Potentially Toxic Element Availability and Risk Assessment of Cadmium Dietary Exposure after Repeated Croppings of Brassica juncea in a Contaminated Agricultural Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. The Mesocosm Experiment
2.3. Soil and Plant Analysis
2.4. Risk Assessment of Dietary Exposure
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Properties and PTEs Bioavailability Assessed by Chemical Extractions before Plant Growth
3.2. PTEs Phytoextraction by Indian Mustard
3.3. Changes in Soil Properties and PTE Bioavailability
3.4. Bioavailability and Health Risk Assessed by Rocket Salad Growth and Metal Uptake
3.5. Phytoextraction Efficiency and Time-Span of Soil Phytoremediation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Fagnano, M. Definition of a site as contaminated: Problems related to agricultural soils. Ital. J. Agron. 2018, 13, 1–5. [Google Scholar]
- Rocco, C.; Agrelli, D.; Tafuro, M.; Caporale, A.G.; Adamo, P. Assessing the bioavailability of potentially toxic elements in soil: A proposed approach. Ital. J. Agron. 2018, 13, 16–22. [Google Scholar]
- Duri, L.G.; Fiorentino, N.; Cozzolino, E.; Ottaiano, L.; Fagnano, M. Bioassays for evaluation of sanitary risks from food crops cultivated in potentially contaminated sites. Ital. J. Agron. 2018, 13, 45–52. [Google Scholar]
- Mir, Z.A.; Bharose, R.; Lone, A.H.; Malik, Z.A. Review on phytoremediation: An ecofriendly and green technology for removal of heavy metals. Crop Res. 2017, 52, 74–82. [Google Scholar]
- Fiorentino, N.; Mori, M.; Cenvinzo, V.; Duri, L.G.; Gioia, L.; Visconti, D.; Fagnano, M. Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital. J. Agron. 2018, 13, 34–44. [Google Scholar]
- Guerra, F.; Gainza, F.; Pérez, R.; Zamudio, F. Phytoremediation of heavy metals using poplars (Populus spp): A glimpse of the plant responses to copper, cadmium and zinc stress. In Handbook of Phytoremediation, 1st ed.; Golubev, I.A., Ed.; Nova Science: New York, NY, USA, 2011; pp. 387–413. [Google Scholar]
- Fiorentino, N.; Fagnano, M.; Impagliazzo, A.; Mori, M.; Ventorino, V.; Zoina, A.; Adamo, P.; Pepe, O. Assisted phytoextraction of heavy metals: Compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora. Ital. J. Agron. 2013, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.; Hammer, D. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Environ. Pollut. 2004, 131, 243–254. [Google Scholar] [CrossRef]
- Agrelli, D.; Adamo, P.; Cirillo, T.; Duri, L.G.; Duro, I.; Fasano, E.; Ottaiano, L.; Ruggiero, L.; Scognamiglio, G.; Fagnano, M.; et al. Soil versus plant as indicators of agroecosystem pollution by potentially toxic elements. J. Plant Nutr. Soil Sci. 2017, 180, 705–719. [Google Scholar] [CrossRef]
- Agrelli, D.; Caporale, A.G.; Adamo, P. Assessment of bioavailability and speciation of heavy metal(loid)s and hydrocarbons for risk-based soil remediation. Agronomy. under review.
- Langella, G.; Agrillo, A.; Basile, A.; De Mascellis, R.; Manna, P.; Moretti, P.; Mileti, F.A.; Terribile, F.; Vingiani, S. Geography of soil contamination for characterization and precision remediation of potentially contaminated sites. Ital. J. Agron. 2018, 13, 6–15. [Google Scholar]
- Violante, P. Metodi di Analisi Chimica del Suolo; Franco Angeli Eds.: Milan, Italy, 2000. [Google Scholar]
- ISO 12914. Soil Quality—Microwave-Assisted Extraction of the Aqua Regia Soluble Fraction for the Determination of Elements; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- USEPA. Method 6020B (SW-846): Inductively Coupled-Mass Spectrometry, Revision 2. 2014. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/6020b.pdf (accessed on 21 May 2020).
- DIN 19730. Bodenbeschaffenheit—Extraktion von Spurenelementen mit Ammoniumnitratlo¨sung Soil Quality—Extraction of Trace Elements with Ammonium Nitrate Solution; Beuth Verlag: Berlin, Germany, 2008. [Google Scholar]
- Rauret, G.; López-Sánchez, J.F.; Bacon, J.; Gómez, A.; Muntau, H.; Queaviller, P. Certification of the Contents (Mass Fraction) of Cd, Cr, Cu, Ni, Pb and Zn in an Organic-Rich Soil Following Harmonised EDTA and Acetic Acid Extraction Procedures; BCR-700. Report EUR 19774, 61; BCR Information, Reference Materials: Bruxelle, Belgium, 2001. [Google Scholar]
- USEPA. Guidelines for the Health Risk Assessment of Chemical Mixtures. Fed. Regist. 1986, 51, 34014–34025. Available online: https://www.epa.gov/risk/guidelines-health-risk-assessment-chemical-mixtures (accessed on 21 May 2020).
