Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Features of the Study Area and Soil Sampling on Field
2.2. Experimental Setup
2.3. Plant Sampling, Processing and Analysis
2.4. Soil Sampling at Pot Scale and Physicochemical Characterization
2.4.1. Determination of Pseudototal Content of PTEs
2.4.2. Extraction of Promptly Bioavailable Fraction of Metals by Ammonium Nitrate
2.5. Health Risk Assessment
- Cplant (mg g−1) and Csoil (mg kg−1) are the PTEs concentrations in plants and soil, respectively. For each plant, max PTE concentrations found in the shoot at the three harvests were used in this study;
- IngRplant (g day−1) and IngRsoil (mg day−1) are the plants and soil ingestion rate per day, respectively;
- SA is the exposed skin surface area (cm2);
- AF is the skin adherence factor (mg cm−2 day−1);
- ABS is the dermal absorption factor (dimensionless);
- EF is the exposure frequency (day year−1);
- ED is the exposure duration (years);
- BW is the body weight (kg);
- AT is the period over witch exposure is averaged (days). For non-carcinogenic risk assessment AT = ED × 365 days while for carcinogenic risk assessment AT = 70 × 365 assuming that carcinogenic effects may occur also when exposure ends.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Physicochemical Properties, Pseudototal and Promptly Bioavailable Contents of PTEs
3.2. Plant Biomass and PTE Uptake in Relation to Soil Promptly Bioavailable Contents
3.3. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peter, A.L.J.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Toxicological review of thallium and compounds. In Support of Summary Information on the Integrated Risk Information System (IRIS); Report no. EPA/635/R-08/001F; U.S. Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Zhao, G.; Ding, M.; Zhang, B.; Lv, W.; Yin, H.; Zhang, L.; Ying, Z.; Zhang, Q. Clinical manifestations and management of acute thallium poisoning. Eur. Neurol. 2008, 60, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.; Huang, C.; Kuo, H.; Wang, H.; Shen, W.; Shih, T.; Chu, N. Central nervous system effects in acute thallium poisoning. Neuro. Toxicol. 2006, 27, 291–295. [Google Scholar] [CrossRef]
- Pelclová, D.; Urban, P.; Ridzoň, P.; Šenholdová, Z.; Lukáš, E.; Diblík, P.; Lacina, L. Two-year follow-up of two patients after severe thallium intoxication. Hum. Exp. Toxicol. 2009, 28, 263–272. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Priority Pollutant List; United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Cobelo-García, A.; Filella, M.; Croot, P.; Frazzoli, C.; Du Laing, G.; Ospina-Alvarez, N.; Rauch, S.; Salaun, P.; Schäfer, J.; Zimmermann, S.; et al. COST action TD1407: Network on technology-critical elements (NOTICE)—From environmental processes to human health threats. Environ. Sci. Pollut. Res. 2015, 22, 15188–15194. [Google Scholar] [CrossRef] [Green Version]
- D’Orazio, M.; Campanella, B.; Bramanti, E.; Ghezzi, L.; Onor, M.; Vianello, G.; Vittori Antisari, L.; Petrini, R. Thallium pollution in water, soils and plants from a past-mining site of Tuscany: Sources, transfer processes and toxicity. J. Geochem. Explor. 2020, 209, 106434. [Google Scholar] [CrossRef]
- Karbowska, B. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 2016, 188, 640. [Google Scholar] [CrossRef] [Green Version]
- Viraraghavan, T.; Srinivasan, A. Thallium: Environmental pollution and health effects. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, MA, USA, 2011; pp. 325–333. [Google Scholar]
- Belzile, N.; Chen, Y.W. Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2017, 84, 218–243. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Liu, J.; Wei, X.; Zhou, Y.; Tsang, D.C.W.; Bao, Z.; Yin, M.; Lippold, H.; Yuan, W.; Wang, J.; Feng, Y.; et al. Thallium contamination, health risk assessment and source apportionment in common vegetables. Sci. Total Environ. 2019, 703, 135547. [Google Scholar] [CrossRef]
