A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture
Abstract
:1. Introduction
2. The Early Years of Intensive Horticulture
3. The First Major Outbreaks of Whitefly-Transmitted Viruses during the 1990s
4. The Emergence of Existing and New Virus Species during the 2000s
5. New Virus Species that Emerged from 2010s until Now
6. Clues for the Future Control of Plant Viruses in Mediterranean Environments
6.1. Shift to Biological and IPM Control
6.2. Effects of Climate Change on Viruses and Vectors
6.3. Resistance Breeding in a Climate Change Context
6.4. New Diagnostic Tools
6.5. Epidemiology and Artificial Intelligence in Decision Making
7. Conclusions
- acceleration of breeding programs, which can be facilitated by the new editing techniques available, including high-throughput phenotyping technologies
- resistance breeding at high temperature conditions (>30 °C)
- improvement of physical barriers to control virus vectors
- improvement of climate control in greenhouses
- increasing the research on epidemiology and plant virus evolution mechanisms and effects of mixed infections, in order to forecast resistance durability
- investigating the effects of CO2 and temperatures on vector biology
- development of fast, reliable and cheap in situ diagnostics tools
- implementation of effective detection of emergences in greenhouses, nurseries, seed companies, etc. and reliable quarantine establishment
- identification of weeds as reservoirs of viruses and investigation of dispersion by pollinators
- alternatives to virus management, (e.g., developing RNAi-mediated control driven by nanocomposites)
- easy access for producers to information on pests and diseases (e.g., mobile applications)
- real-time communication of plant health authorities with producers/agronomists
- big-data analysis using AI platforms for decision making
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FEPEX Exportación/Importación Españolas De Frutas Y Hortalizas. Available online: https://www.fepex.es/datos-del-sector/exportacion-importacion-española-frutas-hortalizas (accessed on 14 May 2020).
- MAPA Superficies Y Producciones Anuales De Cultivos. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 14 May 2020).
- DGPAM. Caracterización de la Situación Financiera Del Sector Hortícola de ALMERÍA 2007/2008; Junta de Andalucía: Seville, Spain, 2009. [Google Scholar]
- Lanfermeijer, F.C.; Dijkhuis, J.; Sturre, M.G.; de Haan, P.; Hille, J. Cloning and characterization of the durable tomato mosaic virus resistance gene. Plant Mol. Biol. 2003, 52, 1037–1049. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.; Mansour, A.; Ciuffo, M.; Falk, B.W.; Turina, M. A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 2016, 161, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Luria, N.; Smith, E.; Al, R.V.; Reingold, V.; Bekelman, I.; Lapidot, M.; Levin, I.; Elad, N.; Tam, Y.; Sela, N.; et al. A new israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE 2017, 12, e0170429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, R.; Sekine, K.T.; Mizumoto, H.; Sakamoto, M.; Murai, J.; Kiba, A.; Hikichi, Y.; Suzuki, K.; Kobayashi, K. Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol. Plant Microbe Interact. 2011, 24, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genda, Y.; Kanda, A.; Hamada, H.; Sato, K.; Ohnishi, J.; Tsuda, S. Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology 2007, 97, 787–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antignus, Y.; Lachman, O.; Pearlsman, M.; Maslenin, L.; Rosner, A. A new pathotype of Pepper mild mottle virus (PMMoV) overcomes the L4 resistance genotype of pepper cultivars. Plant Dis. 2008, 92, 1033–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, L.; Janssen, D.; Ruiz-Garcia, L.; Segundo, E.; Cuadrado, I.M. The complete nucleotide sequence and development of a diferential detection assay for a Pepper mild mottle virus (PMMoV) isolate that overcomes L3 resistance in pepper. J. Virol. Methods 2002, 106, 135–140. [Google Scholar] [CrossRef]
- Marín Rodríguez, J. Portagrano. Vademecum de Variedades Hortícolas; ECIR: Madrid, Spain, 2019. [Google Scholar]
- Ruiz, L.; García, C.; Simón, A.; Pascual, F.; Janssen, D. IFAPA Guia, Virus de Hortícolas; Junta de Andalucía: Seville, Spain, 2018. [Google Scholar]
- Nieto, C.; Morales, M.; Orjeda, G.; Clepet, C.; Monfort, A.; Sturbois, B.; Puigdomènech, P.; Pitrat, M.; Caboche, M.; Dogimont, C.; et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 2006, 48, 452–462. [Google Scholar] [CrossRef]
- Díaz, J.A.; Nieto, C.; Moriones, E.; Truniger, V.; Aranda, M.A.; Díaz-Pendón, J.A.; Nieto, C.; Moriones, E.; Truniger, V.; Aranda, M.A.; et al. Molecular characterization of a Melon necrotic spot virus strain that overcomes the resistance in melon and nonhost plants. Mol. Plant Microbe Interact. 2004, 17, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.A.; Nieto, C.; Moriones, E.; Aranda, M.A. Spanish Melon necrotic spot virus isolate overcomes the resistance conferred by the recessive nsv gene of melon. Plant Dis. 2002, 86, 694. [Google Scholar] [CrossRef]
- Lacasa, A.; Esteban, J.R.; Beitia, F.J.; Contreras, J. Distribution of western flower thrips in Spain. In Thrips Biology and Management; Parker, B.L., Skinner, M., Lewis, T., Eds.; Plenum Press: New York, NY, USA, 1995; pp. 465–468. [Google Scholar]
- Lacasa, A. Medio siglo de historia en la fitopalogía del tomate: El modelo de la Región de Murcia. Phytoma 2019, 314, 21–29. [Google Scholar]
- Wu, S.; Xing, Z.; Ma, T.; Xu, D.; Li, Y.; Lei, Z.; Gao, Y. Competitive interaction between Frankliniella occidentalis and locally present thrips species: A global review. J. Pest. Sci. 2020. [Google Scholar] [CrossRef]
