The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Sampling and Biochar Production
2.2. Experimental Design
2.3. Chemical Analysis
2.4. Data Processing
3. Results
3.1. Availability of Al
3.2. Availability of Cu
3.3. Availability of Zn
3.4. Availability of Mn
3.5. Availability of Cd
4. Discussion
4.1. Availability of Al
4.2. Availability of Cu
4.3. Availability of Zn
4.4. Availability of Mn
4.5. Availability of Cd
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Liu, T.; Yang, Y.; Jackson, D. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition. Ecotoxicol. Environ. Saf. 2014, 104, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zheng, X.; Chen, C. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. PLoS ONE 2012, 7, e49664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moharami, S.; Jalali, M. Effect of acid rain on the fractionation of heavy metals and major elements in contaminated soils. Chem. Ecol. 2015, 31, 160–172. [Google Scholar] [CrossRef]
- Bewley, R.J.F.; Stotzky, G. Effects of combinations of simulated acid rain and cadmium or zinc on microbial activity in soil. Environ. Res. 1983, 31, 332–339. [Google Scholar] [CrossRef]
- Nawaz, R.; Parkpian, P.; Arshad, M.; Ahmad, F.; Garivait, H.; Ali, A.S. Mobilization and Leaching of Trace Elements (Fe, Al and Mn) in Agricultural Soils as Affected by Simulated Acid Rain. Asian J. Chem. 2013, 25, 9891. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Cui, Z. A new indicator to evaluate the pollution of iron and manganese. RSC Adv. 2016, 6, 27963–27968. [Google Scholar] [CrossRef]
- Liao, B.; Liu, H.; Zeng, Q.; Yu, P.; Probst, A.; Probst, J.-L. Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L). Environ. Int. 2005, 31, 891–895. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, N.K.; Dubey, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Guo, F.Y.; Ding, C.F.; Zhou, Z.G.; Huang, G.X.; Wang, X.X. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. Ecotoxicol. Environ. Saf. 2018, 161, 164–172. [Google Scholar] [CrossRef]
- Pabian, S.E.; Ermer, N.M.; Tzilkowski, W.M.; Brittingham, M.C. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain. PLoS ONE 2012, 7, e39755. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Driscoll, C.T.; Johnson, C.E.; Fahey, T.J.; Battles, J.J.; Blum, J.D. Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite. Environ. Chem. 2015, 13, 528–540. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X. Study of cadmium adsorption and desorption by simulant acid rain on different silicate clay minerals in soil. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Zhu, H.; Wu, C.; Wang, J.; Zhang, X. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents. Environ. Sci. Pollut. Res. 2018, 25, 17499–17508. [Google Scholar] [CrossRef] [PubMed]
- Brendova, K.; Tlustos, P.; Száková, J. Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant Soil Environ. 2015, 61, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Xu, R.; Gu, T.; Jiang, J. Effect of crop-straw derived biochars on pb (ii) adsorption in two variable charge soils. J. Integr. Agric. 2014, 13, 507–516. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Beesley, L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-Y.; Ying, G.-G.; Kookana, R.S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 2009, 76, 665–671. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; McGrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z.; et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 2016, 23, 974–984. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Li, D.; Tang, B.; Man, S.; Jia, Y.; Xu, H. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Sci. Total Environ. 2018, 621, 1057–1065. [Google Scholar] [CrossRef]
- Lu, H.; Li, Z.; Fu, S.; Méndez, A.; Gascó, G.; Paz-Ferreiro, J. Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging. Water Air Soil Pollut. 2015, 226, 164. [Google Scholar] [CrossRef]
- Mukwaturi, M.; Lin, C. Mobilization of heavy metals from urban contaminated soils under water inundation conditions. J. Hazard. Mater. 2015, 285, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Alozie, N.; Heaney, N.; Lin, C. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids. Sci. Total Environ. 2018, 630, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma 2019, 338, 48–55. [Google Scholar] [CrossRef]
- ISO 10390:2005(en), Soil Quality—Determination of pH [WWW Document], n.d. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10390:ed-2:v1:en (accessed on 26 October 2019).
