Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Storage Conditions
2.2. Chemical Analysis
2.2.1. Determination of Dry Matter and Soluble Solids Content
2.2.2. Determination of Ascorbic Acid Content
2.2.3. Determination of Total Chlorophyll and Carotenoids Content
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Actinidia Kolomikta Fruit at Harvest
3.2. Changes in Dry Matter and Soluble Solid Contents of Fruit During Storage
3.3. Changes in Ascorbic Acid Content of Fruit during Storage
3.4. Changes in Pigments Content of Fruit during Storage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Latocha, P.; Krupa, T.; Wolosiak, R.; Worobiej, E.; Wilczak, J. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 2010, 61, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Paulauskienė, A.; Pranckietis, V.; Tarasevičienė, Ž.; Barčytė, T. Changes in chemical composition during ripening of Actinidia kolomikta fruits. In Proceedings of the 6th International Scientific Conference Rural Development 2013, Akademija, Lithuania, 28–29 November 2013; pp. 191–194. [Google Scholar]
- Pranckietis, V.; Paulauskiene, A.; Jureviciene, V.; Taraseviciene, Z.; Pranckietiene, I. Breeding and Processing of Lithuanian Cultivars of Actinidia Kolomikta (Maxim. and Rupr.) Maxim. Fruits Grown in Organic Conditions. Zesz. Probl. Postępów Nauk Roln. 2009, 536, 177–183. Available online: https://www.researchgate.net/publication/236875946_Breeding_and_processing_of_lithuanian_cultivars_of_Actinidia_kolomikta_Maxim_and_Rupr_Maxim_fruits_grown_in_organic_conditions (accessed on 15 November 2018).
- Zuo, L.L.; Wang, Z.Y.; Fan, Z.L.; Tian, S.Q.; Liu, J.R. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int. J. Mol. Sci. 2012, 13, 5506–5518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.Y.; Zhong, Y.; Zheng, J.; Ali, M.; Liu, G.D.; Zheng, X.L. L-ascorbic acid metabolism in an ascorbate-rich kiwifruit (Actinidi. eriantha Benth.) cv. ‘White’ during postharvest. Plant. Physiol. Biochem. 2018, 124, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Ashiru, S.; Ibrahim, I.D.; Kanoma, A.I.; Sani, I.; Garba, S. Effect of ripening stage on vitamin C content in selected fruits. Int. J. Agric. Forest. Fish. 2014, 2, 60–65. [Google Scholar]
- Pilkington, S.M.; Montefiori, M.; Jameson, P.E.; Allan, A.C. The control of chlorophyll levels in maturing kiwifruit. Planta 2012, 236, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Ampomah-Dwamena, C.; McGhie, T.; Wibisono, R.; Montefiori, M.; Hellens, R.P.; Allan, A.C. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J. Exp. Bot. 2009, 60, 3765–3779. [Google Scholar] [CrossRef] [Green Version]
- Latocha, P.; Krupa, T.; Jankowski, P.; Radzanowska, J. Changes in postharvest physicochemical and sensory characteristics of hardy kiwifruit (Actinidia arguta and its hybrid) after cold storage under normal versus controlled atmosphere. Postharvest Biol. Technol. 2014, 88, 21–33. [Google Scholar] [CrossRef]
