Nutrient Diagnosis Norms for Date Palm (Phoenix dactylifera L.) in Tunisian Oases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Leaf Nutrient Concentration Data
2.3. Critical Value Approach
2.4. Theory of the CND Approach
2.4.1. CND Calculation Procedure and CND Indices
2.4.2. The Five Steps of CND Norms Development
2.4.2.1. Mathematical Approach for Selecting the High-Yield Subpopulation
2.4.2.2. Derive the Theoretical Threshold Global Nutrient Imbalance Index
2.4.2.3. Validate the Threshold Global Nutrient Imbalance Index
2.4.2.4. Determination of the Threshold for Each Nutrient Indices
2.4.2.5. Validation of the Threshold Global Nutrient Imbalance Index
2.5. Statistical Analysis
3. Results and Discussion
3.1. Critical Value Approach (CVA)
3.2. Compositional Nutrient Diagnosis (CND) Approach
3.2.1. Selecting the High-Yielding Population
3.2.2. Theoretical Threshold of Global Nutrient Imbalance Index, CNDr2
3.2.3. Validation of the Nutrient Imbalance Index Threshold (CNDr2)
- TP true positive (27 points): date palms with high yields are correctly diagnosed with to the global nutrient imbalance index CNDr2;
- TN true negative (38 points): date palms with low yields and correctly diagnosed with CNDr2;
- FP false positive (23 points): date palms with low yields are incorrectly diagnosed with CNDr2;
- FN false negative (12 points): date palms with high yields are incorrectly diagnosed with CNDr2.
3.2.4. The Sufficiency Range of the Ten CND Nutrient Indices
3.2.5. Cross Validation of the Threshold Global Nutrient Imbalance Index
3.3. Comparison between CVA and CND
4. Conclusions
- The cumulative variance function allowed us to select a critical yield of 76 kg palm−1;
- The χ2 distribution was used to infer a theoretical critical CNDr2 of 9.7;
- A Cate–Nelson partition validated the previous two steps by resulting in the same critical yield and critical CNDr2 of 10.4 close to the theoretical one;
- The same partition was applied to the 10 individual squared nutrient indexes and the following sufficiency ranges were obtained: (−1.59, +1.59) for IN, (−0.44, +0.44) for IP, (−0.63, +0.63) for IK, (−0.94, +0.94) for ICa, (−1.05, +1.05) for IMg, (−0.80, +0.80) for IFe, (−0.74, +0.74) for ICu, (−0.80, +0.80) for IB, (−0.93, +0.93) for IZn and (−1.04, +1.04) for IMn.
- After cross validation, a validated CNDr2 was selected (10.06) above which a nutrient imbalance was expected.
Author Contributions
Funding
Conflicts of Interest
References
- Krueger, R.R. Nutritional dynamics of Date Palm (Phoenix dactylifera L.). ISHS Acta Hortic. 2007, 177–186. [Google Scholar] [CrossRef]
- Dialami, H.; Mohebi, A. Increasing Yield and Fruit Quality of ‘Sayer’ Date Palm with Application of Optimum Levels of Nitrogen, Phosphorus and Potassium. In Proceedings of the IV International Date Palm Conference, Abu Dhabi, UAE, 15–17 March 2010; pp. 353–360. [Google Scholar]
- Ezz, T.; Kassem, H.; Marzouk, H. Response of Date Palm Trees to Different Nitrogen and Potassium Application Rates. In Proceedings of the IV International Date Palm Conference, Abu Dhabi, UAE, 15–17 March 2010; pp. 761–768. [Google Scholar]
- Horneck, D.A.; Sullivan, D.M.; Owen, J.S.; Hart, J.M. Soil Test Interpretation Guide; Oregon State University Extension Service: Corvallis, OR, USA, 2011; p. 12. [Google Scholar]
- Zaid, A.; De Wet, P. Chapter I botanical and systematic description of date palm. In Plant Production and Protection; Zaid, A., Arias Jiménez, E.J., Eds.; Food and Agriculture Organization: Rome, Italy, 1999; pp. 1–28. [Google Scholar]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2015; p. 661. [Google Scholar]
