Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germination Experiment
2.2. Germination Assessment
2.3. Seedling Growth Assessment
2.4. Salinity Tolerance Indices
2.5. Statistical Analysis
3. Results
3.1. Overall Effects of Genotypes and Salinity
3.2. Germination Assessment
3.3. Seedling Growth Assessment
3.4. Salinity Tolerance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Hafsi, C.; Romero-Puertas, M.; Gupta, D.K.; Rio, L.A.D.; Sandalio, L.M.; Abdelly, C. Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environ. Exp. Bot. 2010, 69, 129–136. [Google Scholar] [CrossRef]
- FAO. Global Network on Integrated Soil Management for Sustainable Use of Salt Affected Soils; FAO Land and Plant Nutrition Management Service: Rome, Italy, 2005. [Google Scholar]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Dai, X.; Huo, Z.; Wang, H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop Res. 2011, 121, 441–449. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Puyang, X.; An, M.; Han, L.; Zhang, X. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol. Environ. Saf. 2015, 117, 96–106. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Sun, J.; Shao, H. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci. Total Environ. 2016, 568, 910–915. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Sun, S.; Mu, C.; Yan, X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 2017, 576, 234–241. [Google Scholar] [CrossRef]
- Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N.A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J. Plant Physiol. 2011, 168, 807–815. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Iqbal, N.; Masood, A.; Khan, N.A. Variation in salt tolerance of wheat cultivars: Role of glycinebetaine and ethylene. Pedosphere 2012, 22, 746–754. [Google Scholar] [CrossRef]
- Noreen, S.; Ashraf, M.; Hussain, M.; Jamil, A. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak. J. Bot. 2009, 41, 473–479. [Google Scholar]
- Hessini, K.; Ferchichi, S.; Youssef, S.B.; Werner, K.H.; Cruz, C. How does salinity duration affect growth and productivity of cultivated barley? Agron. J. 2015, 107, 174–180. [Google Scholar] [CrossRef]
- Ashraf, M.Y.; Akhtar, K.; Hussain, F.; Iqbal, J. Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pak. J. Bot. 2006, 38, 1589–1597. [Google Scholar]
- Munns, R.; James, R.A. Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant Soil 2003, 253, 201–218. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Q.; Hettenhausen, C.; Cao, G.; Tan, Q.; Zhao, W.; Lin, H.; Wu, J. Salt-tolerant and –sensitive alfalfa (Medicago sativa) cultivars have large variations in defense responses to the lepidopteran insect Spodoptera litura under normal and salt stress condition. PLoS ONE 2017, 12, e0181589. [Google Scholar] [CrossRef] [Green Version]
- Verma, O.P.S.; Yadava, R.B.R. Salt tolerance of some oats (Avena sativa L.) varieties at germination and seedling stage. J. Agron. Crop Sci. 2008, 156, 123–127. [Google Scholar] [CrossRef]
