HF+ | 16.0 ± 2.91 | 7.5 ± 1.77 | 6.0b ± 0.89 | 4.0b ± 0.67 |
interaction | ||||
CR-HF− | 18.7 ± 1.33 | 8.9 ± 1.04 | 10.7b ± 3.52 | 5.5b ± 2.42 |
CR-HF+ | 12.0 ± 6.92 | 6.0 ± 1.08 | 5.3b ± 1.33 | 3.0b ± 0.81 |
CC-HF− | 9.3 ± 2.67 | 2.8 ± 1.06 | 20.0a ± 2.30 | 13.2a ± 1.83 |
CC-HF+ | 20.0 ± 4.61 | 9.1 ± 3.46 | 6.7b ± 1.33 | 4.9b ± 0.85 |
Features | Spring Barley | Faba Bean | ||
---|---|---|---|---|
Earthworms | ||||
Individuals | Biomass | Individuals | Biomass | |
residues | 0.095 | 0.030 | −0.116 | 0.057 |
SOM | 0.192 | 0.105 | 0.730 * | 0.713 * |
pH | 0.120 | 0.013 | −0.228 | −0.386 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treder, K.; Jastrzębska, M.; Kostrzewska, M.K.; Makowski, P. Do Long-Term Continuous Cropping and Pesticides Affect Earthworm Communities? Agronomy 2020, 10, 586. https://doi.org/10.3390/agronomy10040586
Treder K, Jastrzębska M, Kostrzewska MK, Makowski P. Do Long-Term Continuous Cropping and Pesticides Affect Earthworm Communities? Agronomy. 2020; 10(4):586. https://doi.org/10.3390/agronomy10040586
Chicago/Turabian StyleTreder, Kinga, Magdalena Jastrzębska, Marta Katarzyna Kostrzewska, and Przemysław Makowski. 2020. "Do Long-Term Continuous Cropping and Pesticides Affect Earthworm Communities?" Agronomy 10, no. 4: 586. https://doi.org/10.3390/agronomy10040586
APA StyleTreder, K., Jastrzębska, M., Kostrzewska, M. K., & Makowski, P. (2020). Do Long-Term Continuous Cropping and Pesticides Affect Earthworm Communities? Agronomy, 10(4), 586. https://doi.org/10.3390/agronomy10040586