- Gillman, G.P. A proposed method for the measurement of exchange properties of highly weathered soils. Soil Res. 1979, 17, 129–139. [Google Scholar] [CrossRef]
- Jászberényi, I.; Loch, J.; Sarkadi, J. Experiences with 0.01 M calcium chloride as an extraction reagent for use as a soil testing procedure in Hungary. Commun. Soil Sci. Plant Anal. 1994, 25, 1771–1777. [Google Scholar] [CrossRef]
- Buckley, D.E.; Cranston, R.E. Atomic absorption analyses of 18 elements from a single decomposition of aluminosilicate. Chem. Geol. 1971, 7, 273–284. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011, 27, 110–115. [Google Scholar] [CrossRef]
- Ritchie, G.S.P. Role of dissolution and precipitation of minerals in controlling soluble aluminum in acidic soils. Adv. Apronomy 1994, 53, 47. [Google Scholar]
- Qian, L.; Chen, B. Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. J. Agric. Food Chem. 2014, 62, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Chen, B.; Hu, D. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ. Sci. Technol. 2013, 47, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Wehr, J.B.; Blamey, F.P.C.; Hanna, J.V.; Kopittke, P.M.; Kerven, G.L.; Menzies, N.W. Hydrolysis and speciation of Al bound to pectin and plant cell wall material and its reaction with the dye chrome azurol S. J. Agric. Food Chem. 2010, 58, 5553–5560. [Google Scholar] [CrossRef] [PubMed]
- Jansen, B.; Nierop, K.G.; Verstraten, J.M. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe (II), Fe (III) and Al (III) in soil solutions determined by diffusive gradients in thin films. Anal. Chim. Acta 2002, 454, 259–270. [Google Scholar] [CrossRef]
- Evans, L.J. Chemistry of metal retention by soils. Environ. Sci. Technol. 1989, 23, 1046–1056. [Google Scholar] [CrossRef]
- Sverdrup, H.; De Vries, W. Calculating critical loads for acidity with the simple mass balance method. Water Air Soil Pollut. 1994, 72, 143–162. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Schecher, W.D. The chemistry of aluminum in the environment. Environ. Geochem. Health 1990, 12, 28–49. [Google Scholar] [CrossRef]
- Atanassova, I.; Okazaki, M. Adsorption-desorption characteristics of high levels of copper in soil clay fractions. Water Air Soil Pollut. 1997, 98, 213–228. [Google Scholar] [CrossRef]
- Uchimiya, M.; Lima, I.M.; Thomas Klasson, K.; Chang, S.; Wartelle, L.H.; Rodgers, J.E. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 2010, 58, 5538–5544. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- He, P.; Yu, Q.; Zhang, H.; Shao, L.; Lü, F. Removal of Copper (II) by Biochar Mediated by Dissolved Organic Matter. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, Z.; Chen, B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci. Rep. 2016, 6, 22644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.L.; Zhang, M.; Yang, X.E.; Stoffella, P.J. Release behavior of copper and zinc from sandy soils. Soil Sci. Soc. Am. J. 2006, 70, 1699–1707. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef]
- Qian, T.; Wang, Y.; Fan, T.; Fang, G.; Zhou, D. A new insight into the immobilization mechanism of Zn on biochar: The role of anions dissolved from ash. Sci. Rep. 2016, 6, 33630. [Google Scholar] [CrossRef] [Green Version]