- Katerij, N.; van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T. Classification and salt tolerance analysis of barley varieties. Agric. Water Manag. 2006, 85, 184–192. [Google Scholar] [CrossRef]
- Lacerda, C.F.; Cambraia, J.; Oliva, M.A.; Ruiz, H.A. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ. Exp. Bot. 2005, 54, 69–76. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Serraj, R.; Hash, C.T.; Dakheel, A.J.; Reddy, B.V.S. Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 2007, 156, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, E.; Emam, Y. Selectable Traits in Sorghum Genotypes for Tolerance to Salinity Stress. J. Agric. Sci. Technol. 2017, 19, 1319–1332. [Google Scholar]
- Shakeri, E.; Emam, Y.; Tabatabaei, S.; Sepaskhah, A. Evaluation of grain sorghum (Sorghum bicolor L.) lines/cultivars under salinity stress using tolerance indices. Int. J. Plant Prod. 2017, 11, 101–115. [Google Scholar] [CrossRef]
- Tigabu, E.; Andargie, M.; Tesfaye, K. Response of sorghum (Sorghum bicolor (L.) Moench) genotypes to NaCl levels at early growth stages. Afr. J. Agric. Res. 2012, 7, 5711–5718. [Google Scholar]
- Ighbal, M.A. Agronomic management strategies elevate forage sorghum yield: A review. J. Adv. Bot. Zool. 2015, 3, 1–6. [Google Scholar]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry matter yield and nutritive value of corn; forage sorghum and BMR forage sorghum at different plant populations and nitrogen rates. Field Crop. Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- Netondo, G.W.; Onyango, J.C.; Beck, E. Response of growth; water relations; and ion accumulation to NaCl salinity. Crop Sci. 2004, 44, 797–805. [Google Scholar] [CrossRef]
- Lauchli, A.; Epstein, E. Plant responses to saline and sodic conditions. In Agricultural Salinity Assessment and Management; Manuals and Reports on Engineering Practiceed; Tanji, K.K., Ed.; ASCE: New York, NY, USA, 1990; pp. 113–137. [Google Scholar]
- Nimir, A.; Eltyb, N.; Lu, S.; Zhou, G.; Ma, B.L.; Guo, W.; Wang, Y. Exogenous hormones alleviated salinity and temperature stresses on germination and early seedling growth of sweet sorghum. Agron. J. 2014, 106, 2305–2315. [Google Scholar] [CrossRef]
- Nimir, N.E.A.; Lu, S.; Zhou, G.; Guo, W.; Ma, B.; Wang, Y. Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defense system of sweet sorghum (Sorghum bicolor L.) under salinity and temperature stresses. Crop Pasture Sci. 2015, 66, 145–157. [Google Scholar] [CrossRef]
- Ali, A.Y.A.; Ibrahim, M.E.H.; Zhou, G.; Nimir, N.E.A.; Jiao, X.; Zhu, G.; Elsiddig, A.M.I.; Suliman, M.S.E.; Elradi, S.B.M.; Yue, W. Exogenous jasmonic acid and humic acid increased salinity tolerance of sorghum. Agron. J. 2020, 112, 871–884. [Google Scholar] [CrossRef]
- Mbinda, W.; Kimtai, M. Evaluation of Morphological and Biochemical Characteristics of Sorghum [Sorghum bicolor [L.] Moench] Varieties in Response Salinity Stress. Annu. Res. Rev. Biol. 2019, 1–9. [Google Scholar] [CrossRef]