- Prado, R.d.M.; Caione, G. Plant Analysis. In Soil Fertility; Nuhu Issaka, R., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- El Kinany, S.; Achbani, E.; Faggroud, M.; Ouahmane, L.; El Hilali, R.; Haggoud, A.; Bouamri, R. Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv. Feggouss. J. Saudi Soc. Agric. Sci. 2019, 18, 411–417. [Google Scholar] [CrossRef]
- Ahmed, M.; Kassem, H.; Al-Obeed, R. Effect of organo-mineral fertilizers on Sakki date palm “Phoenix dactylifera L.” fruits yield, quality and nutritional value. Bothalia J. 2013, 43, 103–116. [Google Scholar]
- Al-Obeed, R.; Kassem, H.; Ahmed, M. Effect of levels and methods of potassium and phosphorus fertilization on yield, fruit quality and chemical composition of “Khalas” date palm cultivar. Life Sci. J. 2013, 10, 1111–1118. [Google Scholar]
- Kassem, H. The response of date palm to calcareous soil fertilisation. J. Soil Sci. Plant Nutr. 2012, 12, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Shareef, H.J. Enhancing Fruit Set and Productivity in Date Palm (Phoenix dactylifera, L.) Berhi Cultivar Using Boron and Potassium. J. Environ. Sci. 2016, 5, 108–114. [Google Scholar]
- El Mardi, M.O.; Salama, S.; Consolacion, E.; Al-Shabibi, M.S. Effect of treated sewage water on vegetative and reproductive growth of date palm. Commun. Soil Sci. Plant Anal. 1995, 26, 1895–1904. [Google Scholar] [CrossRef]
- Kolsi-Benzina, N.; Zougari, B. Mineral composition of the palms leaflets of the date palm. J. Plant Nutr. 2008, 31, 583–591. [Google Scholar] [CrossRef]
- Bendaly Labaied, M.; Serra, A.P.; Ben Mimoun, M. Establishment of nutrients optimal range for nutritional diagnosis of mandarins based on DRIS and CND methods. Commun. Soil Sci. Plant Anal. 2018, 49, 2557–2570. [Google Scholar] [CrossRef]
- Menino, R. Leaf Analysis in Citrus: Interpretation Tools. In Advances in Citrus Nutrition; Srivastav, A.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–79. [Google Scholar]
- Bhaduri, D.; Pal, S. Diagnosis and Recommendation Integrated System (DRIS): Concepts and applications on nutritional. J. Soil Water Conserv. 2013, 12, 70–79. [Google Scholar]
- Parent, L.; Cambouris, A.; Muhawenimana, A. Multivariate diagnosis of nutrient imbalance in potato crops. Soil Sci. Soc. Am. J. 1994, 58, 1432–1438. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.-E.; Tremblay, N. Selecting the high-yield subpopulation for diagnosing nutrient imbalance in crops. Agron. J. 2001, 93, 802–808. [Google Scholar] [CrossRef]
- Wairegi, L.; van Asten, P.J. Norms for multivariate diagnosis of nutrient imbalance in arabica and robusta coffee in the East African Highlands. Exp. Agric. 2012, 48, 448–460. [Google Scholar] [CrossRef]
- Barłóg, P. Diagnosis of sugar beet (Beta vulgaris L.) nutrient imbalance by DRIS and CND-clr methods at two stages during early growth. J. Plant Nutr. 2016, 39, 1–16. [Google Scholar]
- Kumar, P.; Geetha, S.; Savithri, P.; Mahendran, P.; Ragunath, K. Evaluation of DRIS and CND indexes for effective nutrient management in Muscat grapevines (Vitis vinefera). J. Appl. Hortic. 2003, 5, 76–80. [Google Scholar] [CrossRef]
- Hermida, J.J.F.; Toro, M.C.H.; Guzmán, M.; Cabrera, R.I. Determining nutrient diagnostic norms for greenhouse roses. HortScience 2013, 48, 1403–1410. [Google Scholar] [CrossRef] [Green Version]
- Rene, W.; Cote, B.; Camire, C.; Burgess, M.; Fyles, J.W. Development and application of CVA, DRIS, and CND norms for three hybrids of Populus maximowiczii planted in Southern Quebec. J. Plant Nutr. 2013, 36, 118–142. [Google Scholar] [CrossRef]