- Liu, J.; Li, N.; Zhang, W.; Wei, X.; Tsang, D.C.W.; Sun, Y.; Luo, X.; Bao, Z.; Zheng, W.; Wang, J.; et al. Thallium contamination in farmlands and common vegetables in a pyritemining city and potential health risks. Environ. Pollut. 2019, 248, 906–915. [Google Scholar] [CrossRef]
- Tremel, A.; Masson, P.; Garraud, H.; Donard, O.F.X.; Baize, D.; Mench, M. Thallium in French agrosystems—II. concentration of thallium in field-grown rape and some other plant species. Environ. Pollut. 1997, 97, 161–168. [Google Scholar] [CrossRef]
- Grösslovà, Z.; Vanèk, A.; Obornà, V.; Mihaljevìc, M.; Ettler, V.; Trubač, J.; Drahota, P.; Penízek, V.; Pavlù, L.; Sracek, O.; et al. Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights. Environ. Pollut. 2018, 239, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Duri, L.G.; Fiorentino, N.; Cozzolino, E.; Ottaiano, L.; Agrelli, D.; Fagnano, M. Bioassays for evaluation of sanitary risks from food crops cultivated in potentially contaminated sites. Ital. J. Agron. 2018, 13 (Suppl. 1), 45–52. [Google Scholar]
- LaCoste, C.; Robinson, B.; Brooks, R. Uptake of thallium by vegetables: Its significance for human health, phytoremediation, and phytomining. J. Plant Nutr. 2001, 24, 1205–1215. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia; Edagricole: Bologna, Italy, 2017. [Google Scholar]
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop systems, quality and protection of Diplotaxis tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Grabner, B.; Ribaric-Lasnik, C.; Romih, N.; Pfeifhofer, H.W.; Batic, F. Bioaccumulation capacity for Pb, Cd and Zn from polluted soil in selected species of the Brassicaceae family growing in different vegetation types. Phyton 2011, 50, 287–300. [Google Scholar]
- Alarcon, R.; Ortiz, L.T.; Garcia, P. Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. Int. J. Food Sci. Technol. 2006, 41, 1239–1242. [Google Scholar] [CrossRef]
- Tardío, J.; De-Santayana, M.P.; Morales, R. Ethnobotanical review of wild edible plants in Spain. Bot. J. Linn. Soc. 2006, 152, 27–71. [Google Scholar] [CrossRef]
- Luczaj, L.; Dolina, K. A hundred years of change in wild vegetable use in southern Herzegovina. J. Ethnopharmacol. 2015, 166, 297–304. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Escarrè, J.; Lefebvre, C.; Raboyeau, S.; Dossantos, A.; Gruber, W.; Cleyet Marel, J.C.; Frerot, H.; Noret, N.; Mahieu, S.; Collin, C.; et al. Heavy metal concentration survey in soils and plants of the les Malines mining district (Southern France): Implications for soil restoration. Water Air Soil Pollut. 2011, 216, 485–504. [Google Scholar] [CrossRef] [Green Version]
- Visconti, D.; Fiorentino, N.; Stinca, A.; Di Mola, I.; Fagnano, M. Use of the native vascular flora for risk assessment and management of an industrial contaminated soil. Ital. J. Agron. 2018, 13, 23–33. [Google Scholar]
- Visconti, D.; Fiorentino, N.; Caporale, A.G.; Stinca, A.; Adamo, P.; Motti, R.; Fagnano, M. Analysis of native vegetation for detailed characterization of a soil contaminated by tannery waste. Environ. Pollut. 2019, 252, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, F.; Melki, A.; Hamed, Y.; Adamo, P.; Caporale, A.G. Environmental and human health risk assessment of potentially toxic elements in soil, sediments and ore-processing wastes from a mining area of southwestern Tunisia. Environ. Geochem. Health 2019. [Google Scholar] [CrossRef] [PubMed]
- Adamo, P.; Agrelli, D.; Zampella, M. Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. In Environmental Geochemistry, Site Characterization, Data Analysis and Case Histories, 2nd ed.; De Vivo, B., Belkin, H.E., Lima, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 153–194. [Google Scholar]
- Violante, A.; Caporale, A.G. Biogeochemical processes at soil-root interface. J. Soil Sci. Plant Nutr. 2015, 15, 422–448. [Google Scholar] [CrossRef] [Green Version]
- BBodSchV. Bodenschutz- und Altlastenverordnung (Federal Soil Protection and Contaminated Sites Ordinance). 12 July 1999. Germany. Available online: https://www.gesetze-im-internet.de/bbodschv/BBodSchV.pdf (accessed on 21 June 2020).