- Abo-Kassem, E.M. Effects of salinity: Calcium interaction of growth and nucleid acid metabolism in five species of Chenopodiaceae. Turk. J. Bot. 2007, 31, 125–134. [Google Scholar]
- Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Ismail, M.R.; Selamat, A. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918. [Google Scholar] [CrossRef]
- Keshavarizi, B.; Mohammed, H. Studying the effects of different levels of salinity which caused by NaCl on early and germination of Lctuca Sativa L. seedling. J. Stress Physiol. Bioch. 2012, 8, 203–208. [Google Scholar]
- Bojovic, B.; Delic, G.; Topuzovic, M.; Stankovic, M. Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Krag. J. Sci. 2010, 32, 83–87. [Google Scholar]
- Jamil, M.; Lee, D.B.; Jung, K.Y.; Ashraf, M.; Lee, S.C.; Rha, E.S. Effect of salt (NaCl) stress on germination and early seedling growth of four Vegetable species. J. Cent. Eur. Agric. 2006, 7, 273–282. [Google Scholar]
- Alvarado, A.D.; Bradford, K.J.; Hewitt, J.D. Osmotic priming of tomato seeds. Effects on germination; field emergence; seedling growth and fruit yield. J. Am. Soc. Hortic. Sci. 1987, 112, 427–432. [Google Scholar]
- Ruan, S.; Xue, Q.; Tylkowska, K. The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci. Technol. 2002, 30, 61–67. [Google Scholar]
- Mahender, A.; Anandan, A.; Pradhan, S.K. Early seedling vigour; an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular Markers. Planta 2015, 241, 1027–1050. [Google Scholar] [CrossRef]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars: I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective Selection Criteria for Assessing Plant Stress Tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress; Kuo, C.G., Ed.; AVRDC Publication: Shanhua, Taiwan, 1992; pp. 257–270. [Google Scholar]
- Kovach, W.L. MVSP—A MultiVariate Statistical Package for Windows; Ver. 3.1; Kovach Computing Services: Wales, UK, 2007. [Google Scholar]
- ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software Ordination (Version 5.0); Biometrics: Wageningen, The Netherlands; České Budějowice, Czech Republic, 2012. [Google Scholar]
- Ranjbar, G.H.; Cheraghi, S.A.M.; Banakar, M.H. Salt Sensivity of Wheat at Germination Stage. In Crop and Forage Production Using Saline Waters in Dry Areas; Kafi, M., Khan, A., Eds.; Daya Publishing: New Dehli, India, 2008; pp. 200–204. [Google Scholar]
- Ates, A.; Tekeli, A.S. Salinity tolerance of Persian Clover (Trifolium resupinatum Var. Majus Boiss) lines at germination and seedling stage. World J. Agric. Sci. 2007, 3, 71–79. [Google Scholar]
- Bybordi, A.; Tabatabaei, J. Effect of salinity stress on germination and seedling properties in Canola Cultivars (Brassica napus L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 71–76. [Google Scholar] [CrossRef]