- Dhaouadi, L.; Boughdiri, A.; Daghari, I.; Slim, S.; Maachia, S.; Mkadmic, C. Localised irrigation performance in a date palm orchard in the oases of deguache. J. New Sci. 2017, 42, 2268–2277. [Google Scholar]
- Mokadem, N.; Hamed, Y.; Hfaid, M.; Dhia, H.B. Hydrogeochemical and isotope evidence of groundwater evolution in El Guettar Oasis area, Southwest Tunisia. Carbonates Evaporites 2015, 30, 417–437. [Google Scholar] [CrossRef]
- Campbell, C.R.; Plank, C.O. Preparation of Plant Tissue for Laboratory Analysis. In Handbook of Reference Methods for Plant Analysis; Yash, K., Ed.; CRC Press: Boca Raton, FL, USA, 1997; pp. 51–63. [Google Scholar]
- Gupta, U.C. Determination of Boron, Molybdenum, and Selenium in Plant Tissue. In Handbook of Reference Methods for Plant Analysis; Yash, K., Ed.; CRC Press: Boca Raton, FL, USA, 1997; pp. 175–186. [Google Scholar]
- Miller, R.O. Extractable Chloride, Nitrate, Orthophosphate, Potassium, and Sulfate-Sulfur in Plant Tissue: 2% Acetic Acid Extraction. In Handbook of Reference Methods for Plant Analysis; Yash, K., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 115–118. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of Total Nitrogen in Plant Tissue. In Handbook of Reference Methods for Plant Analysis; Yash, K., Ed.; CRC Press: Boca Raton, FL, USA, 1997; pp. 85–93. [Google Scholar]
- Hanlon, E.A. Elemental Determination by Atomic Absorption Spectrophotometry. In Handbook of Reference Methods for Plant Analysis; Yash, K., Ed.; CRC Press: London, UK, 1997; pp. 161–168. [Google Scholar]
- Reuter, D.; Robinson, J.B. Plant Analysis: An Interpretation Manual, 2nd ed.; CSIRO Publishing: Collingwood, ON, Canada, 1997. [Google Scholar]
- Walworth, J.; Sumner, M. The Diagnosis and Recommendation Integrated System (DRIS). In Advances in Soil Science; Springer: Berlin/Heidelberg, Germany, 1987; pp. 149–188. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data; Methuen: New York, NY, USA, 1986. [Google Scholar]
- Khiari, L.; Parent, L.-E.; Tremblay, N. Critical compositional nutrient indexes for sweet corn at early growth stage. Agron. J. 2001, 93, 809–814. [Google Scholar] [CrossRef]
- Cate, R.B.; Nelson, L.A. A simple statistical procedure for partitioning soil test correlation data into two classes 1. Soil Sci. Soc. Am. J. 1971, 35, 658–660. [Google Scholar] [CrossRef]
- Parent, S.-É. CateNelson.R. Available online: https://github.com/essicolo/AgFun/blob/master/CateNelson.R (accessed on 25 February 2019).
- Marzouk, H. Soil fertilization study on Zaghloul date palm grown in calcareous soil and irrigated with drainage water. Am.-Eurasian J. Agric. Environ. Sci. 2011, 10, 728–736. [Google Scholar]
- Munson, R.D.; Nelson, W.L. Principles and practices in plant analysis. Soil Test. Plant Anal. 1990, 3, 359–387. [Google Scholar]
- Raveh, E. Citrus leaf nutrient status: A critical evaluation of guidelines for optimal yield in Israel. J. Plant Nutr. Soil Sci. 2013, 176, 420–428. [Google Scholar] [CrossRef]
- Parent, L.E.; Rozane, D.E.; de Deus, J.A.L.; Natale, W. Diagnosis of Nutrient Composition in Fruit Crops: Major Developments. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–156. [Google Scholar]
- Parent, L.; Poirier, M.; Asselin, M. Multinutrient diagnosis of nitrogen status in plants. J. Plant Nutr. 1995, 18, 1013–1025. [Google Scholar] [CrossRef]
- Bedoui, M. Elaboration D’une Monographie Complete des Oasis en Tunisie; Consulting en Développement Communautaire et en Gestion D’Entreprise: Tunis, Tunisia, 2015; Available online: http://carte.vmsnet.tn/carte/GOUV/Tunisie/PDF/DOCUMENT%201.pdf (accessed on 20 February 2020).