- Wang, Y.; Sugar, D. Internal Browning Disorder and Fruit Quality in Modified Atmosphere Packaged ‘Bartlett’ Pears during Storage and Transit. Postharvest Biol. Technol. 2013, 83, 72–82. [Google Scholar] [CrossRef]
- Mworia, E.G.; Yoshikawa, T.; Salikon, N.; Oda, C.; Asiche, W.O.; Yokotani, N.; Abe, D.; Ushijama, K.; Nakano, R.; Kubo, Y. Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold’ kiwifruit. J. Exp. Bot. 2012, 63, 963–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, Y. Ethylene, oxygen, carbon dioxide, and temperature in postharvest physiology. In Abiotic Stress Biology in Horticultural Plants; Kanayama, Y., Kochetov, A., Eds.; Springer: Tokyo, Japan, 2015; pp. 17–33. [Google Scholar]
- Rama, M.V.; Narasimham, P. Controlled-atmosphere storage: Effects on fruit and vegetables. In Encyclopaedia of Food Science and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Baltimore, MD, USA, 2003; pp. 1607–1615. [Google Scholar]
- Burdon, J.; Lallu, N. Kiwifruit (Actinidia spp.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits: Cocona to Mango, 1st ed.; Yahia, E.M., Ed.; Woodhead: Lincolnshire, IL, USA, 2011; pp. 326–362. [Google Scholar]
- Agar, I.T.; Massantini, R.; Hess-Pierce, B.; Kader, A.A. Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices. J. Food Sci. 1999, 64, 433–440. [Google Scholar] [CrossRef]
- Chesoniene, L.; Daubaras, R.; Viskelis, P. Biochemical composition of berries of some kolomikta kiwi (Actinidia kolomikta) cultivars and detection of harvest maturity. Acta Hortic. 2004, 663, 305–308. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Straumite, E.; Kruma, Z.; Galoburda, R. Pigments in Mint Leaves and Stems. Agron. Res. 2015, 13, 1104–1111. Available online: https://agronomy.emu.ee/wp-content/uploads/2015/05/13_4_24_B5.pdf (accessed on 11 September 2018).
- Walker, P.G.; Viola, R.; Woodhead, M.; Jorgensen, L.; Gordon, S.L.; Brennan, R.M.; Hancock, R.D. Ascorbic Acid Content of Blackcurrant Fruit is Influenced by Both Genetic and Environmental Factors. Funct. Plant. Sci. Biotechnol. 2010, 4, 40–52. Available online: https://www.semanticscholar.org/paper/Ascorbic-Acid-Content-of-Blackcurrant-Fruit-is-by-Walker-Viola/e613ce10a9406b55d7238a67e4a01eb406031b73 (accessed on 26 November 2018).
- Paulauskienė, A.; Pranckietis, V.; Barčytė, T.; Tarasevičienė, Ž. Changes of Actinidia kolomikta fruit texture during storage in controlled atmosphere chambers. In Proceedings of the 7th International Scientific Conference Rural Development 2015, Akademija, Lithuania, 19–20 November 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Jordan, R.B.; Seelye, R.J. Relationship between taste perception, density and soluble solids concentration in kiwifruit (Actinidia deliciosa). N. Z. J. Crop. Hort. Sci. 2009, 37, 303–317. [Google Scholar] [CrossRef]
- Hu, X.; Kuang, S.; Zhang, A.D.; Zhang, W.S.; Chen, M.J.; Yin, X.R.; Chen, K.S. Characterization of starch degradation related genes in postharvest kiwifruit. Int. J. Mol. Sci. 2016, 17, 2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyes, J.A.; Tanner, D.; East, A. Kiwifruit respiration rates, storage temperatures and harvest maturity. Acta Hortic. 2010, 880, 167–173. [Google Scholar] [CrossRef]
