PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Inocula and Method of Inoculation
2.3. Growing Conditions and the Treatments
2.4. Height and Weight of Plants and Weight of Tomato Fruit
2.5. Physiological and Biochemical Attributes of Plants
2.5.1. Leaf Protein Content
- K value = 19.6
- Dilution factor = 2
- Weight of leaf sample = 100 mg
2.5.2. Chlorophyll and Carotenoids Content
2.5.3. Proline Content of Leaves (μg/g)
- Value of K= 17.52
- Dilution factor= 2
- Weight of leaf sample= 100 mg
2.5.4. Sugar Estimation
- Value of K = 20
- Dilution factor = 10
- Weight of leaf sample = 500mg
2.5.5. Superoxide Dismutase (SOD) Assay
- R4 = R3-R2
- SOD activity = R4/A
- R1 = O.D of Reference, R2 = O.D of Blank, R3 = O.D of Sample
- A = R1 (50/100)
2.5.6. Determination of Indole acetic acid (IAA), Gibberellic acid (GA) and Abscisic acid (ABA) Contents
2.5.7. Determination of Salicylic Acid (SA) Content of Leaves
2.5.8. Measurement of Shoot and Root Fresh and Dry Weights and Root Area
2.6. Thin Layer Chromatography of Methanolic Extract of Tomato Leaves
2.7. FTIR Spectroscopy
2.8. Statistical Analysis of Data
3. Results
3.1. Plant Growth Attributes
3.2. Physiological Parameters
3.3. Phytohormones Contents of Leaves
3.4. Detection of Secondary Metabolites from Extract of Tomato Leaves
3.5. Fourier Transform Infrared Spectrometry (FTIR) of Tomato Leaves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tyssandier, V.; Feillet-Coudray, C.; Caris-Veyrat, C.; Guilland, J.C.; Coudray, C.; Bureau, S.; Reich, M.; Amiot-Carlin, M.J.; Bouteloup-Demange, C.; Boirie, Y.; et al. Effect of tomato product consumption on the plasma status of antioxidant microconstituents and on the plasma total antioxidant capacity in healthy subjects. J. Am. Coll. Nutr. 2004, 23, 148–156. [Google Scholar] [CrossRef]
- Friedman, M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J Agr Food Chem. 2013, 61, 9534–9550. [Google Scholar] [CrossRef]
- Wu, C.J.; Fan, S.Y.; Jiang, Y.H.; Yao, H.H.; Zhang, A.B. Inducing gathering effect of taro on Spodoptera lituraFabricius. Chin. J. Eco. 2004, 23, 172–174. [Google Scholar] [CrossRef]
- Ahmad, M.; Ghaffar, A.; Rafiq, M. Host plants of leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Pakistan. Asian J. Agric. Biol. 2013, 1, 23–28. [Google Scholar]
- Khan, N.; Bano, A.; Zandi, P. Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. J. Plant Interact. 2018, 13, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Sayyed, A.H.; Ahmad, M.; Saleem, M.A. Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). J. Econ. Entomol. 2008, 101, 472–479. [Google Scholar] [CrossRef]
- Saleem, M.A.; Ahmad, M.; Aslam, M.; Sayyed, A.H. Resistance to selected organochlorine, organophosphate, carbamates and pyrethroid insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. J. Econ. Entomol. 2008, 101, 1667–1675. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Bano, A. Growth and Yield of Field Crops Grown Under Drought Stress Condition Is Influenced by the Application of PGPR. In Field Crops: Sustainable Management by PGPR; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 337–349. [Google Scholar]
- Nihorimbere, V.; Ongena, M.; Smargiassi, M.; Thonart, P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 2011, 15, 327. [Google Scholar]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2013, 71, 4951–4959. [Google Scholar] [CrossRef] [Green Version]
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Differential defensive response of groundnut to Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Plant Interact. 2011, 7, 45–55. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Rahman, M.A.; Rathinasabapathi, B.; Babar, M.A. UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. 2019, 42, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseem, H.; Ahsan, M.; Shahid, M.A.; Khan, N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol. 2018, 58, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Vaikuntapu, P.R.; Dutta, S.; Samudrala, R.B.; Rao, V.R.; Kalam, S.; Podile, A.R. Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian J. Microbiol. 2014, 54, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Passari, A.K.; Upadhyaya, K.; Singh, G.; Abdel-Azeem, A.M.; Thankappan, S.; Uthandi, S.; Hashem, A.; Abd_Allah, E.F.; Malik, J.A.; Alqarawi, A.S.; et al. Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147. PLoS ONE 2019, 14, e0219014. [Google Scholar] [CrossRef] [Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Zandi, P.; Ali, S.; Mehmood, A.; Adnan Shahid, M.; Yang, J. Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Front. Microbiol. 2018, 9, 2507. [Google Scholar] [CrossRef] [Green Version]
- Quais, M.K.; Munawar, A.; Ansari, N.A.; Zhou, W.W.; Zhu, Z.R. Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Farooq, U.; Bano, A. Screening of indigenous bacteria from rhizosphere of maize (Zea mays L.) for their plant growth promotion ability and antagonism against fungal and bacterial pathogens. J. Anim. Plant Sci. 2013, 23, 1642–1652. [Google Scholar]
- Naz, R.; Bano, A.; Yasmin, H.; Samiullah, H.; Farooq, U. Antimicrobial potential of the selected plant species against some infectious microbes used. J. Med. Plants Res. 2011, 5, 5247–5253. [Google Scholar]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant. Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Kudoyarova, G.; Arkhipova, T.N.; Korshunova, T.; Bakaeva, M.; Loginov, O.; Dodd, I.C. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 2019, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Patel, J.S.; Meena, V.S.; Ramteke, P.W. Plant growth-promoting rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture. J. Plant Nutr. 2019, 42, 1402–1415. [Google Scholar] [CrossRef]
- Mahmoudi, T.R.; Yu, J.M.; Liu, S.; Pierson III, L.S.; Pierson, E.A. Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Front. Microbiol. 2019, 10, 1590. [Google Scholar] [CrossRef] [Green Version]
- Baliyan, S.P.; Rao, M.S. Evaluation of tomato varieties for pest and disease adaptation and productivity in Botswana. Int. J. Agric. Food Res. 2013, 2, 2. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Dubois, S.M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Calorimetric method for determination of sugar and related substance. Anal. Chem. 1956, 28, 350. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Kettner, J.; Dörffling, K. Biosynthesis and metabolism of abscisic acid in tomato leaves infected with Botrytis cinerea. Planta 1995, 196, 627–634. [Google Scholar] [CrossRef]
- Hansen, H.; Dörffling, K. Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: Interaction in the control of leaf diffusive resistance? Funct. Plant Biol. 2003, 30, 365–375. [Google Scholar] [CrossRef]
- Enyedi, A.J.; Raskin, I. Induction of UDP-glucose: Salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol. 1993, 101, 1375–1380. [Google Scholar] [CrossRef] [Green Version]
- Sesker, M.; Shulaev, V.; Raskin, I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 1998, 116, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Bano, A. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. Int. J. Phytoremediat. 2018, 20, 405–414. [Google Scholar] [CrossRef]
- Subramanian, S.; Ramakrishnan, N. Chromatographic finger print analysis of Naringi crenulata by HPTLC technique. Asian Pac. J. Trop. Biomed. 2011, 1, S195–S198. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Al-Qadiri, H.M.; Ross, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, T.; Wu, Z.; Zeng, G.; Huang, D.; Shen, Y.; He, X.; Lai, M.; He, Y. Study on biodegradation process of lignin by FTIR and DSC. Environ. Sci. Pollut. Res. 2014, 21, 14004–14013. [Google Scholar] [CrossRef]
- Lammers, K.; Arbuckle-Keil, G.; Dighton, J. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Bio Biochem. 2009, 41, 340–347. [Google Scholar] [CrossRef]
- Avis, T.J.; Gravel, V.; Antoun, H.; Tweddell, R.J. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 2008, 40, 1733–1740. [Google Scholar] [CrossRef]
- Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Shannag, H.K.; Abadneh, J.A. Influence of Black Bean Aphids, Aphis fabae Scopoli. On growth rates of Faba Bean. World J. Agric. Sci. 2007, 3, 344–349. [Google Scholar]
- Yadav, J.; Jay, P.V.; Kavindra, N.T. Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J. Biol. Sci. 2011, 4, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Hadi, F. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Environ Sci Pollut. 2015, 22, 13305–13318. [Google Scholar] [CrossRef]
- Mena-Violante, H.G.; Olalde-Portugal, V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 2007, 113, 103–106. [Google Scholar] [CrossRef]
- Widnyana, I.K. PGPR (Plant Growth Promoting Rizobacteria) Benefits in Spurring Germination, Growth and Increase the Yield of Tomato Plants. In Recent Advances in Tomato Breeding and Production; IntechOpen: London, UK, 2018. [Google Scholar]
- Almaghrabi, O.A.; Massoud, S.I.; Abdelmoneim, T.S. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 2013, 20, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.F.; Reddy, M.S.; Ryu, C.M.; Kloepper, J.W.; Li, R. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathol 2003, 93, 1301–1307. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.F.; Cheng, C.G.; Tang, X.; Hu, Z.H. Spectrum of Hypericum and Triadenum with reference to their identification. J. Integr. Plant Biol. 2004, 46, 401–406. [Google Scholar] [CrossRef]
- Fabro, G.; Kovács, I.; Pavet, V.; Szabados, L.; Alvarez, M.E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol. Plant-Microbe Interact. 2004, 17, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janardan, Y.; Verma, J.P.; Tiwari, K.N. Effect of plant growth promoting rhizobacteria on seed germination and plant growth chickpea (Cicer arietinum L.) under in vitro conditions. Biol. Forum 2010, 2, 15–18. [Google Scholar]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2009, 52, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, S.; Ashraf, M.; Asghar, H.N.; Iqbal, Z.; Ali, R. Review Plant growth promoting rhizobacteria-mediated amelioration of drought in crop plants. Soil Environ. 2019, 38, 1–20. [Google Scholar] [CrossRef]
- Abideen, Z.; Qasim, M.; Rasheed, A.; Adnan, M.Y.; Gul, B.; Khan, M.A. Antioxidant activity and polyphenolic content of Phragmites karka under saline conditions. Pak. J. Bot. 2015, 47, 813–818. [Google Scholar]
- Welbaum, G.E.; Sturz, A.V.; Dong, Z.; Nowak, J. Managing soil microorganisms to improve productivity of agro-ecosystems. Crit. Rev. Plant Sci. 2004, 23, 175–193. [Google Scholar] [CrossRef]
- Ullah, S.; Asema, M.; Asghari, B. Effect of PGPR on growth and performance of Zea mays. Res. J. Agric. Environ. Manag. 2013, 2, 434–447. [Google Scholar]
- Willcox, J.K.; Catignani, G.L.; Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2003, 43, 1–18. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, C.; Guo, Z.; Zhang, Q.; Li, S.; Zhang, X.; Gong, J.; Shen, Y. Herbivore exposure alters ion fluxes and improves salt tolerance in a desert shrub. Plant Cell Environ. 2020, 43, 400–419. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef]
- Wang, C.J.; Yang, W.; Wang, C.; Gu, C.; Niu, D.D.; Liu, H.X.; Wang, Y.P.; Guo, J.H. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 2012, 7, e52565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, A.M.; Lacock, L.; van Niekerk, C.; Matsioloko, M.T.; du Preez, F.B.; Loots, S.; Venter, E.; Kunert, K.J.; Cullis, C.A. Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep. 2006, 25, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Burd, J.D.; Elliott, N.C. Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homopetra: Aphididea). J. Econ. Entomol. 1996, 89, 1332–1337. [Google Scholar] [CrossRef]
- Ni, X.; Quisenberry, S.S.; Heng-Moss, T.; Markwell, J.; Higley, L.; Baxendale, F.; Sarath, G.; Klucas, R. Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomol. Exp. Appl. 2002, 105, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Mathur, V. Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiol. Ecol. 2020, 96, 40. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Hui, C.; Hardev, S.; Ouyang, F.; Dong, Z.; Ge, F. Responses of cereal aphids and their parasitic wasps to landscape complexity. J. Econ. Entomol. 2014, 107, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Mehboob, I.; Zahir, Z.A.; Arshad, M.; Tanveer, A.; Khalid, M. Comparative effectiveness of different Rhizobium sp. for improving growth and yield of maize (Zea mays L.). Soil Environ. 2012, 31, 37–46. [Google Scholar]
