Effect of Adjuvants and pH Adjuster on the Efficacy of Sulcotrione Herbicide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experiment
2.2. Laboratory Experiment-Surface Tension and Contact Angle
2.3. Laboratory Experiment-Viscosity
2.4. Statistical Analysis
3. Results
3.1. Greenhouse Experiment
3.2. Laboratory Experiment—Surface Tension and Contact Angle
3.3. Laboratory Experiment-Viscosity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Sawinska, S.; Świtek, S.; Głowicka-Wołoszyn, R.; Kowalczewski, P.Ł. Agricultural Practice in Poland Before and after Mandatory IPM Implementation by the European Union. Sustainability 2020, 12, 1107. [Google Scholar] [CrossRef] [Green Version]
- Kudsk, P. Optimising herbicide dose: A straightforward approach to reduce the risk of side effects of herbicides. Environmentalist 2008, 28, 49–55. [Google Scholar] [CrossRef]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, A.J.; Balkcom, K.S.; Culpepper, S.A.; Kelton, J.A.; Nichols, R.L.; Schomberg, H. Glyphosate-resistant Palmer amaranth: A threat to conservation tillage. J. Soil Water Conserv. 2011, 66, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Owen, M.D.K. Diverse Approaches to Herbicide-Resistant Weed Management. Weed Sci. 2016, 64, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Available online: www.hracglobal.com/herbicide-resistance (accessed on 23 March 2020).
- Kaczmarek, S.; Matysiak, K. Wheat cultivars, their mixtures and reduced herbicide doses as a practical solution in integrated weed management. Rom. Agric. Res. 2017, 34, 1–8. [Google Scholar]
- Busi, R.; Girotto, M.; Powles, S.B. Response to low-dose herbicide selection in self-pollinated Avena fatua. Pest Manag. Sci. 2015, 72, 603–608. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Derksen, R.C.; Krause, C.R. Adjuvant Effect on Evaporation Time and Wetted Area of Droplets on Waxy Leaves. Biol. Eng. Trans. 2010, 53, 13–20. [Google Scholar]
- Penner, D. Activator Adjuvants. Weed Technol. 2000, 14, 785–791. [Google Scholar] [CrossRef]
- Sta, C.; Ledoigt, G.; Ferjani, E.; Goupil, P. Exposure of Vicia faba to sulcotrione pesticide induced genotoxicity. Pestic. Biochem. Phys. 2012, 103, 9–14. [Google Scholar] [CrossRef]
- Cherrier, R.; Boivin, A.; Perrin-Ganier, C.; Schiavon, M. Sulcotrione versus atrazine transport and degradation in soil columns. Pest Manag. Sci. 2005, 61, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Chaabane, H.; Vulliet, E.; Calvayrac, C.; Coste, C.-M.; Cooper, J.-F. Behaviour of sulcotrione and mesotrione in two soils. Pest Manag. Sci. 2008, 64, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Secor, J. Inhibition of Barnyardgrass 4-Hydroxyphenylpyruvate Dioxygenase by Sulcotrione. Plant Physiol. 1994, 106, 1429–1433. [Google Scholar] [CrossRef] [Green Version]
- Moshiri, F.; Hao, B.; Karunanandaa, B.; Valentin, H.E.; Venkatesh, T.V.; Huang Wong, Y.-H. Genes Encoding 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Enzymes for Plant Metabolic Engineering. U.S. Patent Application No 11/943,493, 2008. [Google Scholar]
- Williams, M.M.; Pataky, J.K. Factors Affecting Differential Sensitivity of Sweet Corn to HPPD-Inhibiting Herbicides. Weed Sci. 2010, 58, 289–294. [Google Scholar] [CrossRef]