- Bouguedoura, N.; Bennaceur, M.; Babahani, S.; Benziouche, S.E. Date Palm Status and Perspective in Algeria. In Date Palm geNetic Resources and Utilization; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 125–168. [Google Scholar]
- Magallanes-Quintanar, R.; Valdez-Cepeda, R.D.; Blanco-Macías, F.; Márquez-Madrid, M.; Ruíz-Garduño, R.R.; Pérez-Veyna, O.; García-Hernández, J.L.; Murillo-Amador, B.; López-Martínez, J.D.; Martínez-Rubín de Celis, E. Compositional nutrient diagnosis in nopal (Opuntia ficus-indica). J. Prof. Assoc. Cactus Dev. 2004, 6, 78–89. [Google Scholar]
- Belloumi, M.; Matoussi, M.S. A stochastic frontier approach for measuring technical efficiencies of date farms in southern Tunisia. Agric. Resour. Econ. Rev. 2006, 35, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Bekheet, S.A.; El-Sharabasy, S.F. Date palm status and perspective in Egypt. In Date Palm Genetic Resources and Utilization; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 75–123. [Google Scholar]
- Aleid, S.M.; Al-Khayri, J.M.; Al-Bahrany, A.M. Date palm status and perspective in Saudi Arabia. In Date Palm Genetic Resources and Utilization; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 49–95. [Google Scholar]
- García-Hernández, J.L.; Valdez-Cepeda, R.D.; Murillo-Amador, B.; Beltrán-Morales, F.A.; Ruiz-Espinoza, F.H.; Orona-Castillo, I.; Flores-Hernández, A.; Troyo-Diéguez, E. Preliminary compositional nutrient diagnosis norms in Aloe vera L. grown on calcareous soil in an arid environment. Environ. Exp. Bot. 2006, 58, 244–252. [Google Scholar] [CrossRef]
- Badra, A.; Parent, L.-É.; Allard, G.; Tremblay, N.; Desjardins, Y.; Morin, N. Effect of leaf nitrogen concentration versus CND nutritional balance on shoot density and foliage colour of an established Kentucky bluegrass (Poa pratensis L.) turf. Can. J. Plant Sci. 2006, 86, 1107–1118. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.-E.; Tremblay, N. The phosphorus compositional nutrient diagnosis range for potato. Agron. J. 2001, 93, 815–819. [Google Scholar] [CrossRef]
- Dupré, R.L.C.; Khiari, L.; Gallichand, J.; Joseph, C.A. Multi-Factor Diagnostic and Recommendation System for Boron in Neutral and Acidic Soils. Agronomy 2019, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Parent, S.E.; Parent, L.; Rozanne, D.; Hernandes, A.; Natale, W. Nutrient balance as paradigm of plant and soil chemometricsNutrient Balance as Paradigm of Soil and Plant Chemometrics. In Soil Fertility; Nuhu Issaka, R., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 83–114. [Google Scholar]
- El-Merghany, S.; Attia, M.F.; Zaen El-Daen, E.M.A.; Shahin, M.F.M.; Hassan, H.S.A.; Laila, F. Haggag Effect of some Fertilizer Treatments on the Productivity and Mineral Content of. Middle East J. 2014, 3, 722–731. [Google Scholar]
- Attala, M.; Shahein, A.; Kassem, H.; Aly, H. Effect of Applying Different Organic and Inorganic Nitrogen Sources to Zaghloul and Samany Date Cultivars on: I. Leaf and Fruit Mineral Content. In Proceedings of the International Conference on Date Palm, Qassem Branch, Saudi Arabia, 16–19 September 2003; pp. 209–222. [Google Scholar]
- Krueger, R. Nutritional Dynamics of Date Palm (Phoenix dactylifera L.). In Proceedings of the III International Date Palm Conference, Abu Dhabi, UAE, 19–21 February 2006; pp. 177–186. [Google Scholar]
- Hamza, H.; Jemni, M.; Benabderrahim, M.A.; Mrabet, A.; Touil, S.; Othmani, A.; Salah, M.B. Date Palm Status and Perspective in Tunisia. In Date Palm Genetic Resources and Utilization; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 193–221. [Google Scholar]
- Chao, C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Elsadig, E.H.; Aljuburi, H.J.; Elamin, A.H.B.; Gafar, M.O. Impact of organic manure and combination of NPKS, on yield, fruit quality and fruit mineral content of Khenazi date palm (Phoenix dactylifera L.) cultivar. J. Sci. Agric. 2017, 1, 335–346. [Google Scholar]
- Hesami, A.; Jafari, N.; Shahriari, M.H.; Zolfi, M. Yield and Physico-Chemical Composition of Date-Palm (Phoenix dactylifera) as Affected by Nitrogen and Zinc Application. Commun. Soil Sci. Plant Anal. 2017, 48, 1943–1954. [Google Scholar] [CrossRef]
- Elsabagh, A.S. Effect of bunches spraying with some macro and micro-nutrients on fruit retention and physical characteristics of Deglet Nour date palm cultivar during Kimiri stage. Res. J. Agric. Biol. Sci. 2012, 8, 138–146. [Google Scholar]
- Osman, S. Effect of potassium fertilization on yield, leaf mineral content and fruit quality of Bartamoda date palm propagated by tissue culture technique under Aswan conditions. J. Appl. Sci. Res. 2010, 184–190. [Google Scholar]
- Ben Ammara, N.; Ben Hmida, F.; Ben Mimoun, M. Effect of Potassium Application on Deglet Noor Date Production and Quality. In press.