- ASP. Act No. 220/2004 Coll. on the Protection and Use of the Agricultural Soil; The National Council of the Slovak Republic: Bratislava, Slovakia, 2004. [Google Scholar]
- Caporale, A.G.; Adamo, P.; Capozzi, F.; Langella, G.; Terribile, F.; Vingiani, S. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Sci. Total Environ. 2018, 643, 516–526. [Google Scholar] [CrossRef]
- Di Gennaro, A.; Aronne, G.; De Mascellis, R.; Vingiani, S.; Sarnataro, M.; Abalsamo, P.; Cona, F.; Vitelli, L.; Arpaia, G. I sistemi di Terre Della Campania. Monografia e Carta 1:250.000, con Legenda; Società Elaborazioni Cartografiche: Firenze, Italy, 2002; p. 63. [Google Scholar]
- Vingiani, S.; Buonanno, M.; Coraggio, S.; D’Antonio, A.; De Mascellis, R.; Di Gennaro, A.; Iamarino, M.; Langella, G.; Manna, P.; Moretti, P.; et al. Soils of the Aversa plain (southern Italy). J. Maps 2018, 14, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Ellili, A.; Rabier, J.; Prudent, P.; Salducci, M.D.; Heckenroth, A.; Lachaal, M.; Laffont-Schwob, I. Decision-making criteria for plant-species selection for phytostabilization: Issues of biodiversity and functionality. J. Environ. Manag. 2017, 201, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006—Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32006R1881 (accessed on 16 May 2020).
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- ISO 12914. Soil Quality—Microwave-Assisted Extraction of the Aqua Regia Soluble Fraction for the Determination of Elements; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- DIN 19730. Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung; Beuth Verlag: Berlin, Germany, 1997. [Google Scholar]
- Italian Ministerial Decree 46. Collection of Laws No. 220 of 10 March 2004 on the Protection and Use of Agricultural Land. Available online: https://www.gazzettaufficiale.it/eli/id/2019/06/07/19G00052/sg (accessed on 21 June 2020).
- USEPA. Risk Assessment Guidance for Superfund vol. I: Human Health Evaluation Manual Supplemental Guidance: Standard Default Exposure Factors, Interim Final, OSWER Directive 9285.6-03; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1991.
- USEPA. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A, vol. 1; Report no. EPA/540/1-89/002; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989.
- USEPA. Handbook for Non-Cancer Health Effects Evaluation; US Environmental Protection Agency: Washington, DC, USA, 2000.
- USEPA. Toxicity and Chemical/Physical Properties for Regional Screening Level (RSL) of Chemical Contaminants at Superfund Sites. Available online: http://www.epa.gov/region9/superfund/prg/table-generic-tables (accessed on 16 May 2020).
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual. Part E, Supplemental Guidance for Dermal Risk Assessment. Final [EPA/540/R/99/005]; Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency: Washington, DC, USA, 2004.
- USEPA. Exposure Factors Handbook [EPA/600/R-09/052F]; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Lian, M.; Wang, J.; Sun, L.; Xu, Z.; Tang, J.; Yan, J.; Zeng, X. Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicol. Environ. Saf. 2019, 169, 442–448. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, [OSWER 9355.4-24]; Office of Solid Waste and Emergency Response, US Environmental Protection Agency: Washington, DC, USA, 2002.
- Cicchella, D.; De Vivo, B.; Lima, A. Background and baseline concentration values of harmful elements in the volcanic soils of metropolitan and Provincial areas of Napoli (Italy). Geochem. Explor. Environ. Anal. 2005, 5, 29–40. [Google Scholar] [CrossRef]
- De Vivo, B.; Lima, A.; Albanese, S.; Rezza, C.; Civitillo, D.; Minolfi, G.; Zuzolo, D. Atlante Geochimico-Ambientale dei Suoli Della Campania—Environmental Geochemical Atlas of Campania Soils; Aracne: Ariccia, Italy, 2016; p. 364. [Google Scholar]