- Qian, L.; Chen, F.J.; Liu, J.N.; He, S.Q.; Liu, J.Y.; Li, Z.Y.; Gui, F.R. Effects of elevated CO2 on life-history traits of three successive generations of Frankliniella occidentalis and F. intonsa on kidney bean, Phaseolus vulgaris. Entomol. Exp. Appl. 2017, 165, 50–61. [Google Scholar] [CrossRef]
- de Oliveira, A.S.; Boiteux, L.S.; Kormelink, R.; Resende, R.O. The Sw-5 gene cluster: Tomato breeding and research toward orthotospovirus disease control. Front. Plant Sci. 2018, 9, 1055. [Google Scholar] [CrossRef]
- Aramburu, J.; Martí, M.; Martín, M. The occurrence in north-east Spain of a variant of Tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. Plant Pathol. 2003, 52, 407. [Google Scholar] [CrossRef]
- Ciuffo, M.; Finetti-Sialer, M.M.; Gallitelli, D.; Turina, M. First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathol. 2005, 54, 564. [Google Scholar] [CrossRef]
- Pappu, H.R.; Jones, R.A.C.A.C.; Jain, R.K. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 2009, 141, 219–236. [Google Scholar] [CrossRef]
- Soler, S.; Debreczeni, D.E.; Vidal, E.; Aramburu, J.; López, C.; Galipienso, L.; Rubio, L.; Lõpez, C.; Galipienso, L.; Rubio, L. A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Ann. Appl. Biol. 2015, 167, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Aramburu, J.; Galipienso, L.; Soler, S.; Rubio, L.; López, C. A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus. Phytoparasitica 2015, 43, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Laviña, A.; Batlle, A. First Report of Impatiens Necrotic Spot Virus in Asplenium nidus-avis in Spain. Plant Dis. 1994, 78, 316. [Google Scholar] [CrossRef]
- Jordá, C.; Gómez-Guillamón, M.L.; Juárez, M.; Alfaro-García, A.; Jordá-Gutiérrez, C.; Gómez-Guillamón, M.L.; Juárez, M.; Alfaro-García, A. Clostero-like particles associated with a yellows disease of melons in South-eastern Spain. Plant Pathol. 1993, 42, 722–727. [Google Scholar] [CrossRef]
- Berdiales, B.; Bernal, J.J.; Sáez, E.; Woudt, B.; Beitia, F.; Rodríguez-Cerezo, E.; Sâez, E.; Woudt, B.; Beitia, F.; Rodríguez-Cerezo, E. Occurrence of cucurbit yellow stunting disorder virus (CYSDV) and beet pseudo-yellows virus in cucurbit crops in Spain and transmission of CYSDV by two biotypes of Bemisia tabaci. Eur. J. Plant Pathol. 1999, 105, 211–215. [Google Scholar] [CrossRef]
- Kassem, M.A.; Sempere, R.N.; Juárez, M.; Aranda, M.A.; Truniger, V. Cucurbit aphid-borne yellows virus is prevalent in field-grown cucurbit crops of southeastern Spain. Plant Dis. 2007, 91, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navas-Castillo, J.; Sánchez-Campos, S.; Díaz, J.A.; Sáez-Alonso, E.; Moriones, E. First report of tomato yellow leafcurl virus-Is in Spain: Coexistence of two different geminiviruses in the same epidemic outbreak. Plant Dis. 1997, 81, 1461. [Google Scholar] [CrossRef] [PubMed]
- Moriones, E.; Navas-Castillo, J. Tomato yellow leaf curl disease epidemics. In Bemisia: Bionomics and Management of a Global Pest; Stansley, P.A., Naranjo, S.E., Eds.; Springer: Heidelberg, Germany, 2010; pp. 259–282. [Google Scholar]
- Navas-Castillo, J.; Sánchez-Campos, S.; Díaz, J.A.; Sáez-Alonso, E.; Moriones, E. Tomato yellow leaf curl virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 1999, 83, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Campos, S.; Navas-Castillo, J.; Camero, R.; Soria, C.; Díaz, J.A.; Moriones, E. Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 1999, 89, 1038–1043. [Google Scholar] [CrossRef] [Green Version]
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S.; Fiallo-Olive, E.; Sanchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef]
- Guirao, P.; Beitia, F.; Cenis, J. Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull. Entomol. Res. 1997, 87, 587–593. [Google Scholar] [CrossRef]
- Janssen, D.; Simon, A.; Crespo, O.; Ruiz, L. Genetic population structure of bemisia tabaci in Spain associated with tomato leaf curl New Delhi virus—Short communication. Plant Prot. Sci. 2017, 53, 25–31. [Google Scholar]
- Calvo, F.J.; Bolckmans, K.; Belda, J.E. Development of a biological control-based Integrated pest management method for Bemisia tabaci for protected sweet pepper crops. Entomol. Exp. Appl. 2009, 133, 9–18. [Google Scholar] [CrossRef]
- Stansly, P.A.; Calvo, J.; Urbaneja, A. Release rates for control of Bemisia tabaci (Homoptera: Aleyrodidae) biotype “Q” with Eretmocerus mundus (Hymenoptera: Aphelinidae) in greenhouse tomato and pepper. Biol. Control. 2005, 35, 124–133. [Google Scholar] [CrossRef]
- Rodríguez, E.; van der Blom, J.; González, M.; Sánchez, E.; Janssen, D.; Ruiz, L.; Elorrieta, M.A. Plant viruses and native vegetation in Mediterranean greenhouse areas. Sci. Hortic. (Amsterdam) 2014, 165, 171–174. [Google Scholar] [CrossRef]
- Morilla, G.; Janssen, D.; García-Andrés, S.; Moriones, E.; Cuadrado, I.M.; Bejarano, E.R. Pepper (Capsicum annuum) is a dead-end host for Tomato yellow leaf curl virus. Phytopathology 2005, 95, 1089–1097. [Google Scholar] [CrossRef] [Green Version]
- Lapidot, M.; Friedmann, M. Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 2002, 140, 109–127. [Google Scholar] [CrossRef]
- García-Andrés, S.; Tomás, D.M.; Navas-Castillo, J.; Moriones, E. Resistance-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Res. 2009, 146, 66–72. [Google Scholar] [CrossRef]
- Díaz-Pendón, J.A.; Sánchez-Campos, S.; Fortes, I.M.; Moriones, E. Tomato yellow leaf curl sardinia virus, a begomovirus species evolving by mutation and recombination: A challenge for virus control. Viruses 2019, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Scott, J.W.; Schuster, D.J.; Maxwell, D.P. Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of Tomato. J. Am. Soc. Hortic. Sci. 2009, 134, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Hutton, S.F.; Scott, J.W.; Schuster, D.J. Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4. HortScience 2012, 47, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Ohnishi, J.; Saito, A.; Ohyama, A.; Nunome, T.; Miyatake, K.; Fukuoka, H. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 begomovirus resistance locus of tomato. Theor. Appl. Genet. 2018, 131, 1345–1362. [Google Scholar] [CrossRef]