- Ntagkas, N.; Woltering, E.; Marcelis, L.F.M. Light regulates ascorbate in plants: An integrative view on physiology and biochemistry. Environ. Exp. Bot. 2018, 147, 271–280. [Google Scholar] [CrossRef]
- Bulley, S.M.; Rassam, M.; Hoser, D.; Otto, W.; Schünemann, N.; Wright, M.; MacRae, E.; Gleave, A.; Laing, W. Gene expression studies in Kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose Guanyltransferase is a major control point of vitamin C biosynthesis. J. Exp. Bot. 2009, 60, 765–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa, T.; Latocha, P.; Liwinska, A. Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Sci Hortic. 2011, 130, 410–417. [Google Scholar] [CrossRef]
- Stefaniak, J.; Sawicka, M.; Krupa, T.; Latocha, P.; Lata, B. Effect of kiwiberry pre-storage treatments on the fruit quality during cold storage. Zemdirb. Agric. 2017, 104, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Kader, A.A. Physiology of CA treated produce. Acta Hortic. 2003, 600, 349–354. [Google Scholar] [CrossRef]
- Latocha, P. The nutritional and health benefits of kiwiberry (Actinidia arguta)—a Review. Plant. Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latocha, P.; Wołosiak, R.; Worobiej, E.; Krupa, T. Clonal differences in antioxidant activity and bioactive constituents of hardy kiwifruit (Actinidia arguta) and its year-to-year variability. J. Sci. Food Agric. 2013, 93, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Montefiori, M.; Comeskey, D.J.; Wohlers, M.; McGhie, T.K. Characterization and quantification of anthocyanins in red kiwifruit (Actinidia spp.). J. Agric. Food Chem. 2009, 57, 6856–6861. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Dry Matter % | Soluble Solids Content % | Ascorbic Acid mg kg−1 | Total Chlorophyll mg kg−1 | Total Carotenoid mg kg−1 |
---|---|---|---|---|---|
‘Landė’ | 15.29 ± 0.72 b * | 10.02 ± 0.34 a | 5632.76 ± 199.13 a | 6.50 ± 0.11 d | 1.47 ± 0.05 c |
‘Lankė’ | 15.21 ± 0.62 b | 9.77 ± 0.34 a | 4442.79 ± 160.95 c | 11.28 ± 0.18 c | 2.47 ± 0.02 b |
‘Laiba’ | 18.11 ± 0.54 a | 9.93 ± 0.14 a | 5090.69 ± 163.86 b | 15.31 ± 0.07 b | 5.31 ± 0.02 a |
‘Paukštės Šakarva’ | 13.14 ± 0.94 c | 8.68 ± 0.35 b | 5041.78 ± 182.77 b | 24.89 ± 0.12 a | 5.24 ± 0.06 a |
Cultivar | Storage Time Weeks | Dry Matter % (n = 20) | Soluble Solids Content % (n = 24) | Ascorbic Acid mg kg−1 (n = 24) | Total Chlorophyll mg kg−1 (n = 24) | Total Carotenoid mg kg−1 (n = 24) |
---|---|---|---|---|---|---|
‘Landė’ | 2 | 15.78 ± 1.19 d | 11.35 ± 0.22 i | 5306.97 ± 548 a | 17.94 ± 1.58 f,g | 7.19 ± 0.69 f,g |
4 | 15.52 ± 1.20 d,e | 12.56 ± 0.50 f | 5238.15 ± 794 a | 16.65 ± 0.75 g,e | 8.36 ± 0.43 f | |
6 | 16.88 ± 1.64 c | 13.44 ± 0.75 d | 3888.97 ± 1014 e | 28.18 ± 0.44 b,c,d | 12.23 ± 0.35 d,e | |
‘Lankė’ | 2 | 15.99 ± 0.83 d | 11.70 ± 0.41 h | 4646.72 ± 305 b | 41.37 ± 3.12 a | 16.47 ± 1.08 b |