- Carlon, C. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonization, EUR 22805-EN.; European Commission, Joint Research Centre, ISPRA: Rome, Italy, 2007; p. 306. [Google Scholar]
- Caporale, A.G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Rocco, C.; Agrelli, D.; Tafuro, M.; Caporale, A.G.; Adamo, P. Assessing the bioavailability of potentially toxic elements in soil: A proposed approach. Ital. J. Agron. 2018, 13, 16–22. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Jacobson, A.R.; McBride, M.B.; Baveye, P.; Steenhuis, T.S. Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci. Total Environ. 2005, 345, 191–205. [Google Scholar] [CrossRef]
- Pavoni, E.; Petranich, E.; Adami, G.; Baracchini, E.; Crosera, M.; Emili, A.; Lenaz, D.; Higueras, P.; Covelli, S. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommisioned zinc-lead mine (Northeastern Italian Alps). J. Environ. Manag. 2017, 186, 214–224. [Google Scholar] [CrossRef]
- Bravin, M.N.; Garnier, C.; Lenoble, V.; Gèrard, F.; Dudal, Y.; Hinsinger, P. Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim. Cosmochim. Acta 2012, 84, 256–268. [Google Scholar] [CrossRef]
- Visconti, D.; Fiorentino, N.; Cozzolino, E.; Woo, S.L.; Fagnano, M.; Rouphael, Y. Can trichoderma-based biostimulants optimize N use efficiency and stimulate growth of leafy vegetables in greenhouse intensive cropping systems? Agronomy 2019, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Simko, I. Genetic variation in response to N, P, or K deprivation in baby leaf lettuce. Horticulturae 2020, 6, 15. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, Z.G.; Lin, C.J.; Bi, X.Y.; Liu, J.L.; Feng, X.B.; Zhang, H.; Chen, J.; Wu, T.T. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicol. Environ. Saf. 2018, 161, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Menzies, N.W.; Donn, M.J.; Kopittke, P.M. Evaluation of extractants for the estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.W.; Li, W.S.; Tu, S.X.; Ding, Y.Z.; Wang, R.G.; Rensing, C.; Li, Y.P.; Feng, R.W. Differences in cadmium absorption by 71 leaf vegetable varieties from different families and genera and their health risk assessment. Ecotoxicol. Environ. Saf. 2019, 184, 109593. [Google Scholar] [CrossRef] [PubMed]
- Lyubenova, L.; Kuhn, A.J.; Höltkemeier, A.; Schröder, P. Root exudation pattern of Typha latifolia L. plants after copper exposure. Plant Soil 2013, 370, 187–195. [Google Scholar] [CrossRef]
- Franca, F.C.S.S.; Albuuerque, A.M.A.; Almeida, A.C.; Silveira, P.B.; Filho, C.A.; Hazin, C.A.; Honorato, E.V. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco Brazil. Food Chem. 2017, 215, 171–176. [Google Scholar] [CrossRef]
- Bunzl, K.; Trautmannsheimer, M.; Schramel, P.; Reifenhauser, W. Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils. J. Environ. Qual. 2001, 30, 934–939. [Google Scholar] [CrossRef]
- Marchiol, L.; Fellet, G.; Boscutti, F.; Montella, C.; Mozzi, R.; Guarino, C. Gentle remediation at the former “Pertusola Sud” zinc smelter: Evaluation of native species for phytoremediation purposes. Ecol. Eng. 2013, 53, 343–353. [Google Scholar] [CrossRef]
- Yang, Q.W.; Xu, Y.; Liu, S.J.; He, J.F.; Long, F.Y. Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicol. Environ. Saf. 2011, 74, 1664–1669. [Google Scholar] [CrossRef]
- Gremion, F.; Chatzinotas, A.; Kaufmann, K.; Von Sigler, W.; Harms, H. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol. Ecol. 2004, 48, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Fischerovà, Z.; Tlustos, P.; Szakova, J.; Sichorova, K. A comparison of phytoremediation capability of selected plant species for given trace elements. Environ. Pollut. 2006, 144, 93–100. [Google Scholar] [CrossRef]