- Umiljendić, J.G.; Sarić-Krsmanović, M.; Šantrić, L.; Radivojević, L. Common milkweed (Asclepias syriaca L.) response to sulcotrione. Pestic. Phytomed. 2017, 32, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-W.; Lin, H.-Y.; Cao, R.-J.; Chen, T.; Wu, F.-X.; Hao, G.-F.; Chen, Q.; Yang, W.-C.; Yang, G.-F. Synthesis and Herbicidal Activity of Triketone−Quinoline Hybrids as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. J. Agric. Food Chem. 2015, 63, 5587–5596. [Google Scholar] [CrossRef]
- França, J.A.L.; Da Cunha, J.P.A.R.; Antuniassi, U.R. Spectrum, velocity and drift of droplets sprayed by nozzles with and without air induction and mineral oil. Eng. Agríc. 2017, 37, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Stock, D.; Briggs, G. Physicochemical Properties of Adjuvants: Values and Applications. Weed Technol. 2000, 14, 798–806. [Google Scholar] [CrossRef]
- Ślęzak, M. Mathematical models for calculating the value of dynamic viscosity of a liquid. Arch. Metall. Mater. 2015, 60, 581–589. [Google Scholar] [CrossRef]
- Idziak, R.; Woznica, Z. Impact of tembotrione and flufenacet plus isoxaflutole application timings, rates, and adjuvant type on weeds and yield of maize. Chil. J. Agric. Res. 2014, 74, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Kudsk, P.; Streibig, J.C. Herbicides—A two-edged sword. Weed Res. 2003, 43, 90–102. [Google Scholar] [CrossRef]
- Devkota, P.; Johnson, W.G. Glufosinate Efficacy as Influenced by Carrier Water pH, Hardness, Foliar Fertilizer, and Ammonium Sulfate. Weed Technol. 2016, 30, 848–859. [Google Scholar] [CrossRef]
- Smith, J.; Wherley, B.; Reynolds, C.; White, R.; Senseman, S.; Falk, S. Weed control spectrum and turfgrass tolerance to bioherbicide Phoma macrostoma. Int. J. Pest. Manag. 2015, 61, 91–98. [Google Scholar] [CrossRef]
- Streibig, J.C. Herbicide bioassay. Weed Res. 1988, 28, 479–484. [Google Scholar] [CrossRef]
- Gupta, V.K.; Parsad, R.; Bhar, L.M.; Mandal, B.N. Statistical Analysis of Agricultural Experiments. Part-I: Single Factor Experiments; ICAR-IASRI: New Delhi, India, 2016; pp. 1–39. [Google Scholar]
- Roskamp, J.M.; Turco, R.F.; Bischoff, M.; Johnson, W.G. The Influence of Carrier Water pH and Hardness. Weed Technol. 2013, 27, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Devkota, P.; Spaunhorst, D.J.; Johnson, W.G. Influence of Carrier Water pH, Hardness, Foliar Fertilizer, and Ammonium Sulfate on Mesotrione Efficacy. Weed Technol. 2016, 30, 617–628. [Google Scholar] [CrossRef]
- Thelen, K.D.; Jackson, E.P.; Penner, D. Utility of nuclear magnetic resonance for determining the molecular influence of citric acid and an organosilicone adjuvant on glyphosate activity. Weed Sci. 1995, 43, 566–571. [Google Scholar] [CrossRef]
- Green, J.M.; Hale, T. Increasing and Decreasing pH to Enhance the Biological Activity of Nicosulfuron. Weed Technol. 2005, 19, 468–475. [Google Scholar] [CrossRef]
- Sanyal, D.; Bhowmik, P.C.; Reddy, K.N. Influence of leaf surface micromorphology, wax content, and surfactant on primisulfuron droplet spread on barnyardgrass (Echinochloa crus-galli ) and green foxtail (Setaria viridis). Weed Sci. 2006, 54, 627–633. [Google Scholar] [CrossRef]