4 | 16.88 ± 0.86 c | 12.85 ± 0.30 e | 4420.05 ± 661 c | 29.81 ± 1.42 b,c | 13.53 ± 0.77 c,d | |
6 | 17.34 ± 1.50 c | 13.76 ± 0.91 c | 3708.12 ± 212 f,g | 26.02 ± 0.31 d,e | 12.28 ± 0.20 d,e | |
‘Laiba’ | 2 | 18.81 ± 1.01 b | 12.83 ± 0.40 e | 4211.35 ± 813 d | 20.49 ± 0.72 f | 7.40 ± 0.25 f |
4 | 19.21 ± 1.65 b | 14.91 ± 0.38 b | 4456.36 ± 1062 c | 31.22 ± 1.00 b | 14.42 ± 0.52 c | |
6 | 21.77 ± 1.89 a | 15.38 ± 2.54 a | 3584.06 ± 562 g | 40.06 ± 1.08 a | 19.68 ± 0.58 a | |
‘Paukštės Šakarva’ | 2 | 14.14 ± 0.60 f | 10.23 ± 0.39 j | 5250.36 ± 614 a | 12.87 ± 0.57 h | 5.66 ± 0.31 g |
4 | 13.99 ± 1.35 f | 11.38 ± 0.21 i | 4698.89 ± 483 b | 26.48 ± 1.36 c,d,e | 12.80 ± 0.65 c,d,e | |
6 | 14.93 ± 1.51 e | 12.03 ± 0.71 g | 3860.28 ± 155 e,f | 24.38 ± 0.99 e | 11.31 ± 0.44 e |
Chamber No. | Storage Time Weeks | Dry Matter % (n = 20) | Soluble Solids Content % (n = 24) | Ascorbic Acid mg kg−1 (n = 24) | Total Chlorophyll mg kg−1 (n = 24) | Total Carotenoid mg kg−1 (n = 24) |
---|---|---|---|---|---|---|
1 | 2 | 16.00 ± 1.82 f,g,h | 11.24 ± 1.15 j | 4364.93 ± 322 d,e | 33.03 ± 3.74 a | 12.75 ± 1.36 b,c |
4 | 16.40 ± 2.47 g,e,f | 12.88 ± 1.36 e | 5379.16 ± 572 a | 24.75 ± 1.27 d,e | 11.95 ± 0.64 c | |
6 | 16.81 ± 3.63 c,d,e | 13.04 ± 1.57 d | 3771.06 ± 219 f | 27.17 ± 1.47 b,c,d | 13.68 ± 0.80 a,b | |
2 | 2 | 16.20 ± 1.93 g,e,f | 11.59 ± 0.79 i | 5276.31 ± 531 a | 14.12 ± 0.82 f | 5.40 ± 0.19 f |
4 | 17.21 ± 2.22 b,c,d | 13.16 ± 1.51 c | 4485.36 ± 569 c,d | 24.13 ± 1.06 d,e | 11.56 ± 0.51 c,d | |
6 | 17.32 ± 2.43 b,c | 12.37 ± 0.80 g | 3151.66 ± 503 g | 32.78 ± 1.19 a | 14.14 ± 0.68 a,b | |
3 | 2 | 15.89 ± 1.83 g,h | 11.55 ± 0.92 i | 4843.29 ± 1021 b | 23.73 ± 0.86 d,e | 10.25 ± 0.39 d |
4 | 15.45 ± 2.02 h | 12.95 ± 1.14 d,e | 4555.66 ± 454 c | 25.54 ± 1.45 c,d | 11.13 ± 0.75 c,d | |
6 | 17.55 ± 2.17 b | 14.20 ± 1.56 b | 4223.99 ± 573 e | 29.66 ± 0.44 a,b | 13.96 ± 0.22 a,b | |
4 | 2 | 16.64 ± 2.15 d,e,f | 11.72 ± 1.09 h | 4930.88 ± 644 b | 21.80 ± 0.83 e | 8.32 ± 0.47 e |
4 | 16.55 ± 2.32 e,f | 12.71 ± 1.31 f | 4393.26 ± 1170 d | 29.74 ± 1.32 a,b | 14.48 ± 0.64 a | |
6 | 19.24 ± 3.14 a | 15.01 ± 2.09 a | 3894.72 ± 467 f | 29.01 ± 0.29 b,c | 13.73 ± 0.14 a,b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulauskienė, A.; Tarasevičienė, Ž.; Žebrauskienė, A.; Pranckietienė, I. Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit. Agronomy 2020, 10, 822. https://doi.org/10.3390/agronomy10060822
Paulauskienė A, Tarasevičienė Ž, Žebrauskienė A, Pranckietienė I. Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit. Agronomy. 2020; 10(6):822. https://doi.org/10.3390/agronomy10060822
Chicago/Turabian StylePaulauskienė, Aurelija, Živilė Tarasevičienė, Audronė Žebrauskienė, and Irena Pranckietienė. 2020. "Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit" Agronomy 10, no. 6: 822. https://doi.org/10.3390/agronomy10060822
APA StylePaulauskienė, A., Tarasevičienė, Ž., Žebrauskienė, A., & Pranckietienė, I. (2020). Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit. Agronomy, 10(6), 822. https://doi.org/10.3390/agronomy10060822