- Verlaan, M.G.; Hutton, S.F.; Ibrahem, R.M.; Kormelink, R.; Visser, , R.G.F.; Scott, J.W.; Edwards, J.D.; Bai, Y. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and xode for DFDGD-Class RNA-Dependent RNA polymerases. PLoS Genet. 2013, 9, e1003399. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Pérez-de-Castro, A.; Díez, M.J.; Hutton, S.F.; Visser, R.G.F.F.; Wolters, A.-M.A.; Yuling, B.; Li, J.; Wolters, A.M.A.; Bai, Y.; et al. Resistance to tomato yellow leaf curl virus in tomato germplasm. Front. Plant Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Carvalho, R.C.; Díaz-Pendón, J.A.; Fonseca, M.E.N.; Boiteux, L.S.; Fernández-Muñoz, R.; Moriones, E.; Resende, R.O. Recessive resistance derived from tomato CV. Tyking-Limits drastically the spread of tomato yellow leaf curl virus. Viruses 2015, 7, 2518–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar-Bravo, R.; Alba, J.M.; Pons, C.; Granell, A.; Kant, M.R.; Moriones, E.; Fernández-Muñoz, R. A jasmonate-inducible defense trait transferred from wild into cultivated tomato establishes increased whitefly resistance and reduced viral disease incidence. Front. Plant Sci. 2016, 7, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakha, M.; Hanson, P.; Ramasamy, S. Identification of resistance to Bemisia tabaci Genn. in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet. Resour. Crop. Evol. 2017, 64, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Reingold, V.; Lachman, O.; Belausov, E.; Koren, A.; Mor, N.; Dombrovsky, A. Epidemiological study of Cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Ann. Appl. Biol. 2016, 168, 29–40. [Google Scholar] [CrossRef]
- Célix, A.; Luis-Arteaga, M.; Rodriguez-Cerezo, E. First report of Cucumber green mottle mosaic tobamovirus infecting greenhouse-grown cucumber in Spain. Plant Dis. 1996, 80, 1303. [Google Scholar] [CrossRef]
- Elorrieta, M.A.; Ruiz, L.; Janssen, D. Epidemiology and control of Cucumber green mottle mosaic virus in Spain. Phytopathol. Mediterr. 2017, 56, 358. [Google Scholar]
- Crespo, O.; Janssen, D.; García, C.; Ruiz, L. Biological and molecular diversity of Cucumber green mottle mosaic virus in Spain. Plant Dis. 2017, 101, 977–984. [Google Scholar] [CrossRef] [Green Version]
- Crespo, O.; Janssen, D.; Robles, C.; Ruiz, L. Resistance to Cucumber green mottle mosaic virus in Cucumis sativus. Euphytica 2018, 214. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef]
- Gómez, P.; Sempere, R.N.; Aranda, M.A. Pepino mosaic virus and tomato torrado virus: Two emerging viruses affecting tomato crops in the Mediterranean basin. Adv. Virus Res. 2012, 84, 505–532. [Google Scholar] [PubMed]
- Jones, R.A.C.; Koenig, R.; Lesemann, D.E. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricantum). Ann. Appl. Biol. 1980, 94, 61–68. [Google Scholar] [CrossRef]
- Pagán, I.; Córdoba-Sellés, M.; Martinez-Priego, L.; Fraile, A.; Malpica, J.; Jordá, C.; Garcia-Arenal, F. Genetic structure of the population of Pepino mosaic virus infecting tomato crops in Spain. Phytopathology 2006, 96, 274–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, K.S.; Scott, J.W. Sources of resistance to Pepino mosaic virus in tomato accessions. Plant Dis. 2007, 91, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, I.M.; Thomma, B.P.H.J. Pepino mosaic virus: A successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol. Plant Pathol. 2010, 11, 179–189. [Google Scholar] [CrossRef]
- Schenk, M.F.; Hamelink, R.; van der Vlugt, R.A.A.R.A.A.; Vermunt, A.M.W.; Kaarsenmaker, R.C.; Stijger, I.C.C.M.M. The use of attenuated isolates of Pepino mosaic virus for cross-protection. Eur. J. Plant Patholology 2010, 127, 249–261. [Google Scholar] [CrossRef]
- Chewachong, G.M.; Miller, S.A.; Blakeslee, J.J.; Francis, D.M.; Morris, T.J.; Qu, F. Generation of an attenuated, cross-protective Pepino mosaic virus variant through alignment-guided mutagenesis of the viral capsid protein. Phytopathology 2015, 105, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Agüero, J.; Gómez-Aix, C.; Sempere, R.; García-Villalba, J.; García-Núñez, J.; Hernando, Y.; Aranda, M.A. Stable and broad-spectrum cross-protection against pepino mosaic virus attained by mixed infection. Front. Plant Sci. 2018, 9, 1810. [Google Scholar] [CrossRef]
- Cuadrado, I.M.; Janssen, D.; Velasco, L.; Ruiz-Garcia, L.; Segundo, E. First Report of Cucumber vein yellowing virus (CVYV) in Spain. Plant Dis. 2001, 85, 336. [Google Scholar] [CrossRef]
- Aguilar, J.M.; Abad, J.; Aranda, M.A. Resistance to Cucurbit yellow stunting disorder virus in cucumber. Plant Dis. 2006, 90, 583–586. [Google Scholar] [CrossRef]
- López-Sesé, A.I.; Gómez-Guillamón, M.L. Resistance to cucurbit yellowing stunting disorder virus (CYSDV) in Cucumis melo L. HortScience 2000, 35, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.; Janssen, D.; Martin, G.; Velasco, L.; Segundo, E.; Cuadrado, I. Analysis of the temporal and spatial disease progress of Bemisia tabaci-transmitted Cucurbit yellow stunting disorder virus and Cucumber vein yellowing virus in cucumber. Plant Pathol. 2006, 55, 264–275. [Google Scholar] [CrossRef]
- Janssen, D.; Martín, G.; Velasco, L.; Gómez, P.; Segundo, E.; Ruiz, L.; Cuadrado, I.M. Absence of a coding region for the helper component-proteinase in the genome of cucumber vein yellowing virus, a whitefly-transmitted member of the Potyviridae. Arch. Virol. 2005, 150, 1439–1447. [Google Scholar] [CrossRef]