- Li, H.; Travlos, I.; Qi, L.; Kanatas, P.; Wang, P. Optimization of Herbicide Use: Study on Spreading and Evaporation Characteristics of Glyphosate-Organic Silicone Mixture Droplets on Weed Leaves. Agronomy 2019, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Green, J.M.; Beestman, G.B. Recently patented and commercialized formulation and adjuvant technology. Crop Prot. 2007, 26, 320–327. [Google Scholar] [CrossRef]
- Zabkiewicz, J.A. Spray formulation efficacy—Holistic and futuristic perspectives. Crop Prot. 2007, 26, 312–319. [Google Scholar] [CrossRef]
- Arand, K.; Asmus, E.; Popp, C.; Schneider, D.; Riederer, M. The Mode of Action of Adjuvants - Relevance of Physicochemical Properties for Effects on the Foliar Application, Cuticular Permeability, and Greenhouse Performance of Pinoxaden. J. Agric. Food Chem. 2018, 66, 5770–5777. [Google Scholar] [CrossRef] [PubMed]
- Quasem, J.R. Herbicide Resistant Weeds: The Technology and Weed Management. In Herbicides—Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; Tech Publishing: Rijeka, Croatia, 2013; pp. 445–471. [Google Scholar]
- Hazen, J.L. Adjuvants—Terminology, Classification, and Chemistry. Weed Technol. 2000, 14, 773–784. [Google Scholar] [CrossRef]
- Shinde, U.P.; Chougule, S.S.; Dighavkar, C.G.; Jagadale, B.S.; Halwar, D.K. Surface tension as a function of temperature and concentration of liquids. IJCPS 2015, 4, 1–7. [Google Scholar]
- Khaleduzzaman, S.S.; Mahbubul, I.M.; Shahrul, I.M.; Saidur, R. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int. Commun. Heat Mass Transf. 2013, 49, 110–114. [Google Scholar] [CrossRef]
- Massinon, M.; Boukhalfa, H.; Lebeau, F. The effect of surface orientation on spray retention. Precision Agric. 2014, 15, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Ju, J.; Luo, S.; Han, Y.; Dong, Z.; Wang, Y.; Gu, Z.; Zhang, L.; Hao, R.; Jiang, L. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant. Sci. Adv. 2017, 3, e1602188. [Google Scholar] [CrossRef] [Green Version]
- Reichard, D.L.; Zhu, H. A System to Measure Viscosities of Spray Mixtures at High Shear Rates. Pestic. Sci. 1996, 47, 137–143. [Google Scholar] [CrossRef]
- Dressler, D.M.; Li, L.K.B.; Davy, M.H.; Green, S.I.; Eadie, D.T. A Preliminary Experimental Investigation of Newtonian and Non-Newtonian Spray Interaction with a Moving Surface. Master’s Thesis, University of British Columbia Library, Vancouver, BC, USA, 2006. [Google Scholar]
- Hazra, D.K.; Purkait, A. Role of pesticide formulations for sustainable crop protection and environment management: A review. J. Pharmacogn. Phytochem. 2019, 8, 686–693. [Google Scholar]
- Beaudegnies, R.; Edmunds, A.J.F.; Fraser, T.E.M.; Hall, R.G.; Hawkes, T.R.; Mitchell, G.; Schaetzer, J.; Wendeborn, S.; Wibley, J. Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—A review of the triketone chemistry story from a Syngenta perspective. Bioorg. Med. Chem. 2009, 17, 4134–4152. [Google Scholar] [CrossRef] [PubMed]
No. | pH Buffer | Treatment | Adjuvant | Efficacy Based on | |
---|---|---|---|---|---|
Visual Assessment7 | Fresh Weight Reduction | ||||
1 | Neutral solution3 | Sulcotrione1 | - | 90 bc | 90 ab |
2 | Sulcotrione2 | - | 74 jk | 78 ef | |
3 | Sulcotrione2 | + MSO | 86 def | 86 abcde | |