- Zhang, S.; Moyne, A.L.; Reddy, M.S.; Kloepper, J.W. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control. 2002, 25, 288–296. [Google Scholar] [CrossRef]
- Bobby, M.N.; Wesely, E.G.; Johnson, M. FT-IR studies on the leaves of Albizia lebbeck benth. Int. J. Pharm. Pharm. Sci. 2012, 4, 293–296. [Google Scholar]
- Mansour, M.F. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 2000, 43, 491–500. [Google Scholar] [CrossRef]
- Fernandez-Aunión, C.; Hamouda, T.B.; Iglesias-Guerra, F.; Argandoña, M.; Reina-Bueno, M.; Nieto, J.J.; Aouani, M.E.; Valrgas, C. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 2010, 10, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, D.K.; Johri, B.N. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yen, H.E. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol. 2000, 130, 1032–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Sun, S.; Lv, G.; Chan, K.C. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. Spectrochim. Acta Part A 2006, 64, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Pineda, A.; Zheng, S.J.; Van Loon, J.J.; Pieterse, C.M.; Dicke, M. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 2010, 15, 507–514. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; Van Loon, B.; van Loon, J.J.; Dicke, M. Insect-Plant Biology; Oxford University Press on Demand: Oxford, UK, 2005. [Google Scholar]
- Natikar, P.K.; Balika, R.A. Tobacco caterpillar Spodoptera litura (Fabricus) toxicity, ovicidal action, oviposition deterrent activity, ovipositional preference and its management. Biochem. Cell. Arch 2015, 15, 383–389. [Google Scholar]
- Brimecombe, M.J.; De Leij, F.A.; Lynch, J.M. Rhizodeposition and microbial populations. In the Rhizosphere Biochemistry and Organic Substances at the Soil-Plant Interface; Pinton, R., Veranini, Z., Nannipieri, P., Eds.; Taylor and Francis: New York, NY, USA, 2007; pp. 73–110. [Google Scholar]
- Tsukanova, K.A.; Сhеbotаr, V.К.; Meyer, J.J.M.; Bibikova, T.N. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. South Afri. J. Bot. 2017, 113, 91–102. [Google Scholar] [CrossRef]
- Mendes, R..; Garbeva, P..; Raaijmakers, J.M. The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Branch, C.; Hwang, C.F.; Navarre, D.A.; Williamson, V.M. Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato. Mol. Plant-Microbe Interact. 2004, 17, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Ton, J.; Van-Pelt, J.A.; Van Loon, L.C.; Pieterse, C.M. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 2002, 15, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Dixit, G.; Srivastava, A.; Rai, K.M.; Dubey, R.S.; Srivastava, R.; Verma, P.C. Distinct defensive activity of phenolicsandphenylpropanoid pathway genesin different cotton varieties toward chewing pests. Plant. Signal. Behav. 2020, 15, 1747689. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Jacobo-Velázquez, D.A.; González-Agüero, M.; Cisneros-Zevallos, L. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Sci. Rep. 2015, 5, 8608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.; Egan, P.A.; Muola, A.; Ericson, L.E.; Stenberg, J.A. plant resistance does not compromise parasitoid-based biocontrol of a strawberry pest. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hammerschmidt, R. Phenols and plant–pathogen interactions: The saga continues. Physiol. Mol. Plant Pathol. 2005, 66, 77–78. [Google Scholar] [CrossRef]
- Panda, N.; Khush, G.A. Host Plant Resistance to Insects; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Shavit, R.; Lalzar, M.O.; Saul, B.; Morin, S. Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Front. Plant Sci. 2013, 4, 1941–1947. [Google Scholar] [CrossRef] [Green Version]