- Geressu, K.; Gezaghegne, M. Response of some lowland growing sorghum (Sorghum bicolor L. Moench) accessions to salt stress during germination and seedling growth. Afr. J. Agric. Res. 2008, 3, 044–048. [Google Scholar]
- Almodares, A.; Hadi, M.R.; Dosti, B. Effects of Salt Stress on Germination Percentage and Seedling Growth in Sweet Sorghum Cultivars. J. Biol. Sci. 2007, 7, 1492–1495. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Harris, P.J.C.; Bourne, W.F.; Wilkin, J. The relationship between ions; vigour and salinity tolerance of Acacia seeds. Plant Soil 2000, 220, 229–233. [Google Scholar] [CrossRef]
- Khan, M.A.; Weber, D.J. Ecophysiology of High Salinity Tolerant Plants (Tasks for Vegetation Science), 1st ed.; Springer Science and Business Media: Amsterdam, The Netherland, 2008. [Google Scholar]
- Farhoudi, R.; Tafti, M.M. Effect of salt stress on seedlings growth and ions homeostasis of soybean (Glycine max) cultivars. Adv. Environ. Biol. 2011, 5, 2522–2526. [Google Scholar]
- Misra, N.; Gupta, A.K. Effect of salt stress metabolism in two high yielding genotypes of green gram. Plant Sci. 2005, 169, 331–339. [Google Scholar] [CrossRef]
- Gomes-Filho, E.; Machado Lima, C.R.F.; Costa, J.H.; da Silva, A.C.; da Guia Silva Lima, M.; de Lacerda, C.F.; Prisco, J.T. Cowpea ribonuclease: Properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep. 2008, 27, 147–157. [Google Scholar] [CrossRef]
- Dantas, B.F.; De Sá Ribeiro, L.; Aragão, C.A. Germination; initial growth and cotyledon protein content of bean cultivars under salinity stress. Revista Brasileira Sementes 2007, 29, 106–110. [Google Scholar] [CrossRef]
- Ryu, H.; Cho, Y.G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015, 58, 147–155. [Google Scholar] [CrossRef]
- Promila, K.; Kumar, S. Vigna radiata seed germination under salinity. Biol. Plant. 2000, 43, 423–426. [Google Scholar] [CrossRef]
- Othman, Y.; Al-Karaki, G.; Al-Tawaha, A.R.; Al-Horani, A. Variation in germination and ion uptake in barley genotypes under salinity conditions. World J. Agric. Sci. 2006, 2, 11–15. [Google Scholar]
- Ayaz, F.A.; Kadioglu, A.; Turgut, R. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rose.) Eichler. Can. J. Plant Sci. 2000, 80, 373–378. [Google Scholar] [CrossRef]
- Wahid, A.; Farooq, M.; Basra, S.M.A.; Rasul, E.; Siddique, K.H.M. Germination of seeds and propagules under salt stress. In Handbook of Plant and Crop Stress, 3rd ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 321–337. [Google Scholar]
- Asfaw, K.G. Effects of Salinity on Seedling Biomass Production and Relative Water Content of Twenty Sorghum (Sorghum biolor L. Moench) Accessions. Res. J. Agron. 2010, 4, 24–30. [Google Scholar] [CrossRef] [Green Version]
- El Naim, A.M.; Mohammed, K.E.; Ibrahim, E.A.; Suleiman, N.N. Impact of Salinity on seed germination and early seedling growth of three sorghum (Sorghum biolor L. Moench) cultivars. Sci. Technol. 2012, 2, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Kausar, A.; Ashraf, M.Y.; Ali, I.; Niaz, M.; Abbass, Q. Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool. Pak. J. Bot. 2012, 44, 47–52. [Google Scholar]