- Galipienso, L.; Janssen, D.; Rubio, L.; Aramburu, J.; Velasco, L. Cucumber vein yellowing virus isolate-specific expression of symptoms and viral RNA accumulation in susceptible and resistant cucumber cultivars. Crop. Prot. 2013, 43, 141–145. [Google Scholar] [CrossRef]
- Velasco, L.; Salem, N.; Willemsen, A.; Lapidot, M.; Mansour, A.N.; Rubio, L.; Galipienso, L. Genetic variation and evolutionary forces shaping Cucumber vein yellowing virus populations: Risk of emergence of virulent isolates in Europe. Plant Pathol. 2016, 65, 847–856. [Google Scholar] [CrossRef]
- Pujol, M.; Alexiou, K.G.; Fontaine, A.S.; Mayor, P.; Miras, M.; Jahrmann, T.; Garcia-Mas, J.; Aranda, M.A. Mapping cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Front. Plant Sci. 2019, 10, 1583. [Google Scholar] [CrossRef] [PubMed]
- Pitrat, M.; Wipf-Scheibel, C.; Besombes, D.; Desbiez, C.; Lecoq, H. Resistance of melon to Cucumber Vein Yellowing Virus (CVYV). In Cucurbitaceae 2012; Sari, N., Solmaz, I.A.V., Eds.; Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae; Çukurova University: Antalya, Turkey, 2012; pp. 157–164. [Google Scholar]
- Juarez, M.; Truniger, V.; Aranda, M.A. First report of Cucurbit aphid-borne yellows virus in Spain. Plant Dis. 2004, 88, 907. [Google Scholar] [CrossRef]
- Dogimont, C.; Bussemakers, A.; Martin, J.; Slama, S.; Lecoq, H.; Pitrat, M. Two complementary recessive genes conferring resistance to Cucurbit aphid borne yellows luteovirus in an Indian melon line (Cucumis melo L.). Euphytica 1997, 96, 391–395. [Google Scholar] [CrossRef]
- Kassem, M.A.; Gosalvez, B.; Garzo, E.; Fereres, A.; Gómez-Guillamon, M.L.; Aranda, M.A. Resistance to cucurbit aphid-borne yellows virus in melon accession TGR-1551. Phytopathology 2015, 105, 1389–1396. [Google Scholar] [CrossRef] [Green Version]
- Lecoq, H.; Desbiez, C. Viruses of cucurbit crops in the Mediterranean region. An ever-changing picture. Adv. Virus Res. 2012, 84, 67–126. [Google Scholar]
- Dogimont, C.; Chovelon, V.; Pauquet, J.; Boualem, A.; Bendahmane, A. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J. 2014, 80, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Segundo, E.; Janssen, D.; Velasco, L.; Ruiz, L.; Cuadrado, I.M. First Report of Cucumber leaf spot virus in Spain. Plant Dis. 2001, 85, 1123. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, F.; Castillo, P.; Font, M.I.; Alfaro-Fernández, A.; Moriones, E.; Navas-Castillo, J. First report of pepper vein yellows virus infecting sweet pepper in Spain. Plant Dis. 2013, 97, 1261. [Google Scholar] [CrossRef] [PubMed]
- Bech, A.C.; Grunert, K.G.; Bredahl, L.; Juhl, H.J.; Poulsen, C.S. Consumers’ Quality Perception. In Food, People and Society: A European Perspective of Consumers’ Food Choices; Schifferstein, H.N.J., Frewer, L., Risvik, E., Eds.; Springer-Verlag: Heidelberg, Germany, 2003; pp. 97–113. [Google Scholar]
- Janssen, D.; Saez, E.; Segundo, E.; Martín, G.; Gil, F.; Cuadrado, I.M. Capsicum annuum—A new host of Parietaria mottle virus in Spain. Plant Pathol. 2005, 54, 567. [Google Scholar] [CrossRef]
- Aramburu, J. First Report of Parietaria mottle virus on Tomato in Spain. Plant Dis. 2007, 85, 11. [Google Scholar] [CrossRef]
- Aramburu, J.; Galipienso, L.; Aparicio, F.; Soler, S.; López, C. Mode of transmission of Parietaria mottle virus. J. Plant Pathol. 2010, 92, 679–684. [Google Scholar]
- Galipienso, L.; Herranz, M.C.; López, C.; Pallás, V.; Aramburu, J. Sequence analysis within the RNA 3 of seven Spanish tomato isolates of Parietaria mottle virus (PMoV-T) reveals important structural differences with the parietaria isolates (PMoV). Eur. J. Plant Pathol. 2008, 120, 125–135. [Google Scholar] [CrossRef]
- Galipienso, L.; Martínez, C.; Willemsen, A.; Alfaro-Férnandez, A.; Font-San Ambrosio, I.; Davino, S.; Rubio, L. Genetic variability and evolutionary analysis of parietaria mottle virus: Role of selection and genetic exchange. Arch. Virol. 2015, 160, 2611–2616. [Google Scholar] [CrossRef]
- Fiallo-Olivé, E.; Navas-Castillo, J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol. Plant Pathol. 2019, 20, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Fortes, I.M.; Moriones, E.; Navas-Castillo, J. Tomato chlorosis virus in pepper: Prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant Pathol. 2012, 61, 994–1001. [Google Scholar] [CrossRef]
- Velasco, L.; Simon, B.; Janssen, D.; Cenis, J.L. Incidences and progression of tomato chlorosis virus disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. Ann. Appl. Biol. 2008, 153, 335–344. [Google Scholar] [CrossRef]
- Verbeek, M.; Dullemans, A.M.; van den Heuvel, J.F.J.M.; Maris, P.C.; van der Vlugt, R.A.A. Identification and characterisation of tomato torrado virus, a new plant picorna-like virus from tomato. Arch. Virol. 2007, 152, 881–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maris, P.C.; de Haan, A.A.; Barten, J.H.M.; Van den Heuvel, J.F.J.M. Plants having tomato torrado virus resistance. US Patent 8946506B2; filed 1 December 2008, and issued 3 February 2015,
- Segundo, E.; Carmona, M.; Sáez, E.; Velasco, L.; Martin, G.; Ruiz, L.; Janssen, D.; Cuadrado, I.M. Occurrence and incidence of viruses infecting green beans in south-eastern Spain. Eur. J. Plant Pathol. 2008, 122, 579–591. [Google Scholar] [CrossRef]
- Martín, G.; Velasco, L.; Segundo, E.; Cuadrado, I.M.; Janssen, D. The complete nucleotide sequence and genome organization of bean yellow disorder virus, a new member of the genus Crinivirus. Arch. Virol. 2008, 153, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Janssen, D. Epidemiology and control of emerging criniviruses in bean. Virus Res. 2020, 280, 197902. [Google Scholar] [CrossRef]