- El Assar, A.M.; El Sehrawy, O.A.M. Influence of Nutrients Spray Application on the Yield Traits of “Zaghloul Cv.” Date Palm. In Proceedings of the First International Scientific Conference for the Development of Date Palm and Dates sector in the Arab World, Riyadh, Saudi Arabia, 4–7 December 2011; pp. 241–250. [Google Scholar]
Nutrients | Optimal Ranges | R2 |
---|---|---|
N (g kg−1) | 11.7–17.1 | 0.14 |
P (g kg−1) | 0.7–0.8 | 0.14 |
K (g kg−1) | 2.0–2.7 | 0.02 |
Ca (g kg−1) | 7.1–10.8 | 0.30 |
Mg (g kg−1) | 1.4–2.2 | 0.09 |
Fe (mg kg−1) | 160–206 | 0.06 |
Cu (mg kg−1) | 0.84–2.74 | 0.05 |
B (mg kg−1) | 14.74–18.45 | 0.59 |
Zn (mg kg−1) | 6.00–8.00 | 0.05 |
Mn (mg kg−1) | 26–82 | 0.56 |
Nutrient | R2 | (kg palm−1) | |
---|---|---|---|
N | Y = 0.00005x3 − 0.01169x2 − 0.22509x + 113.90598 | 0.94 | 75.06 |
P | Y = 0.00003x3 − 0.00695x2 − 0.33677x + 112.79667 | 0.95 | 75.19 |
K | Y = 0.00002x3 − 0.00519x2 − 0.40528x + 111.13866 | 0.96 | 74.24 |
Ca | Y = 0.00003x3 − 0.00634x2 − 0.56267x + 116.52483 | 0.95 | 62.48 |
Mg | Y = 0.00003x3 − 0.00814x2 − 0.19140x + 110.32916 | 0.95 | 73.84 |
Fe | Y = 0.00004x3 − 0.01102x2 − 0.15286x + 109.37661 | 0.97 | 77.91 |
Cu | Y = 0.00004x3 − 0.01120x2 − 0.10562x + 108.39690 | 0.97 | 79.82 |
B | Y = − 0.000007x3 + 0.00226x2 − 0.6316x + 112.6251 | 0.97 | 97.88 |
Zn | Y = 0.00005x3 − 0.01367x2 − 0.00350x + 108.58952 | 0.95 | 80.10 |
Mn | Y = 0.00002x3 − 0.00434x2 − 0.85754x + 121.05267 | 0.96 | 48.64 |
R10 | Y = 0.00003x3 − 0.00624x2 − 0.56212x + 111.71052 | 0.97 | 63.27 |
Row Centered Log Ratio | Mean | SD | Nutrient Concentration | Mean | SD |
---|---|---|---|---|---|
V*N | 3.437 | 0.200 | N (g kg−1) | 15.8 | 2.9 |
V*P | 0.389 | 0.206 | P (g kg−1) | 0.8 | 0.2 |
V*K | 1.495 | 0.395 | K (g kg−1) | 2.4 | 1.2 |
V*Ca | 2.737 | 0.310 | Ca (g kg−1) | 8.0 | 2.4 |
V*Mg | 1.329 | 0.214 | Mg (g kg−1) | 1.9 | 0.4 |
V*Fe | −1.050 | 0.288 | Fe (mg kg−1) | 180 | 52 |
V*Cu | −5.918 | 0.634 | Cu (mg kg−1) | 1.6 | 0.1 |
V*B | −3.236 | 0.402 | B (mg kg−1) | 21.4 | 0.8 |
V*Zn | −4.346 | 0.206 | Zn (mg kg−1) | 6.6 | 0.2 |
V*Mn | −2.405 | 0.533 | Mn (mg kg−1) | 52.0 | 2.5 |
V*R10 | 7.570 | 0.096 | − | − | − |