- Asaadi, A.M. Investigation of salinity stress on seed germination of Trigonella foenum-graecum. Res. J. Biol. Sci. 2009, 4, 1152–1155. [Google Scholar]
- Koyro, H.W. Ultrastructural effects of salinity in higher plants. In Salinity: Environment—Plants—Molecules; Läuchli, A., Lüttge, U., Eds.; Kluwer: Amsterdam, The Netherland, 2002; pp. 139–157. [Google Scholar]
- Rasheed, R. Salinity and Extreme Temperature Effects on Sprouting Buds of Sugarcane (Saccharum of ficinarum L.): Some Histological and Biochemical Studies. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan, 2009. [Google Scholar]
- Abari, A.K.; Nasr, M.H.; Hojjati, M.; Bayat, D. Salt effects on seed germination and seedling emergence of two Acacia species. Afr. J. Plant Sci. 2011, 5, 52–56. [Google Scholar]
- Bilgili, U.; Carpici, E.B.; Asik, B.B.; Celik, N. Root and shoot response of common vetch (Vicia sativa L.); forage pea (Pisum sativum L.) and canola (Brassica napus L.) to salt stress during early seedling growth stages. Turk. J. Field Crop. 2011, 16, 33–38. [Google Scholar]
- Bashir, F.; Ali, M.; Hussain, K.; Majeed, A.; Nawaz, K. Morphological variations in sorghum (Sorghum bicolor L.) under different levels of Na2SO4 salinity. Bot. Res. Int. 2011, 4, 1–3. [Google Scholar]
- Netondo, G.W.; Onyango, J.C.; Beck, E. Sorghum and Salinity: II. Gas Exchange and Chlorophyll Fluorescence of Sorghum under Salt Stress. Crop Sci. 2004, 44, 806–811. [Google Scholar] [CrossRef]
- Rahman, M.S.; Miyake, H.; Taheoka, Y. Effect of sodium chloride salinity on seed germination and early seedling growth of rice (Oryza sativa L.). Pak. J. Biol. Sci. 2001, 4, 351–355. [Google Scholar] [CrossRef]
- Carlos, T.B.; Bingham, F.T. Salt tolerance of Mexican wheat: I. Effect of NO3 and NaCl on mineral nutrition; growth and grain production of four wheats. Soil Sci. Soc. Am. J. 1973, 37, 711–715. [Google Scholar] [CrossRef]
- Kawasaki, T.; Akiba, T.; Moritsugu, M. Effects of high concentrations of sodium chloride and polyethylene glycol on the growth and ion absorption in plants: I. Water culture experiments in a greenhouse. Plant Soil 1983, 75, 75–85. [Google Scholar] [CrossRef]
- Kaymakanova, M.; Stoeva, N. Physiological reaction of bean plants (Phaseolus vulgaris L.) to salt stress. Gen. Appl. Plant Physiol. 2008, 34, 177–188. [Google Scholar]
- Hamid, M.; Ashraf, M.Y.; Rehman, K.U.; Arshad, M. Influence of salicylic acid seed priming on growth and some biochemical attributes on wheat growth under saline conditions. Pak. J. Bot. 2008, 40, 361–367. [Google Scholar]
- Chien, S.C.; Liao, J.; Wang, M.; Mannepalli, M.R. Effect of Cl−; SO42−; and fulvate anions on Cd2+ free ion concentrations in simulated rhizosphere soil solutions. J. Hazard. Mater. 2009, 172, 809–817. [Google Scholar] [CrossRef]