4 | + NIS 1 | 81 gh | 80 cde | ||
5 | + NIS 2 | 84 efg | 86 abcde | ||
6 | Acidic solution4 | Sulcotrione + acetic acid | - | 71 k | 70 fg |
7 | Sulcotrione + citric acid | - | 83 fg | 78 ef | |
8 | Sulcotrione2 + acetic acid | + MSO | 87 cde | 88 abc | |
9 | + NIS 1 | 89 bcd | 88 abc | ||
10 | + NIS 2 | 83 fg | 85 abcde | ||
11 | Sulcotrione2 + Citric acid | + MSO | 95 a | 93 a | |
12 | + NIS 1 | 91 b | 92 a | ||
13 | + NIS 2 | 90 bc | 91 a | ||
14 | Basic solution5 | Sulcotrione + ammonia solution | - | 74 jk | 63 g |
15 | Sulcotrione + potassium phosphate | - | 77 ij | 78 ef | |
16 | Sulcotrione2 + ammonia solution | + MSO | 86 def | 87 abcd | |
17 | + NIS 1 | 81 gh | 82 bcde | ||
18 | + NIS 2 | 81 gh | 85 abcde | ||
19 | Sulcotrione2 + potassium phosphate | + MSO | 88 bcd | 90 ab | |
20 | + NIS 1 | 77 ij | 80 cde | ||
21 | + NIS 2 | 79 hi | 79 de | ||
Standard Deviation | 2.42 | 3.00 |
No. | pH Buffer | Treatment | Adjuvant | Physical Properties | |||
---|---|---|---|---|---|---|---|
Surface Tension (mN/m) | Contact Angle (°) | ||||||
1 | Neutral solution3 | Sulcotrione1 | - | 42.0 | b | 75.3 | b |
2 | Sulcotrione2 | - | 51.5 | a | 92.1 | a | |
3 | Sulcotrione2 | + MSO | 29.8 | c | 47.7 | c | |
4 | + NIS 1 | 21.2 | d | 24.6 | e | ||
5 | + NIS 2 | 28.1 | cd | 41.9 | cd | ||
6 | Acidic solution4 | Sulcotrione + acetic acid | - | 51.2 | a | 89.5 | a |
7 | Sulcotrione + citric acid | - | 50.5 | a | 88.0 | a | |
8 | Sulcotrione2 + acetic acid | + MSO | 29.9 | c | 47.2 | cd | |
9 | + NIS 1 | 21.3 | d | 25.2 | e | ||
10 | + NIS 2 | 28.4 | cd | 42.4 | cd | ||
11 | Sulcotrione2 + Citric acid | + MSO | 29.5 | c | 47.3 | cd | |
12 | + NIS 1 | 21.4 | d | 24.3 | e | ||
13 | + NIS 2 | 28.5 | cd | 41.3 | d | ||
14 | Basic solution5 | Sulcotrione + ammonia solution | - | 51.4 | a | 89.1 | a |
15 | Sulcotrione + potassium phosphate | - | 50.9 | a | 88.2 | a | |
16 | Sulcotrione2 + ammonia solution | + MSO | 29.7 | c | 47.5 | c | |
17 | + NIS 1 | 21.5 | d | 25.4 | e | ||
18 | + NIS 2 | 28.4 | cd | 42.4 | cd | ||
19 | Sulcotrione2 + potassium phosphate | + MSO | 29.6 | c | 46.8 | cd | |
20 | + NIS 1 | 21.7 | d | 25.9 | e | ||
21 | + NIS 2 | 28.2 | cd | 42.0 | cd | ||
Standard Deviation | 2.94 | 2.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobiech, Ł.; Grzanka, M.; Skrzypczak, G.; Idziak, R.; Włodarczak, S.; Ochowiak, M. Effect of Adjuvants and pH Adjuster on the Efficacy of Sulcotrione Herbicide. Agronomy 2020, 10, 530. https://doi.org/10.3390/agronomy10040530
Sobiech Ł, Grzanka M, Skrzypczak G, Idziak R, Włodarczak S, Ochowiak M. Effect of Adjuvants and pH Adjuster on the Efficacy of Sulcotrione Herbicide. Agronomy. 2020; 10(4):530. https://doi.org/10.3390/agronomy10040530
Chicago/Turabian StyleSobiech, Łukasz, Monika Grzanka, Grzegorz Skrzypczak, Robert Idziak, Sylwia Włodarczak, and Marek Ochowiak. 2020. "Effect of Adjuvants and pH Adjuster on the Efficacy of Sulcotrione Herbicide" Agronomy 10, no. 4: 530. https://doi.org/10.3390/agronomy10040530
APA StyleSobiech, Ł., Grzanka, M., Skrzypczak, G., Idziak, R., Włodarczak, S., & Ochowiak, M. (2020). Effect of Adjuvants and pH Adjuster on the Efficacy of Sulcotrione Herbicide. Agronomy, 10(4), 530. https://doi.org/10.3390/agronomy10040530