- Antignus, Y.; Lapidot, M.; Cohen, S. UV-absorbing plastic films and nets—An innovative tool of IPM to reduce the spread of insect pests and virus diseases in covered crops. Phytoparasitica 1999, 27, 76–77. [Google Scholar]
- Gázquez, J.C.; López, J.C.; Pérez, C.J.C.; Baeza, E.; Meca, D.; Pérez-Parra, J. Integrated pest management in mediterranean greenhouses. In Greenhouse Technology & Integrated Pest; Gáquez, J., Racero, J.L., Eds.; Cajamar Caja Rural: Almeria, Spain, 2013; pp. 42–62. [Google Scholar]
- Velasco, L.; Janssen, D.; Catalá, M.; Costa, J. UV interfering nets reduce TYLCD incidence and progress in tomato crops: Influence of host genotype. IOBC/WPRS Bull. 2006, 29, 287–292. [Google Scholar]
- Raviv, M.; Antignus, Y. UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem. Photobiol. 2004, 79, 219. [Google Scholar] [CrossRef]
- Juarez, M.; Legua, P.; Mengual, C.M.; Kassem, M.A.; Sempere, R.N.; Gómez, P.; Truniger, V.; Aranda, M.A. Relative incidence, spatial distribution and genetic diversity of cucurbit viruses in eastern Spain. Ann. Appl. Biol. 2013, 162, 362–370. [Google Scholar] [CrossRef]
- Gil-Salas, F.M.; Peters, J.; Boonham, N.; Cuadrado, I.M.; Janssen, D. Co-infection with Cucumber vein yellowing virus and Cucurbit yellow stunting disorder virus leading to synergism in cucumber. Plant Pathol. 2012, 61, 468–478. [Google Scholar] [CrossRef]
- Crespo, O.; Robles, C.; Ruiz, L.; Janssen, D. Antagonism of Cucumber green mottle mosaic virus against Tomato leaf curl New Delhi virus in zucchini and cucumber. Ann. Appl. Biol. 2019, 1–11. [Google Scholar] [CrossRef]
- Torchetti, E.M.; Pegoraro, M.; Navarro, B.; Catoni, M.; Di Serio, F.; Noris, E. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Sci. Rep. 2016, 6, 35101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahoonmanesh, A.; Shalla, T.A. Feasibility of cross-protection for control of tomato mosaic virus in fresh market field-grown tomatoes. Plant Dis. 1975, 65, 56–58. [Google Scholar] [CrossRef]
- Juárez, M.; Tovar, R.; Fiallo-Olivé, E.; Aranda, M.A.; Gosálvez, B.; Castillo, P.; Moriones, E.; Navas-Castillo, J.; Juarez, M.; Tovar, R.; et al. First detection of Tomato leaf curl New Delhi virus infecting zucchini in Spain. Plant Dis. 2014, 98, 857. [Google Scholar] [CrossRef]
- Ruiz, L.; Simón, A.; Velasco, L.; Janssen, D. Biological characterization of Tomato leaf curl New Delhi virus from Spain. Plant Pathol. 2017, 66, 376–382. [Google Scholar] [CrossRef]
- Ruiz, M.L.; Simón, A.; Velasco, L.; García, M.C.; Janssen, D. First report of Tomato leaf curl New Delhi virus infecting tomato in Spain. Plant Dis. 2015, 99, 894. [Google Scholar] [CrossRef]
- Fortes, I.M.; Sánchez-Campos, S.; Fiallo-Olivé, E.; Díaz-Pendón, J.; Navas-Castillo, J.; Moriones, E.A. A novel strain of Tomato leaf curl New Delhi virus has spread to the Mediterranean basin. Viruses 2016, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Sáez, C.; Martínez, C.; Ferriol, M.; Manzano, S.; Velasco, L.; Jamilena, M.; López, C.; Picó, B. Resistance to Tomato leaf curl New Delhi virus in Cucurbita spp. Ann. Appl. Biol. 2016, 169, 91–105. [Google Scholar] [CrossRef]
- Román, B.; Gómez, P.; Picó, B.; López, C.; Janssen, D. Candidate gene analysis of Tomato leaf curl New Delhi virus resistance in Cucumis melo. Sci. Hortic. (Amsterdam) 2019, 243, 12–20. [Google Scholar] [CrossRef]
- Sáez, C.; Martínez, C.; Montero-Pau, J.; Esteras, C.; Sifres, A.; Blanca, J.; Ferriol, M.; López, C.; Picó, B. A major QTL located in chromosome 8 of Cucurbita moschata is responsible of resistance to tomato leaf curl New Delhi virus (ToLCNDV). Front. Plant Sci. 2020, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Verbeek, M.; Dullemans, A.; Espino, A.; Botella, M.; Alfaro-Fernández, A.; Font, M.I. First report of southern tomato virus in tomato in the Canary Islands, Spain. J. Plant Pathol. 2015, 97, 392. [Google Scholar]
- Elvira-González, L.; Medina, V.; Rubio, L.; Galipienso, L. The persistent southern tomato virus modifies miRNA expression without inducing symptoms and cell ultra-structural changes. Eur. J. Plant Pathol. 2019, 156, 615–622. [Google Scholar] [CrossRef]
- Elvira-González, L.; Carpino, C.; Alfaro-Fernández, A.; Font-San-Ambrosio, M.I.; Peiró, R.; Rubio, L.; Luis Galipienso, L. A sensitive real-time RT-PCR reveals a high incidence of Southern tomato virus (STV) in Spanish tomato crops. Spanish J. Agric. Res. 2018, 16, e1008. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.; Simón, A.; García, C.; Janssen, D. First report of Lettuce chlorosis virus infecting bean in Spain. Plant Dis. 2014, 98, 857. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Simon, A.; Garcia, C.; Velasco, L.; Janssen, D. First natural crossover recombination between two distinct species of the family Closteroviridae leads to the emergence of a new disease. PLoS ONE 2018, 13, e0198228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleb, N.N. The Black Swan: The Impact of the Highly Improbable; Random House and Penguin Books: New York, NY, USA, 2010. [Google Scholar]
- Eurobarometer. Special Eurobarometer 354 “Food-Related Risks”; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Palumbo, J.E.; Horowitz, A.R.; Prabhaker, N. Insecticidal control and resistance management for Bemisia tabaci. Crop. Protetion 2001, 20, 739–765. [Google Scholar] [CrossRef]
- Glass, R.; Egea González, F.J. Biological control in the greenhouses of Almería and challenges for a sustainable intensive production. Outlooks Pest. Manag. 2012, 23, 276–279. [Google Scholar] [CrossRef]
- García-García, M.C.; Parra, S. Medios de protección de cultivos, mano de obra y maquinaria. In El Sistema de Producción Hortícola Protegido de la Provincia de Almería; García-García, M.C., Céspedes-López, A.J., Pérez-Parra, J.J., Lorenzo-Mínguez, P., Eds.; IFAPA: Almería, Spain, 2016; pp. 107–123. [Google Scholar]