- Khan, A.H.; Ashraf, M.Y.; Naqvi, S.S.M.; Khanzada, B.; Ali, M. Growth; ion and solute contents of sorghum grown under NaCl and Na2SO4 salinity stress. Acta Physiol. Plant. 1995, 17, 261–268. [Google Scholar]
- Ashraf, M.Y.; Hussain, F.; Akhtar, J.; Gul, A.; Ross, M.; Ebert, G. Effect of different sources and rates of nitrogen and supra optimal level of potassium fertilization on growth; yield and nutrient. Pak. J. Bot. 2008, 40, 1521–1531. [Google Scholar]
- Igartua, E.; Gracia, M.P.; Lasa, J.M. Field responses of grain sorghum to a salinity gradient. Field Crop Res. 1995, 42, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Tari, I.; Laskay, G.; Takacs, Z.; Poor, P. Response of Sorghum to Abiotic Stresses: A Review. J. Agron. Crop Sci. 2013, 199, 264–274. [Google Scholar] [CrossRef] [Green Version]
Trait | Sources of Variations | |||
---|---|---|---|---|
S | G | S×G | Error | |
df | 3 | 9 | 27 | 80 |
GP | 5984 ** | 368 ** | 87.9 ** | 0.633 |
GI | 3128 ** | 65.4 ** | 9.37 ** | 1.56 |
MGT | 15.8 ** | 12.8 ** | 0.278 * | 0.163 |
SL | 63.7 ** | 8.00 ** | 0.053 ** | 0.012 |
RL | 687 ** | 46.1 ** | 0.54 * | 0.316 |
SVI | 16,931,287 ** | 1,102,363 ** | 15,395 ** | 2805 |
FW | 0.055 ** | 0.007 ** | 0.00004 * | 0.00002 |
DW | 0.002 ** | 0.0002 ** | 0.000001 ** | 0.0000003 |
Salt Levels mM NaCl | ||||||||
---|---|---|---|---|---|---|---|---|
Trait | Genotypes | 0 | 100 | % Change | 150 | % Change | 200 | % Change |
PEGAH | 100 a | 100 a | 0 | 91 a | −9 | 83 a | −17 | |
GS4 | 100 a | 100 a | 0 | 91 a | −9 | 79 b | −21 | |
JAMBO | 100 a | 100 a | 0 | 91 a | −9 | 79 b | −21 | |
KGS23 | 100 a | 100 a | 0 | 87 b | −13 | 75 c | −25 | |
GP | SPEED FEED | 100 a | 100 a | 0 | 87 b | −13 | 75 c | −25 |
MGS5 | 100 a | 95 b | −5 | 83 c | −17 | 71 d | −29 | |
KIMIA | 100 a | 95 b | −5 | 83 c | −17 | 67 e | −33 | |
KGS29 | 100 a | 91 c | −9 | 79 d | −21 | 59 f | −41 | |
SEPIDEH | 100 a | 91 c | −9 | 79 d | −21 | 55 g | −45 | |
PAYAM | 100 a | 91 c | −9 | 75 e | −25 | 43 h | −57 | |
PEGAH | 60.7 a | 54.1 a | −10.9 | 47.6 a | −21.6 | 40.5 a | −33.3 | |
GS4 | 60.5 a | 53.3 ba | −11.9 | 47.4 a | −21.6 | 39.7 ab | −34.4 | |
JAMBO | 59.9 a | 51.1 b | −14.7 | 44.0 b | −26.5 | 39.9 a | −33.4 | |
KGS23 | 60.0 a | 49.9 bc | −16.8 | 42.3 bc | −29.5 | 37.6 bc | −37.3 | |
GI | SPEED FEED | 59.6 a | 50.3 bc | −15.6 | 42.5 bc | −28.7 | 38.5 abc | −35.4 |
MGS5 | 60.4 a | 50.4 bc | −16.5 | 41.5 cd | −31.3 | 36.7 cd | −39.2 | |
KIMIA | 59.8 a | 48.6 cd | −18.7 | 39.9 de | −33.3 | 36.41 cde | −39.1 | |
KGS29 | 60.1 a | 48.9 cd | −18.6 | 38.8 ef | −35.4 | 35.3 de | −41.3 | |
SEPIDEH | 60.3 a | 48.4 cd | −19.7 | 37.2 fg | −38.3 | 34.4 e | −42.9 | |
PAYAM | 59.9 a | 47.0 d | −21.5 | 35.3 g | −41.1 | 30.0 f | −49.9 | |
PEGAH | 3.09 c | 3.28 e | +6.1 | 3.59 f | +16.2 | 4.03 f | +30.4 | |
GS4 | 3.12 c | 3.47 de | +11.2 | 3.79 f | +21.5 | 4.14 f | +32.7 | |
JAMBO | 3.11 c | 3.52 de | +13.2 | 3.81 f | +22.5 | 4.28 f | +37.6 | |
KGS23 | 3.22 c | 3.68 de | +14.3 | 4.01 ef | +24.5 | 4.67 ef | +45.0 | |