- I.S.S.-INAIL. Banca Dati ISS-INAIL per Analisi di Rischio Sanitario Ambientale 2015. Available online: http://old.iss.it/iasa/?tipo=40 (accessed on 21 May 2020).
- EFSA. 2015. Available online: https://www.efsa.europa.eu/it/food-consumption/comprehensive-database (accessed on 12 May 2020).
- Carlon, C. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonization; EUR 22805-EN; European Commission, Joint Research Centre, Ispra: Roma, Italy, 2007; p. 306. [Google Scholar]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Gryschko, R.; Kuhnle, R.; Terytze, K.; Breuer, J.; Stahr, K. Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution—Evaluation of DIN 19730 (6 pp). J. Soils Sediments 2004, 5, 101–106. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Brümmer, G.W. Heavy metal species, mobility and availability in soils. In The Importance of Chemical “Speciation” in Environmental Processes; Bernhard, M., Brinckman, F.E., Sadler, P.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 33, pp. 169–192. [Google Scholar]
- Avudainayagam, S.; Megharaj, M.; Owens, G.; Kookana, R.S.; Chittleborough, D.; Naidu, R. Chemistry of chromium in soils with emphasis on tannery waste sites. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 2003; Volume 178, pp. 53–91. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 505. [Google Scholar]
- Adhikari, T.; Biswas, A.K.; Saha, J.K. Ajay cadmium Phytotoxicity in spinach with or without spent wash in a Vertisol. Commun. Soil Sci. Plant Anal. 2005, 36, 1499–1511. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Adrees, M.; Ibrahim, M.; Tsang, D.C.; Zia-Ur-Rehman, M.; Zahir, Z.A.; Rinklebe, J.; Tack, F.M.; Ok, Y.S.; et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 2017, 182, 90–105. [Google Scholar] [CrossRef]
- Konkolewska, A.; Piechalak, A.; Ciszewska, L.; Antos-Krzemińska, N.; Skrzypczak, T.; Hanć, A.; Sitko, K.; Małkowski, E.; Barałkiewicz, D.; Małecka, A.; et al. Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environ. Sci. Pollut. Res. 2020, 27, 13809–13825. [Google Scholar] [CrossRef] [Green Version]
- Visconti, D.; Fiorentino, N.; Caporale, A.G.; Stinca, A.; Adamo, P.; Motti, R.; Fagnano, M. Analysis of native vegetation for detailed characterization of a soil contaminated by tannery waste. Environ. Pollut. 2019, 252, 1599–1608. [Google Scholar] [CrossRef]
- Kumar, P.B.A.N.; Dushenkov, V.; Motto, H.; Raskin, I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 1995, 29, 1232–1238. [Google Scholar] [CrossRef]
- Zayed, A.; Lytle, C.M.; Qian, J.-H.; Terry, N. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 1998, 206, 293–299. [Google Scholar] [CrossRef]
- Ranieri, E.; Moustakas, K.; Barbafieri, M.; Ranieri, A.C.; Herrera-Melián, J.A.; Petrella, A.; Tommasi, F.; Moustakas, K. Phytoextraction technologies for mercury- and chromium-contaminated soil: A review. J. Chem. Technol. Biotechnol. 2019, 95, 317–327. [Google Scholar] [CrossRef]
- Ebbs, S.; Lasat, M.M.; Brady, D.J.; Cornish, J.; Gordon, R.; Kochian, L.V. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 1997, 26, 1424–1430. [Google Scholar] [CrossRef]