- Messelink, G.J.; Calvo, F.J.; Marín, F.; Janssen, D. Cucurbits. In Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century; Gullino, M., Albajes, R., Nicot, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 537–566. [Google Scholar]
- Rodríguez, E.; Téllez, M.M.; Janssen, D. Whitefly control strategies against tomato leaf curl new delhi virus in greenhouse zucchini. Int. J. Environ. Res. Public Health 2019, 16, 2673. [Google Scholar] [CrossRef] [Green Version]
- Téllez, M.M.; Simon, A.; Rodriguez, E.; Janssen, D. Control of tomato leaf curl New Delhi virus in zucchini using the predatory mite Amblyseius swirskii. Biol. Control 2017, 114, 106–113. [Google Scholar] [CrossRef]
- Pérez-Hedo, M.; Arias-Sanguino, A.M.; Urbaneja, A.; Arias-Sanguino, Á.M.; Urbaneja, A. Induced tomato plant resistance against tetranychus urticae triggered by the phytophagy of nesidiocoris tenuis. Front. Plant Sci. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Vila, E.; Cabello, T. Biosystems Engineering Applied to Greenhouse Pest Control. In Biosystems Engineering: Biofactories for Food Production in the Century XXI; Guevara-Gonzalez, R., Torres-Pacheco, I., Eds.; Springer Science & Business Media: Luxemburg, Luxemburg, 2014; pp. 99–128. [Google Scholar]
- Sanchez, J.A.; La-Spina, M.; Michelena, J.M.M.; Lacasa, A.; Hermoso de Mendoza, A.; Sánchez, J.A.; La-Spina, M.; Michelena, J.M.M.; Lacasa, A.; Hermoso de Mendoza, A. Ecology of the aphid pests of protected pepper crops and their parasitoids. Biocontrol Sci. Technol. 2011, 21, 171–188. [Google Scholar] [CrossRef]
- Fernández-Calvino, L.; López-Abella, D.; López-Moya, J.J.; Fereres, A. Comparison of Potato Virus Y and Plum Pox Virus transmission by two aphid species in relation to their probing behavior. Phytoparasitica 2006, 34, 315. [Google Scholar] [CrossRef]
- Legarrea, S.; Betancourt, M.; Plaza, M.; Fraile, A.; García-Arenal, F.; Fereres, A. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets. Virus Res. 2012, 165, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.A.C.; Barbetti, M.J. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2012, 7, 1–32. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Nabity, P.D.; Zavala, J.A.; Berenbaum, M.R. Climate change: Resetting plant-insect interactions. Plant Physiol. 2012, 160, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, 619–634. [Google Scholar] [CrossRef]
- Jones, R.A.C. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus Res. 2016, 95, 87–147. [Google Scholar]
- Moreno, J.M. A Preliminary General Assessment of the Impacts in Spain Due to the Effects of Climate Change. ECCE PROJECT—FINAL REPORT; Ministerio de Medio Ambiente: Madrid, Spain, 2005. [Google Scholar]
- CEDEX Evaluación del Impacto del Cambio Climático en Los Recursos Hídricos y Sequías en España; Ministerio de Fomento: Madrid, Spain, 2017.
- López, J.C.; Lorenzo, P.; Medrano, E.; Sánchez-Guerrero, M.; Pérez, J.; Puerto, H.M.; Arco, M. Calefacción de Invernaderos en el Sudeste Español; Caja Rural de Almeria: Almeria, Spain, 2000. [Google Scholar]
- Gilioli, G.; Pasquali, S.; Parisi, S.; Winter, S. Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. Pest. Manag. Sci. 2014, 70, 1611–1623. [Google Scholar] [CrossRef] [Green Version]
- Shipp, L.; Johansen, N.; Vänninen, I.; Jacobson, R. Greenhouse climate: An important consideration when developing pest management programs for greenhouse crops. Acta Hortic. 2011, 893, 133–143. [Google Scholar] [CrossRef]
- Erickson, F.L.; Dinesh-Kumar, S.P.; Holzberg, S.; Ustach, C.V.; Dutton, M.; Handley, V.; Corr, C.; Baker, B.J. Interactions between tobacco mosaic virus and the tobacco N gene. Philos. Trans. R. Soc. B 1999, 354, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Király, L.; Hafez, Y.M.; Fodor, J.; Király, Z. Suppression of Tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with down regulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Virol. 2008, 89, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Sarmiento, C.; Kiisma, M.; Koivumäki, S.; Lemmetty, A.; Truve, E.; Lento, K. Effects of viral silencing suppressors on Tobacco ringspot virus infection in two Nicotiana species. J. Gen. Virol. 2008, 89, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Valkonen, J.P.T. Novel resistances to four potyviruses in tuber-bearing potato species, and temperature-sensitive expression of hypersensitive resistance to potato virus Y. Ann. Appl. Biol. 1997, 130, 91–104. [Google Scholar] [CrossRef]
- Jordá, C.; Lázaro-Pérez, A.; Martínez-Culebras, P. V First report of Pepino mosaic virus on tomato in Spain. Plant Dis. 2001, 85, 1292. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; del Toro, F.; Tenllado, F.; Canto, T.; Chung, B.N. A Model to Explain Temperature Dependent Systemic Infection of Potato Plants by Potato virus Y. Plant Pathol. J. 2017, 33, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Boukema, I.W. Resistance to a new strain of TMV in Capsicum chacoense Hunz. Capsicum Newsl. 1982, 49–51. [Google Scholar]
- Moury, B.; Selassie, K.G.; Marchoux, G.; Daubèze, A.; Palloix, A. High temperature effects on hypersensitive resistance to Tomato spotted wilt tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Eur. J. Plant Pathol. 1998, 104, 489–498. [Google Scholar] [CrossRef]
- Soler, S.; Díez, M.J.; Nuez, F. Effect of temperature regime and growth stage interaction on pattern of virus presence in TSWV-resistant accessions of Capsicum chinense. Plant Dis. 1998, 82, 1199–1204. [Google Scholar] [CrossRef]
- Chellappan, P.; Vanitharan, R.; Ogbe, F.; Fauquet, C.M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. 2005, 138, 1828–1841. [Google Scholar] [CrossRef] [Green Version]