MGT | SPEED FEED | 3.14 c | 3.59 de | +14.3 | 3.96 ef | +26.1 | 4.46 ef | +42.0 |
MGS5 | 3.47 c | 4.11 cd | +18.4 | 4.57 de | +31.7 | 5.10 de | +46.9 | |
KIMIA | 3.74 bc | 4.53 c | +21.1 | 5.20 cd | +39.0 | 5.68 cd | +51.9 | |
KGS29 | 4.20 ab | 5.22 b | +24.3 | 5.86 bc | +39.5 | 6.34 bc | +50.9 | |
SEPIDEH | 4.42 ab | 5.36 fb | +21.3 | 6.39 b | +44.6 | 6.80 b | +53.8 | |
PAYAM | 4.82 a | 6.13 a | +27.2 | 7.20 a | +49.4 | 7.71 a | +59.9 | |
PEGAH | 2740 a | 2374 a | −13.3 | 17,191 a | −37.2 | 1219 a | −55.5 | |
GS4 | 2672 ab | 2231 b | −16.5 | 1614 b | −39.6 | 1042 b | −61.0 | |
JAMBO | 2619 bc | 2144 bc | −18.1 | 1553 b | −40.7 | 968 c | −63.0 | |
KGS23 | 2484 d | 1979 d | −20.3 | 1351 c | −45.6 | 776 e | −68.7 | |
SVI | SPEED FEED | 2559 cd | 2089 c | −18.4 | 1395 c | −45.5 | 857 d | −66.5 |
MGS5 | 2476 d | 1890 d | −23.7 | 1229 d | −50.4 | 662 f | −73.3 | |
KIMIA | 2304 e | 1662 e | −27.9 | 1085 e | −52.9 | 561 g | −75.6 | |
KGS29 | 2240 ef | 1507 f | −32.7 | 936 f | −58.2 | 427 h | −80.9 | |
SEPIDEH | 2155 f | 1394 g | −35.3 | 855 f | −60.3 | 348 i | −83.8 | |
PAYAM | 2197 f | 1395 g | −36.5 | 754 g | −65.7 | 255 j | −88.4 |
Salt Levels mM NaCl | ||||||||
---|---|---|---|---|---|---|---|---|
Trait | Genotypes | 0 | 100 | % Change | 150 | % Change | 200 | % Change |
PEGAH | 7.04 a | 6.28 a | −10.8 | 5.03 a | −28.5 | 4.22 a | −40.0 | |
GS4 | 6.86 ab | 5.85 b | −14.7 | 4.57 b | −33.4 | 3.83 b | −44.2 | |
JAMBO | 6.81 b | 5.68 fb | −16.6 | 4.40 b | −35.4 | 3.66 b | −46.2 | |
KGS23 | 6.08 d | 4.83 d | −20.5 | 3.57 d | −41.3 | 2.62 d | −56.9 | |
SL | SPEED FEED | 6.43 c | 5.23 c | −18.7 | 3.97 c | −38.2 | 3.15 c | −51.0 |
MGS5 | 5.90 d | 4.63 e | −21.5 | 3.35 e | −43.2 | 2.49 d | −57.8 | |
KIMIA | 5.58 e | 4.23 f | −24.2 | 3.01 f | −46.0 | 2.22 e | −60.2 | |
KGS29 | 5.44 ef | 4.00 g | −26.5 | 2.83 fg | −47.9 | 1.93 f | −64.5 | |
SEPIDEH | 5.39 f | 3.86 g | −28.4 | 2.87 fg | −46.7 | 1.76 fg | −67.3 | |
PAYAM | 5.41 ef | 3.87 g | −28.5 | 2.72 g | −49.6 | 1.60 g | −70.4 | |
PEGAH | 20.3 a | 17.4 a | −14.3 | 13.8 a | −32.0 | 10.4 a | −48.8 | |
GS4 | 19.8 ab | 16.4 b | −17.2 | 13.1 ab | −33.8 | 9.36 b | −52.7 | |
JAMBO | 19.4 abc | 15.7 bc | −19.1 | 12.6 bc | −35.0 | 8.59 bc | −55.6 | |
KGS23 | 18.7 c | 14.9 c | −20.3 | 11.9 cd | −36.3 | 7.73 cd | 58.7 | |
RL | SPEED FEED | 19.1 bc | 15.6 bc | −18.3 | 12.0 cd | −37.2 | 8.27 c | −56.7 |
MGS5 | 18.8 c | 15.2 c | −19.1 | 11.4 d | −39.4 | 6.83 de | −63.8 | |
KIMIA | 17.4 d | 13.2 d | −24.1 | 10.0 e | −42.5 | 6.16 ef | −64.6 | |
KGS29 | 16.9 de | 12.5 d | −26.0 | 9.02 f | −46.6 | 5.30 fg | −68.6 | |
SEPIDEH | 16.1 e | 11.4 e | −29.2 | 7.95 g | −50.6 | 4.57 gh | −71.6 | |
PAYAM | 16.5 de | 11.4 e | −30.9 | 7.33 g | −55.5 | 4.34 h | −73.7 | |
PEGAH | 0.210 a | 0.179 a | −14.7 | 0.143 a | −31.9 | 0.111 a | −47.1 | |
GS4 | 0.202 ab | 0.169 b | −16.3 | 0.135 ab | −33.2 | 0.105 ab | −48.0 | |
JAMBO | 0.197 b | 0.161 bc | −18.4 | 0.126 bc | −36.0 | 0.099 bc | −49.7 | |