- Subramanion, L.J.; Zakaria, Z.; Sreenivasan, S. Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitiory activities of Cassia fistula seeds extract. J. Med. Plants Res. 2011, 5, 1941–1947. [Google Scholar]
- Khan, N.; Bano, A. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int. J. phytoremediat. 2016, 18, 1258–1269. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Int-Veen, I.; Löder, M.G.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Chehab, E.W.; Eich, E.; Braam, J. Thigmomorphogenesis: A complex plant response to mechano-stimulation. J. Exp. Bot. 2009, 60, 43–56. [Google Scholar] [CrossRef] [Green Version]
Treatments | Rf Values | Color | Compounds |
---|---|---|---|
Control | 0.85 | Red | Caffeic acid |
0.85 | Red | Quercitin | |
T1 | 0.50 | Red | Unidentified |
0.73 | Red | Myricitin | |
0.79 | Red | o-coumaric acid | |
T2 | 0.21 | Red | Flavonoid-glycoside |
0.39 | Red | Unidentified | |
0.50 | Red | Unidentified | |
0.71 | Red | Ferulic acid | |
0.79 | Red | o-coumaric acid | |
T3 | 0.55 | Yellow | Kampferol-7-neoheps-eridiside |
0.14 | Red | Unidentified | |
0.41 | Red | Unidentified | |
0.84 | Red | Caffeic acid | |
0.76 | Yellow | p-Cumaric acid | |
T4 | 0.16 | Red | Unidentified |
0.23 | Red | Unidentified | |
0.43 | Red | Rutin | |
0.60 | Red | Salicylic acid | |
0.82 | Red | Kaempferol | |
0.76 | Yellow | p-Cumaric acid | |
T5 | 0.16 | Red | Unidentified |
0.23 | Red | Unidentified | |
0.43 | Red | Rutin | |
0.60 | Red | Salicylic acid | |
0.82 | Red | Kaempferol | |
0.77 | Yellow | p-Cumaric acid |
Treat. | Frequency | Bond | Functional Group | Characteristics of Peak |
---|---|---|---|---|
C | 3408.9 | N–H- stretch | 1°, 2° amines/amides | Medium |
1632.5 | N–H- bend | 1° amines | Medium | |
1068.3 | C–N- stretch | aliphatic amines | Medium | |
967.6 | =C–H- bend | Alkenes | Strong | |
799.5 | C–Cl stretch | alkyl halides | Medium | |
T1 | 3412.90 | N–H stretch | 1°, 2° amines, amides | Medium |
1633.25 | N–H- bend | 1° amines | Medium | |
1066.14 | C–N- stretch | aliphatic amines | Strong | |
967.48 | =C–H- bend | Alkenes | Medium | |
799.21 | C–Cl stretch | alkyl halides | Broad, strong | |
T2 | 3410.75 | N–H- stretch | 1°, 2° amines, amides | Medium |
1633.24 | C–N- stretch | aliphatic- amines | Strong | |
1068.66 | C–N- stretch | aliphatic amines | Strong | |
967.13 | =C–H- bend | Alkenes | Medium | |
799.17 | C–Cl- stretch | alkyl halides | Broad, strong | |
638.51 | –C≡C–H:C–H- bend | Alkynes | Broad, strong | |
T3 | 3376.84 | N–H stretch | 1°, 2° amines, amides | Medium |
2922.79 | C–H-- stretch | Alkanes | Medium | |
1071.40 | C–N- stretch | aliphatic amines | Strong | |
966.62 | =C–H- bend | Alkenes | Medium | |
799.60 | C–Cl- stretch | alkyl halides | Broad, strong | |
T4 | 3412.33 | N–H- stretch | 1°, 2° amines, amides | Medium |
2827.91 | H–C=O: C–H- stretch | Aldehydes | Medium | |
1630.78 | N–H- bend | 1° amines | Medium | |
1066.63 | C–N- stretch | aliphatic amines | Strong | |
967.01 | =C–H- bend | Alkenes | Medium | |
799.50 | C–Cl- stretch | alkyl halides | Broad, strong | |
T5 | 3405.01 | N–H- stretch | 1°, 2° amines, amides | Medium |
1632.25 | N–H- bend | 1° amines | Medium | |
1066.10 | C–N- stretch | aliphatic amines | Strong | |
967.23 | =C–H- bend | Alkenes | Medium | |
799.56 | C–Cl- stretch | alkyl halides | Broad, strong |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kousar, B.; Bano, A.; Khan, N. PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura. Agronomy 2020, 10, 778. https://doi.org/10.3390/agronomy10060778
Kousar B, Bano A, Khan N. PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura. Agronomy. 2020; 10(6):778. https://doi.org/10.3390/agronomy10060778
Chicago/Turabian StyleKousar, Bani, Asghari Bano, and Naeem Khan. 2020. "PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura" Agronomy 10, no. 6: 778. https://doi.org/10.3390/agronomy10060778
APA StyleKousar, B., Bano, A., & Khan, N. (2020). PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura. Agronomy, 10(6), 778. https://doi.org/10.3390/agronomy10060778