- Szittya, G.; Silhavy, D.; Molnár, A.; Havelda, Z.; Lovas, A.; Lakatos, L.; Bánfalvi, Z.; Burgyán, J. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 2003, 22, 633–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velázquez, K.; Renovell, A.; Comellas, M.; Serra, P.; García, M.; Pina, J.; Navarro, L.; Moreno, P.; Guerri, J. Effect of temperature on RNA silencing of a negative-stranded RNA plant virus: Citrus psorosis virus. Plant Pathol. 2010, 59, 982–990. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Sekine, K.T.; Nishiguchi, M. Breakdown of plant virus resistance: Can we predict and extend the durability of virus resistance? J. Gen. Plant Pathol. 2014, 80, 327–336. [Google Scholar] [CrossRef]
- Loebenstein, G.; Gaba, V. Viruses of Potato. Adv. Virus Res. 2012, 84, 209–246. [Google Scholar]
- Kido, K.; Mochizuki, T.; Matsuo, K.; Tanaka, C.K.K.O.T.; Shinya Tsuda, S.; Shinya Tsuda, S. Functional degeneration of the resistance gene nsv against Melon necrotic spot virus at low temperature. Eur. J. Plant Pathol. 2008, 121, 189–194. [Google Scholar] [CrossRef]
- Alonso-Prados, J.L.; Luis-Arteaga, M.; Alvarez, J.M.; Moriones, E.; Batlle, A.; Laviña, A.; García-Arenal, F.; Fraile, A. Epidemics of aphid-transmitted viruses in melon crops in Spain. Eur. J. Plant Pathol. 2003, 109, 129–138. [Google Scholar] [CrossRef]
- Satar, S.; Kersting, U.; Uygun, N. Effect of temperature on population parameters of Aphis gossypii Glover and Myzus persicae (Sulzer) (Homoptera: Aphididae) on pepper. J. Plant Dis. Prot. 2008, 115, 69–74. [Google Scholar] [CrossRef]
- Aguilar, E.; Allende, L.; Del Toro, F.J.; Chung, B.N.; Canto, T.; Tenllado, F. Effects of elevated CO2 and temperature on pathogenicity determinants and virulence of potato virus X/Potyvirus-Associated synergism. Mol. Plant Microbe Interact. 2015, 28, 1364–1373. [Google Scholar] [CrossRef] [Green Version]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Rausher, M.D. Co-evolution and plant resistance to natural enemies. Nature 2001, 411, 857–864. [Google Scholar] [CrossRef]
- Fraile, A.; García-Arenal, F. The coevolution of plants and viruses: Resistance and pathogenicity. Adv. Virus Res. 2010, 76, 1–32. [Google Scholar] [PubMed] [Green Version]
- Waterhouse, P.M.; Wang, M.B.; Lough, T. Gene silencing as an adaptive defense against viruses. Nature 2001, 411, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Burgyán, J.; Havelda, Z. Viral suppressors of RNA silencing. Trends Plant Sci. 2011, 16, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Moffett, P. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 2009, 75, 1–33. [Google Scholar]
- Kovalchuk, I.; Kovalchuk, O.; Kalck, V.; Boyko, V.; Filkowski, J.; Heinlein, M.; Hohn, B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003, 423, 760–762. [Google Scholar] [CrossRef]
- López, C.; Aramburu, J.; Galipienso, L.; Soler, S.; FNuez, F.; Rubio, L. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J. Gen. Virol. 2011, 92, 210–215. [Google Scholar] [CrossRef]
- Segundo, E.; Lesemann, D.E.; Martin, G.; Carmona, M.P.; Ruiz, L.; Cuadrado, I.M.; Velasco, L.; Janssen, D. Amaranthus leaf mottle virus: 3 ’-end RNA sequence proves classification as distinct virus and reveals affinities within the genus Potyvirus. Eur. J. Plant Pathol. 2007, 117, 81–87. [Google Scholar] [CrossRef]
- De Ronde, D.; Butterbach, P.; Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 2014, 5, 307. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Gallois, J.L.; Moury, B.; German-Retana, S. Role of the genetic background in resistance to plant viruses. Int. J. Mol. Sci. 2018, 19, 2856. [Google Scholar] [CrossRef] [Green Version]
- García-Arenal, F.; McDonald, B.A. An analysis of the durability of resistance to plant viruses. Phytopathology 2003, 93, 941–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzac, B.; Fabre, F.; Palloix, A.; Moury, B. Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Mol. Plant Pathol. 2009, 10, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Fabre, F.; Bruchou, C.; Palloix, A.; Moury, B. Key determinants of resistance durability to plant viruses: Insights from a model linking within- and between-host dynamics. Virus Res. 2009, 141, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Chain, F.; Riault, G.; Jacquot, E.; Trottet, M. Field trial of serially passaged isolates of BYDV-PAV overcoming resistance derived from Thinopyrum intermedium in wheat. Plant Breed. 2006, 125, 211–216. [Google Scholar] [CrossRef]
- Lacroix, C.; Glais, L.; Verrier, J.L.; Jacquot, E. Effect of passage of a Potato virus Y isolate on a line of tobacco containing the recessive resistance gene va2 on the development of isolates capable of overcoming alleles 0 and 2. Eur. J. Plant Pathol. 2011, 130, 259–269. [Google Scholar] [CrossRef]
- Quenouille, J.; Saint-Felix, L.; Moury, B.; Palloix, A. Diversity of genetic backgrounds modulating the durability of a major resistance gene. Analysis of a core collection of pepper landraces resistant to Potato virus Y. Mol. Plant Pathol. 2016, 17, 296–302. [Google Scholar] [CrossRef]
- Schoeny, A.; Desbiez, C.; Millot, P.; Wipf-Scheibel, C.; Nozeran, K.; Gognalons, P.; Lecoq, H.; Boissot, N. Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Res. 2017, 241, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Mahfouz, M.M.; Cardi, T.; Neal Stewart, C. Next-generation precision genome engineering and plant biotechnology. Plant Cell Rep. 2016, 35, 1397–1399. [Google Scholar] [CrossRef]
- Court of Justice of the European Union. Organisms Obtained by Mutagenesis are GMOs and are, in Principle, Subject to the Obligations Laid Down by the GMO Directive; Court of Justice of the European Union: Luxembourg, Luxembourg, 2017. [Google Scholar]