KGS23 | 0.186 cd | 0.142 e | −23.6 | 0.112 de | −39.8 | 0.081 d | −56.4 | |
FW | SPEED FEED | 0.194 bc | 0.153 cd | −21.1 | 0.120 cd | −38.1 | 0.094 c | −51.5 |
MGS5 | 0.182 d | 0.147 de | −19.2 | 0.104 e | −42.8 | 0.087 de | −52.3 | |
KIMIA | 0.170 e | 0.129 f | −24.1 | 0.090 f | −47.0 | 0.069 ef | −59.4 | |
KGS29 | 0.159 g | 0.114 g | −28.3 | 0.087 f | −45.3 | 0.060 fg | −62.3 | |
SEPIDEH | 0.147 g | 0.106 gh | −27.9 | 0.073 g | −50.3 | 0.055 gh | −62.6 | |
PAYAM | 0.138 g | 0.097 h | −29.7 | 0.060 h | −56.5 | 0.047 h | −65.9 | |
PEGAH | 0.038 a | 0.031 a | −18.4 | 0.025 a | −34.2 | 0.018 a | −52.6 | |
GS4 | 0.037 b | 0.030 b | −18.9 | 0.024 b | −35.1 | 0.018 a | −51.3 | |
JAMBO | 0.036 c | 0.029 c | −19.4 | 0.022 c | −38.9 | 0.016 b | −55.6 | |
KGS23 | 0.034 e | 0.025 e | −26.5 | 0.020 e | −41.2 | 0.014 d | −58.8 | |
DW | SPEED FEED | 0.035 d | 0.026 d | −25.7 | 0.021 d | −40.0 | 0.015 c | −57.1 |
MGS5 | 0.033 f | 0.025 e | −24.4 | 0.018 f | −45.4 | 0.013 e | −60.6 | |
KIMIA | 0.031 g | 0.022 f | −29.0 | 0.016 g | −48.4 | 0.011 f | −64.5 | |
KGS29 | 0.029 h | 0.020 g | −31.0 | 0.015 h | −48.3 | 0.009 g | −68.9 | |
SEPIDEH | 0.027 i | 0.019 h | −29.6 | 0.012 i | −55.6 | 0.008 h | −70.4 | |
PAYAM | 0.025 j | 0.016 i | −36.0 | 0.010 j | −60.0 | 0.007 i | −72.0 |
Tolerance Indices | Genotypes | 100 Mm NaCl | 150 Mm NaCl | 200 Mm NaCl |
---|---|---|---|---|
PEGAH | 0.736 | 1.36 | 2.10 | |
GS4 | 0.756 | 1.40 | 2.05 | |
JAMBO | 0.777 | 1.55 | 2.22 | |
Stress susceptibility index | KGS23 | 1.05 | 1.65 | 2.35 |
(SSI) | SPEED FEED | 1.02 | 1.60 | 2.28 |
MGS5 | 0.969 | 1.81 | 2.42 | |
KIMIA | 1.16 | 1.93 | 2.58 | |
KGS29 | 1.24 | 1.93 | 2.75 | |
SEPIDEH | 1.18 | 2.22 | 2.81 | |
PAYAM | 1.44 | 2.40 | 2.88 | |
PEGAH | 1.15 | 0.928 | 0.668 | |
GS4 | 1.08 | 0.867 | 0.650 | |
JAMBO | 1.02 | 0.773 | 0.562 | |
Salt tolerance index | KGS23 | 0.830 | 0.664 | 0.465 |
(STI) | SPEED FEED | 0.888 | 0.718 | 0.512 |
MGS5 | 0.805 | 0.580 | 0.419 | |
KIMIA | 0.666 | 0.484 | 0.333 | |
KGS29 | 0.566 | 0.424 | 0.255 | |
SEPIDEH | 0.501 | 0.316 | 0.210 | |
PAYAM | 0.390 | 0.244 | 0.170 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi Dehnavi, A.; Zahedi, M.; Ludwiczak, A.; Cardenas Perez, S.; Piernik, A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy 2020, 10, 859. https://doi.org/10.3390/agronomy10060859
Rajabi Dehnavi A, Zahedi M, Ludwiczak A, Cardenas Perez S, Piernik A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy. 2020; 10(6):859. https://doi.org/10.3390/agronomy10060859
Chicago/Turabian StyleRajabi Dehnavi, Ahmad, Morteza Zahedi, Agnieszka Ludwiczak, Stefany Cardenas Perez, and Agnieszka Piernik. 2020. "Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes" Agronomy 10, no. 6: 859. https://doi.org/10.3390/agronomy10060859
APA StyleRajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., & Piernik, A. (2020). Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy, 10(6), 859. https://doi.org/10.3390/agronomy10060859