Squared CND Indices for Nutrients | Critical IX2 | Critical Range | |
---|---|---|---|
Lower Limit | Upper Limit | ||
IN2 | 2.53 | −1.59 | 1.59 |
IP2 | 0.2 | −0.44 | 0.44 |
IK2 | 0.4 | −0.63 | 0.63 |
ICa2 | 0.9 | −0.94 | 0.94 |
IMg2 | 1.12 | −1.05 | 1.05 |
IFe2 | 0.65 | −0.80 | 0.80 |
ICu2 | 0.56 | −0.74 | 0.74 |
IB2 | 0.65 | −0.80 | 0.80 |
IZn2 | 0.88 | −0.93 | 0.93 |
IMn2 | 1.09 | −1.04 | 1.04 |
IR102 | 1.08 | −1.03 | 1.03 |
CNDr2 = sum of IX2 | 10.06 | − |
Nutrient | Method | Nutritional Status (%) | ||
---|---|---|---|---|
LD | NL | LE | ||
N | CND | 7 | 91 | 2 |
CVA | 8 | 51 | 41 | |
P | CND | 37 | 33 | 30 |
CVA | 42 | 24 | 34 | |
K | CND | 16 | 58 | 26 |
CVA | 30 | 35 | 35 | |
Ca | CND | 25 | 61 | 14 |
CVA | 50 | 40 | 10 | |
Mg | CND | 8 | 70 | 22 |
CVA | 3 | 64 | 33 | |
Fe | CND | 23 | 57 | 20 |
CVA | 35 | 39 | 26 | |
Cu | CND | 17 | 51 | 32 |
CVA | 18 | 63 | 19 | |
B | CND | 21 | 61 | 18 |
CVA | 25 | 20 | 55 | |
Zn | CND | 21 | 64 | 15 |
CVA | 43 | 43 | 14 | |
Mn | CND | 22 | 63 | 15 |
CVA | 24 | 62 | 14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendaly Labaied, M.; Khiari, L.; Gallichand, J.; Kebede, F.; Kadri, N.; Ben Ammar, N.; Ben Hmida, F.; Ben Mimoun, M. Nutrient Diagnosis Norms for Date Palm (Phoenix dactylifera L.) in Tunisian Oases. Agronomy 2020, 10, 886. https://doi.org/10.3390/agronomy10060886
Bendaly Labaied M, Khiari L, Gallichand J, Kebede F, Kadri N, Ben Ammar N, Ben Hmida F, Ben Mimoun M. Nutrient Diagnosis Norms for Date Palm (Phoenix dactylifera L.) in Tunisian Oases. Agronomy. 2020; 10(6):886. https://doi.org/10.3390/agronomy10060886
Chicago/Turabian StyleBendaly Labaied, Mouna, Lotfi Khiari, Jacques Gallichand, Fassil Kebede, Nabila Kadri, Nouha Ben Ammar, Foued Ben Hmida, and Mehdi Ben Mimoun. 2020. "Nutrient Diagnosis Norms for Date Palm (Phoenix dactylifera L.) in Tunisian Oases" Agronomy 10, no. 6: 886. https://doi.org/10.3390/agronomy10060886
APA StyleBendaly Labaied, M., Khiari, L., Gallichand, J., Kebede, F., Kadri, N., Ben Ammar, N., Ben Hmida, F., & Ben Mimoun, M. (2020). Nutrient Diagnosis Norms for Date Palm (Phoenix dactylifera L.) in Tunisian Oases. Agronomy, 10(6), 886. https://doi.org/10.3390/agronomy10060886