- Mallapaty, S. Australian gene-editing rules adopt ‘middle ground.’. Nature 2019. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, S.J.; Reeves, P.T.; Hoang, B.T.; Mitter, N. A Perspective on RNAi-Based Biopesticides. Front. Plant Sci. 2020, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voloudakis, A.E.; Holeva, M.C.; Peter Sarin, L.; Bamford, D.H.; Vargas, M.; Poranen, M.M.; Tenllado, F. Efficient double-stranded RNA production methods for utilization in plant virus control. Methods Mol. Biol. 2015, 1236, 255–274. [Google Scholar] [PubMed]
- Tenllado, F.; Martínez-García, B.; Vargas, M.; Díaz-Ruíz, J.R. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 2003, 11, 1–11. [Google Scholar]
- Kaldis, A.; Berbati, M.; Melita, O.; Reppa, C.; Holeva, M.; Otten, P.; Voloudakis, A. Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Mol. Plant Pathol. 2018, 19, 883–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Xu, Z.P.; Carroll, B.J. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 2017, 26, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu (Max), G.Q.; Xu, Z.P.; et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef]
- Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab. Chip 2012, 12, 2469–2486. [Google Scholar] [CrossRef]
- Zhang, S.; Ravelonandro, M.; Russell, P.; McOwen, N.; Briard, P.; Bohannon, S.; Vrient, A. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP® using reverse transcription-recombinase polymerase amplification. J. Virol. Methods 2014, 207, 114–120. [Google Scholar] [CrossRef]
- Lau, H.Y.; Botella, J.R. Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Front. Plant Sci. 2017, 8, 1–14. [Google Scholar] [CrossRef]
- Wilisiani, F.; Tomiyama, A.; Katoh, H.; Hartono, S.; Neriya, Y.; Nishigawa, H.; Natsuaki, T. Development of a LAMP assay with a portable device for real-time detection of begomoviruses under field conditions. J. Virol. Methods 2019, 265, 71–76. [Google Scholar] [CrossRef]
- Wee, E.J.H.; Lau, H.Y.; Botella, J.R.; Trau, M.; Ejh, W.; Lau, H.Y.; Botella, J.R.; Trau, M. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem. Commun. 2015, 51, 5828–5831. [Google Scholar] [CrossRef] [PubMed]
- Barzon, L.; Lavezzo, E.; Militello, V.; Toppo, S.; Palù, G. Applications of next-generation sequencing technologies to diagnostic virology. Int. J. Mol. Sci. 2011, 12, 7861–7884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, D.; Matsvay, A.; Abramov, I.; Dedkov, V.; Shipulin, G.; Khafizov, K. Current trends in diagnostics of viral infections of unknown etiology. Viruses 2020, 12, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boykin, L.; Ghalab, A.; De Marchi, B.; Savil, A.; Wainaina, M.J.; Kinene, T. Real time portable genome sequencing for global food security. F1000 Res. 2018, 7, 1101. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, L. Inner Workings: Portable DNA sequencer helps farmers stymie devastating viruses. Proc. Natl. Acad. Sci. USA 2019, 116, 3351–3353. [Google Scholar] [CrossRef] [Green Version]
- Pautasso, M.; Petter, F.; Rortais, A.; Roy, A.S. Emerging risks to plant health: A European perspective. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 10. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Wong, M.H.; Lew, T.T.S.; Bisker, G.; Lee, M.A.; Kaplan, A.; Dong, J.; Liu, A.T.; Koman, V.B.; Sinclair, R.; et al. Nanosensor technology applied to living plant systems. Annu. Rev. Anal. Chem. 2017, 10, 113–140. [Google Scholar] [CrossRef]
- Moerkens, R.; Brenard, N.; Bosmans, L.; Reybroeck, E.; Janssen, D.; Hemming, J.; Sluydts, V. Protocol for semi-automatic detection and identification of whiteflies Bemisia tabaci and Trialeurodes vaporariorum on yellow sticky traps with ImageJ. J. Appl. Entomol. 2019, 143, 652–658. [Google Scholar] [CrossRef]
- Madden, L.V.; van den Bosch, F. Decision making in the practice of plant disease management. In The Study of Plant Disease Epidemics; Madden, L.V., Hughes, G., van den Bosch, F., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2007; pp. 319–351. [Google Scholar]
- Ojiambo, P.S.; Yuen, J.; Van den Bosch, F.; Madden, L.V. Epidemiology: Past, present, and future impacts on understanding disease dynamics and improving plant disease management —A summary of focus issue articles. Phytopathology 2017, 107, 1092–1094. [Google Scholar]
- Singh, K.K. An artificial intelligence and cloud based collaborative platform for plant disease Identification, tracking and forecasting for farmers. In Proceedings of the 7th IEEE International Conference on Cloud Computing in Emerging Markets, CCEM 2018, Bengaluru, India, 23–24 November 2018; pp. 49–56. [Google Scholar]
- Wiesner-Hanks, T.; Stewart, E.L.; Kaczmar, N.; Dechant, C.; Wu, H.; Nelson, R.J.; Lipson, H.; Gore, M.A. Image set for deep learning: Field images of maize annotated with disease symptoms. BMC Res. Notes 2018, 11, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Selvaraj, M.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-powered banana diseases and pest detection. Plant Methods 2019, 15, 92. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, L.; Ruiz, L.; Galipienso, L.; Rubio, L.; Janssen, D. A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture. Agronomy 2020, 10, 860. https://doi.org/10.3390/agronomy10060860
Velasco L, Ruiz L, Galipienso L, Rubio L, Janssen D. A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture. Agronomy. 2020; 10(6):860. https://doi.org/10.3390/agronomy10060860
Chicago/Turabian StyleVelasco, Leonardo, Leticia Ruiz, Luis Galipienso, Luis Rubio, and Dirk Janssen. 2020. "A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture" Agronomy 10, no. 6: 860. https://doi.org/10.3390/agronomy10060860
APA StyleVelasco, L., Ruiz, L., Galipienso, L., Rubio, L., & Janssen, D. (2020). A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture. Agronomy, 10(6), 860. https://doi.org/10.3390/agronomy10060860