- Madrid, L.; Diaz-Barrientos, E. Influence of carbonate on the reaction of heavy metals in soils. J. Soil Sci. 1992, 43, 709–721. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Ullah, H.; Hussain, Q.; Al-Wabel, M.I.; Ahmad, M.; Hussain, A.; Riaz, M.; Ok, Y.S.; Kong, J. Adsorption and thermodynamic mechanisms of manganese removal from aqueous media by biowaste-derived biochars. J. Mol. Liq. 2018, 266, 373–380. [Google Scholar] [CrossRef]
- McBride, M.B. Electron Spin Resonance Investigation of Mn2+ Complexation in Natural and Synthetic Organics 1. Soil Sci. Soc. Am. J. 1982, 46, 1137–1143. [Google Scholar] [CrossRef]
- Fellet, G.; Marchiol, L.; Delle Vedove, G.; Peressotti, A. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 2011, 83, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Marmiroli, M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011, 159, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Harvey, O.R.; Herbert, B.E.; Rhue, R.D.; Kuo, L.-J. Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environ. Sci. Technol. 2011, 45, 5550–5556. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Yin, D.; Peng, B.; Tan, C.; Liu, Y.; Tan, X.; Wu, S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J. Environ. Manag. 2015, 153, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cao, X.; Zhao, L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 2013, 92, 955–961. [Google Scholar] [CrossRef]
Properties | Kbely | Lhota | Humpolec | Žamberk | Lukavec | Biochar |
---|---|---|---|---|---|---|
Localization | 50°08′01.9″ N | 49°42′00.0″ N | 49°33′00.0″ N | 50°08′39.6″ N | 49°33′00.0″ N | - |
14°33′56.3″ E | 13°59′00.0″ E | 15°21′00.0″ E | 16°30′50.0″ E | 14°58′00.0″ E | - | |
Soil type | Chernozem | Fluvisol | Cambisol | Cambisol | Cambisol | - |
pH | 7.01 | 5.91 | 4.50 | 4.80 | 5.30 | 9.50 |
CEC (mmol kg−1) | 217 ± 0.30 | 130 ± 4.70 | 90.3 ± 2.00 | 74.9 ± 3.70 | 48.5 ± 6.00 | 102 ± 5.20 |
Total C (%) | 4.28 ± 0.09 | 2.67 ± 0.04 | 1.60 ± 0.09 | 1.98 ± 0.09 | 1.48 ± 0.13 | 87.5 ± 0.20 |
DOC (mg kg−1) | 120 ± 1.70 | 76.3 ± 2.40 | 11.7 ± 0.60 | 63.6 ± 2.00 | 63.4 ± 2.10 | 281 ± 8.67 |
CO32− (%) | 2.17 ± 0.01 | 0.21 ± 0.00 | 0.20 ± 0.00 | 0.18 ± 0.00 | 0.20 ± 0.01 | 0.19 ± 0.01 |
Al (mg kg−1) † | 27,205 ± 1470 | 25,008 ± 1327 | 29,275 ± 83.0 | 20,178 ± 863 | 35,811 ± 607 | 988 ± 10.0 |
Cu (mg kg−1) † | 46.0 ± 3.90 | 24.0 ± 4.32 | 49.0 ± 2.05 | 102 ± 0.61 | 18.0 ± 0.40 | 7.00 ± 1.60 |
Zn (mg kg−1) † | 138 ± 0.45 | 240 ± 43.0 | 156 ± 12.0 | 61.0 ± 12.9 | 80.0 ± 0.60 | 15.0 ± 2.40 |
Mn (mg kg−1) † | 417 ± 0.0 | 1077 ± 600 | 427 ± 13.1 | 792 ± 53.0 | 735 ± 9.30 | 893 ± 15.0 |
Cd (mg kg−1) † | 0.12 ± 1.65 | 0.26 ± 0.89 | 1.34 ± 0.58 | 0.18 ± 0.03 | 0.15 ± 0.001 | 0.12 ± 0.01 |
Al (mg kg−1) § | 0.81 ± 0.33 | 1.19 ± 0.04 | 5.97 ± 0.28 | 3.04 ± 0.31 | 5.04 ± 0.98 | 38.9 ± 0.85 |
Cu (mg kg−1) § | 0.25 ± 0.14 | 0.11 ± 0.00 | 0.16 ± 0.01 | 0.07 ± 0.00 | 0.09 ± 0.01 | 0.04 ± 0.00 |
Zn (mg kg−1) § | n.d | 1.83 ± 0.03 | 0.85 ± 0.21 | 0.24 ± 0.00 | 0.21 ± 0.04 | 0.26 ± 0.02 |
Mn (mg kg−1) § | 1.84 ± 0.27 | 14.7 ± 0.38 | 67.4 ± 0.59 | 67.6 ± 0.78 | 29.3 ± 2.12 | 0.12 ± 0.017 |
Cd (mg kg−1) § | 0.07 ± 0.04 | 0.14 ± 0.01 | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | n.d |
Sand (%) | 14.9 | 39.6 | 30.2 | 26.1 | 27.9 | - |
Silt (%) | 60.2 | 45.5 | 48.4 | 59.9 | 61.2 | - |
Clay (%) | 24.9 | 14.9 | 21.4 | 14.1 | 11.6 | - |
Textural Class | Silt Loam | Loam | Loam | Silt Loam | Silt Loam | - |
Al (n = 5) | |||||