- Hayat, S.; Khalique, G.; Irfan, M.; Wani, A.S.; Tripathi, B.N.; Ahmad, A. Physiological changes induced by chromium stress in plants: An overview. Protoplasma 2011, 249, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Piechalak, A.; Tomaszewska, B.; Barałkiewicz, D.; Małecka, A. Accumulation and detoxification of lead ions in legumes. Phytochemistry 2002, 60, 153–162. [Google Scholar] [CrossRef]
- Wagner, G.J. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron. 1993, 51, 173–212. [Google Scholar]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Rocco, C.; Agrelli, D.; Coppola, I.; González, I.; Adamo, P. Native plant colonization of brownfield soil and sludges: Effects on substrate properties and pollutant mobility. J. Soils Sediments 2017, 18, 2282–2291. [Google Scholar] [CrossRef]
- Sas, L.; Rengel, Z.; Tang, C. Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci. 2001, 160, 1191–1198. [Google Scholar] [CrossRef]
- Kim, K.-R.; Owens, G.; Kwon, S.-L. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. J. Environ. Sci. 2010, 22, 98–105. [Google Scholar] [CrossRef]
Cr | Zn | Cd | Pb | ||
---|---|---|---|---|---|
A7 | Total | 112 ± 2 | 122 ± 2 | 0.19 ± 0.02 | 45 ± 1 |
EDTA | 1.4 ± 0.1 | 31.0 ± 0.9 | 0.22 ± 0.02 | 10.7 ± 0.1 | |
NH4NO3 | 0.30 ± 0.01 | 0.14 ± 0.01 | 0.049 ± 0.002 | <0.1 | |
C13 | Total | 650 ± 6 | 684 ± 7 | 0.47 ± 0.02 | 147 ± 2 |
EDTA | 6.2 ± 0.1 | 349 ± 1 | 0.52 ± 0.03 | 73.8 ± 0.1 | |
NH4NO3 | 0.54 ± 0.01 | 0.82 ± 0.01 | 0.068 ± 0.002 | <0.1 | |
F4 | Total | 716 ± 8 | 342 ± 3 | 13.5 ± 0.1 | 70 ± 1 |
EDTA | 2.5 ± 0.1 | 127 ± 0 | 8.46 ± 0.01 | 20.4 ± 1.4 | |
NH4NO3 | 0.50 ± 0.00 | 0.49 ± 0.02 | 0.18 ± 0.01 | <0.1 |
Soils | Years | Weight (g) | Cr (mg kg−1) | Zn (mg kg−1) | Cd (mg kg−1) | Pb (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
A7 | 2017 | 198.2 | ±9.4 e | 2.2 | ±0.1 b | 123.6 | ±7.4 b | 0.3 | ±0.0 c | 0.7 | ±0.1 |
2018 | 106.7 | ±5.4 g | 2.3 | ±0.2 b | 52.5 | ±3.4 c | 0.1 | ±0.0 c | 0.7 | ±0.1 | |
2019 | 231.0 | ±8.9 c | 3.0 | ±0.1 b | 22.1 | ±1.2 c | 0.1 | ±0.0 c | 0.7 | ±0.1 | |
Avg.* | 178.6 | 2.5 | 66.1 | 0.2 | 0.7 | b | |||||
F4 | 2017 | 207.7 | ±9.5 e | 2.9 | ±0.1 b | 137.7 | ±7.7 a | 8.2 | ±0.3 a | 0.8 | ±0.2 |
2018 | 96.6 | ±7.7 g | 4.2 | ±0.5 b | 78.0 | ±4.1 c | 4.7 | ±0.1 b | 0.7 | ±0.1 | |
2019 | 268.9 | ±5.2 a | 6.2 | ±0.3 b | 29.1 | ±0.9 c | 4.3 | ±0.3 b | 0.8 | ±0.0 | |
Avg.* | 191.1 | 4.4 | 81.6 | 5.7 | 0.8 | b | |||||
C13 | 2017 | 218.2 | ±5.4 d | 4.0 | ±0.3 b | 136.4 | ±7.6 a | 0.1 | ±0.0 c | 0.8 | ±0.0 |
2018 | 126.5 | ±3.8 f | 3.3 | ±0.1 b | 113.4 | ±3.4 b | 0.1 | ±0.0 c | 1.8 | ±0.6 | |
2019 | 236.5 | ±20.3 b | 7.7 | ±0.8 a | 40.8 | ±2.2 c | 0.1 | ±0.0 c | 1.5 | ±0.2 | |
Avg.* | 193.7 | 5.0 | 96.9 | 0.1 | 1.4 | a | |||||
Average | 2017 | 208.0 | 3.0 | 132.6 | 2.9 | 0.7 | |||||
2018 | 109.9 | 3.3 | 81.3 | 1.6 | 1.1 | ||||||
2019 | 245.5 | 5.6 | 30.7 | 1.5 | 1.0 | ||||||
Avg.* | 187.8 | 4.0 | 81.5 | 2.0 | 0.9 |
Soil | Year | Harvest | Chromium | Zinc | Cadmium | Lead | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | S.E.* | HQ | Mean | S.E.* | HQ | Mean | S.E.* | HQ | Mean | S.E.* | HQ | |||