---|---|---|---|---|---|
Kbely | Lhota | Humpolec | Žamberk | Lukavec | |
pH | 0.98 ** | −0.97 ** | −0.96 ** | −0.95 ** | −0.94 ** |
CEC | −0.094 ** | −0.94 ** | −0.89 * | −0.96 ** | −0.93 * |
Exchangeable Ca2+ | −0.93 * | −0.82 * | −0.86 * | −0.93 * | −0.95 ** |
Exchangeable K+ | 0.91 * | −0.98 ** | −0.67 | −0.75 | −0.85 * |
Kbely | Lhota | Humpolec | Žamberk | Lukavec | |
---|---|---|---|---|---|
Al (n = 4) | 0.96 ** | 0.82 ** | 0.97 ** | 0.98 ** | 0.94 ** |
Zn (n = 4) | - | 0.98 ** | 0.96 ** | 0.94 ** | 0.99 ** |
Cu (n = 4) | 0.95 ** | 0.97 ** | 0.97 ** | 0.93 ** | 0.98 ** |
Mn (n = 4) | −0.30 | 0.94 ** | 0.98 ** | 0.98 ** | 0.92 ** |
Cd (n = 4) | 0.85 ** | 0.96 ** | 0.82 ** | 0.94 ** | 0.99 ** |
Soil | Biochar | Soil * Biochar | ||
---|---|---|---|---|
Al | F | 117 | 14.3 | 9.21 |
df | 4 | 3 | 12 | |
p | 0.00 | 0.00 | 0.00 | |
Cu | F | 8.41 | 18.0 | 0.36 |
df | 4 | 3 | 12 | |
p | 0.00 | 0.00 | 0.96 | |
Zn | F | 3.39 | 604 | 2.77 |
df | 3 | 3 | 9 | |
p | 0.041 | 0.00 | 0.036 | |
Cd | F | 46.6 | 135 | 2.75 |
df | 4 | 3 | 12 | |
p | 0.00 | 0.00 | 0.02 | |
Mn | F | 56.9 | 134 | 4.95 |
df | 4 | 3 | 12 | |
p | 0.00 | 0.00 | 0.00 |
Cu (n = 5) | |||||
---|---|---|---|---|---|
Kbely | Lhota | Humpolec | Žamberk | Lukavec | |
pH | −0.95 ** | −0.66 | −0.99 ** | −0.87 * | −0.97 ** |
CEC | 0.99 ** | −0.68 | −0.97 ** | −0.978 ** | −0.94 ** |
Exchangeable Ca2+ | 0.99 ** | −0.23 | −0.95 ** | −0.87 * | −0.96 ** |
Exchangeable K+ | −0.99 ** | −0.66 | −0.83* | −0.62 | −0.94 ** |
Zn (n = 5) | |||||
---|---|---|---|---|---|
Kbely | Lhota | Humpolec | Žamberk | Lukavec | |
pH | - | −0.95 ** | −0.97 ** | −0.92 * | −0.86 * |
CEC | - | −0.91 * | −0.89 * | −0.96 ** | −0.79 |
Exchangeable Ca2+ | - | −0.7 | −0.87 * | −0.92 * | −0.87 * |
Exchangeable K+ | - | −0.94 ** | −0.68 | −0.71 | −0.68 |
Mn (n = 5) | |||||
---|---|---|---|---|---|
Kbely | Lhota | Humpolec | Žamberk | Lukavec | |
pH | −0.56 | −0.99 ** | −0.99 ** | −0.99 ** | −0.99 ** |
CEC | 0.31 | −0.96 ** | −0.96 ** | −0.87 * | −0.99 ** |
Exchangeable Ca2+ | 0.34 | −0.80 | −0.93 * | −0.98 ** | −0.99 ** |
Exchangeable K+ | −0.28 | −0.98 ** | −0.80 | −0.89 * | −0.96 ** |
Cd (n = 5) | |||||
---|---|---|---|---|---|
Kbely | Lhota | Humpolec | Žamberk | Lukavec | |
pH | −0.96 ** | −0.98 ** | −0.88 * | −0.96 ** | −0.95 ** |
CEC | 0.89 * | −0.95 ** | −0.75 | −0.93 * | −0.89 * |
Exchangeable Ca2+ | 0.92 * | −0.80 | −0.74 | −0.96 ** | −0.96 ** |
Exchangeable K+ | −0.89 * | −0.97 ** | −0.51 | −0.80 | −0.82 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Praus, L.; Száková, J.; Tlustoš, P. The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil. Agronomy 2020, 10, 885. https://doi.org/10.3390/agronomy10060885
Hailegnaw NS, Mercl F, Pračke K, Praus L, Száková J, Tlustoš P. The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil. Agronomy. 2020; 10(6):885. https://doi.org/10.3390/agronomy10060885
Chicago/Turabian StyleHailegnaw, Niguss Solomon, Filip Mercl, Kateřina Pračke, Lukáš Praus, Jiřina Száková, and Pavel Tlustoš. 2020. "The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil" Agronomy 10, no. 6: 885. https://doi.org/10.3390/agronomy10060885
APA StyleHailegnaw, N. S., Mercl, F., Pračke, K., Praus, L., Száková, J., & Tlustoš, P. (2020). The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil. Agronomy, 10(6), 885. https://doi.org/10.3390/agronomy10060885