A7 | 2017 | I | 0.22 | 0.01 | 0.00 | 8.08 | 0.66 | 0.01 | 0.03 | 0.00 | 0.02 | 0.05 | 0.00 | 0.00 |
IV | 0.45 | 0.06 | 0.00 | 6.95 | 0.79 | 0.01 | 0.03 | 0.00 | 0.02 | 0.17 | 0.02 | 0.01 | ||
2018 | I | 0.18 | 0.02 | 0.00 | 6.14 | 0.61 | 0.01 | 0.02 | 0.00 | 0.01 | 0.05 | 0.01 | 0.00 | |
IV | 0.36 | 0.04 | 0.00 | 5.79 | 0.86 | 0.01 | 0.02 | 0.00 | 0.01 | 0.09 | 0.01 | 0.01 | ||
2019 | I | 0.34 | 0.05 | 0.00 | 5.17 | 0.36 | 0.01 | 0.02 | 0.00 | 0.01 | 0.05 | 0.01 | 0.00 | |
IV | 0.25 | 0.01 | 0.00 | 4.24 | 0.13 | 0.00 | 0.02 | 0.00 | 0.01 | 0.06 | 0.01 | 0.00 | ||
F4 | 2017 | I | 0.26 | 0.02 | 0.00 | 15.88 | 1.75 | 0.02 | 0.85 | 0.09 | 0.50 | 0.08 | 0.00 | 0.01 |
IV | 0.76 | 0.12 | 0.00 | 12.50 | 1.23 | 0.01 | 1.16 | 0.13 | 0.69 | 0.21 | 0.04 | 0.02 | ||
2018 | I | 0.29 | 0.04 | 0.00 | 12.99 | 1.98 | 0.01 | 0.97 | 0.16 | 0.58 | 0.05 | 0.01 | 0.00 | |
IV | 0.36 | 0.07 | 0.00 | 8.35 | 0.87 | 0.01 | 0.65 | 0.04 | 0.38 | 0.06 | 0.01 | 0.01 | ||
2019 | I | 0.61 | 0.07 | 0.00 | 8.91 | 0.41 | 0.01 | 0.81 | 0.08 | 0.48 | 0.05 | 0.00 | 0.00 | |
IV | 0.29 | 0.03 | 0.00 | 6.91 | 0.33 | 0.01 | 0.78 | 0.04 | 0.46 | 0.04 | 0.00 | 0.00 | ||
C13 | 2017 | I | 0.31 | 0.02 | 0.00 | 17.45 | 0.42 | 0.02 | 0.03 | 0.01 | 0.02 | 0.05 | 0.00 | 0.00 |
IV | 0.63 | 0.02 | 0.00 | 21.11 | 0.41 | 0.02 | 0.03 | 0.00 | 0.02 | 0.16 | 0.02 | 0.01 | ||
2018 | I | 0.22 | 0.02 | 0.00 | 16.73 | 1.73 | 0.02 | 0.02 | 0.00 | 0.01 | 0.04 | 0.01 | 0.00 | |
IV | 0.44 | 0.07 | 0.00 | 13.87 | 1.60 | 0.01 | 0.02 | 0.00 | 0.01 | 0.08 | 0.02 | 0.01 | ||
2019 | I | 0.41 | 0.04 | 0.00 | 13.27 | 1.24 | 0.01 | 0.02 | 0.00 | 0.01 | 0.04 | 0.01 | 0.00 | |
IV | 0.33 | 0.03 | 0.00 | 12.66 | 1.01 | 0.01 | 0.02 | 0.00 | 0.01 | 0.05 | 0.01 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrelli, D.; Duri, L.G.; Fiorentino, N.; Cozzolino, E.; Fagnano, M.; Adamo, P. Potentially Toxic Element Availability and Risk Assessment of Cadmium Dietary Exposure after Repeated Croppings of Brassica juncea in a Contaminated Agricultural Soil. Agronomy 2020, 10, 880. https://doi.org/10.3390/agronomy10060880
Agrelli D, Duri LG, Fiorentino N, Cozzolino E, Fagnano M, Adamo P. Potentially Toxic Element Availability and Risk Assessment of Cadmium Dietary Exposure after Repeated Croppings of Brassica juncea in a Contaminated Agricultural Soil. Agronomy. 2020; 10(6):880. https://doi.org/10.3390/agronomy10060880
Chicago/Turabian StyleAgrelli, Diana, Luigi Giuseppe Duri, Nunzio Fiorentino, Eugenio Cozzolino, Massimo Fagnano, and Paola Adamo. 2020. "Potentially Toxic Element Availability and Risk Assessment of Cadmium Dietary Exposure after Repeated Croppings of Brassica juncea in a Contaminated Agricultural Soil" Agronomy 10, no. 6: 880. https://doi.org/10.3390/agronomy10060880
APA StyleAgrelli, D., Duri, L. G., Fiorentino, N., Cozzolino, E., Fagnano, M., & Adamo, P. (2020). Potentially Toxic Element Availability and Risk Assessment of Cadmium Dietary Exposure after Repeated Croppings of Brassica juncea in a Contaminated Agricultural Soil. Agronomy, 10(6), 880. https://doi.org/10.3390/agronomy10060880