- Song, J.; Zhao, F.J.; Luo, Y.M.; McGrath, S.P.; Zhang, H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut. 2004, 128, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Madejon, P.; Murillo, J.M.; Maranon, T.; Lepp, N.W. Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 2007, 67, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Golia, E.E.; Liu, Y.-T.; Wang, S.-L.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Y.; Liu, J.; Wang, J.; Li, X.; Zhang, Y.; Liu, Y. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from sulfuric acid plant in western Guangdong province, China. Ecotoxicol. Environ. Saf. 2013, 90, 76–81. [Google Scholar] [CrossRef]
- Huang, X.; Li, N.; Wu, Q.; Long, J.; Luo, D.; Huang, X.; Li, D.; Zhao, D. Fractional distribution of thallium in paddy soil and its bioavailability to rice. Ecotoxicol. Environ. Saf. 2018, 148, 311–317. [Google Scholar] [CrossRef]
- Zeng, X.F.; Wang, Z.W.; Wang, J.; Guo, J.T.; Chen, X.J.; Zhuang, J. Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology 2015, 24, 2115–2124. [Google Scholar] [CrossRef]
- Arslan, S.; Aybek, A. Particulate matter exposure in agriculture. In Air Pollution. A Comprehensive Perspective; IntechOpen: London, UK, 2012; Volume 10, pp. 73–104. [Google Scholar] [CrossRef] [Green Version]
Soil | Sand | Silt | Clay | pH | EC | CEC | OC | OM | TN | C/N |
g kg−1 | dS m−1 | cmol(+) kg−1 | g kg−1 | |||||||
554 ± 24 | 249 ± 13 | 197 ± 9 | 6.43 ± 0.02 | 0.15 ± 0.01 | 27.1 ± 0.2 | 15.5 ± 0.2 | 26.7 ± 0.4 | 1.6 ± 0.1 | 9.6 | |
Pseudo-total | ||||||||||
Cd | Cu | Pb | Tl | Zn | AP | EK | ||||
mg kg−1 | g kg−1 | |||||||||
Soil | 0.29 ± 0.02 | 116 ± 4 | 117 ± 12 | 2.0 ± 0.1 | 127 ± 4 | 0.10 ± 0.01 | 1.60 ± 0.01 | |||
SV a | 5 | 200 | 100 | 1.0 | 300 | - | - | |||
BV b | 0.50 | 163 | 100 | 1.5 | 142 | - | - |
pH | EC (μS cm−1) | TOC (g kg−1) | Cd (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Tl (mg kg−1) | Zn (mg kg−1) | ||
---|---|---|---|---|---|---|---|---|---|
T0 | mean | 6.43 d | 148 c | 1.55 | 0.006 | 0.27 d | 0.05 | 0.067 d | 0.68 a |
st. dev. | 0.02 | 18 | 0.03 | 0.002 | 0.01 | 0.01 | 0.001 | 0.03 | |
T1-L | mean | 6.58 c | 442 a | 1.48 | b.d.l. (<0.005) | 0.68 c | 0.04 | 0.109 a | 0.29 b |
st. dev. | 0.06 | 49 | 0.09 | 0.06 | 0.01 | 0.001 | 0.04 | ||
T1-R | mean | 6.88 a | 319 b | 1.55 | b.d.l. (<0.005) | 1.25 a | 0.04 | 0.106 b | 0.19 c |
st. dev. | 0.10 | 27 | 0.05 | 0.12 | 0.01 | 0.002 | 0.01 | ||
T1-S | mean | 6.71 b | 279 b | 1.52 | b.d.l. (<0.005) | 0.88 b | 0.05 | 0.084 c | 0.35 b |
st. dev. | 0.11 | 66 | 0.01 | 0.11 | 0.01 | 0.002 | 0.08 | ||
ANOVA | ** | ** | n.s. | ** | n.s. | ** | ** | ||
Trigger values a | 0.1 | 1 | 0.1 | 0.1 | 2 |
DW (g pot−1) | Cd (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Tl (mg kg−1) | Zn (mg kg−1) | ||
---|---|---|---|---|---|---|---|
L. sativa | 1st harvest | 4.34 a | 0.51 b | 14 b | 0.82 a | 0.10 | 58 b |
2nd harvest | 4.11 a | 0.46 b | 8 b | 0.36 b | 0.09 | 51 b | |
3rd harvest | 2.08 b | 0.68 a | 24 a | 0.99 a | 0.10 | 75 a | |
ANOVA | ** | ** | ** | ** | n.s. | ** | |
D. tenuifolia | 1st harvest | 6.02 | 0.13 b | 7 b | 0.43 | 0.06 b | 40 b |
2nd harvest | 6.45 | 0.31 a | 24 a | 0.49 | 0.23 a | 56 a | |
3rd harvest | 5.49 | 0.43 a | 25 a | 0.79 | 0.23 a | 60 a | |
ANOVA | n.s. | ** | ** | n.s. | ** | * | |
S. latifolia | 1st harvest | 13.73 a | 0.30 b | 6 c | 0.45 b | 7.66 a | 21 b |
2nd harvest | 6.69 b | 0.95 a | 16 b | 0.45 b | 4.44 b | 47 a | |
3rd harvest | 2.45 c | 1.11 a | 48 a | 1.60 a | 4.17 b | 49 a | |
ANOVA | ** | ** | ** | ** | * | ** |
Cd (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Tl (mg kg−1) | Zn (mg kg−1) | |
---|---|---|---|---|---|
L. sativa | 0.52 a | 13.4 b | 0.66 | 0.09 b | 58.8 a |
D. tenuifolia | 0.28 b | 18.6 a | 0.57 | 0.17 b | 51.8 a |
S. latifolia | 0.57 a | 13.7 b | 0.57 | 6.35 a | 31.1 b |
ANOVA | ** | ** | n.s. | ** | ** |
BAF | |||||
---|---|---|---|---|---|
Cd | Cu | Pb | Tl | Zn | |
L. sativa | 1.83 | 0.11 | 0.006 | 0.05 | 0.46 |
D. tenuifolia | 0.98 | 0.16 | 0.005 | 0.09 | 0.41 |
S. latifolia | 1.98 | 0.12 | 0.005 | 3.26 | 0.24 |
Soil | |||||
---|---|---|---|---|---|
Cu | Pb | Tl | Zn | ||
L. sativa | Cu | 0.741 * | |||
Pb | −0.391 | ||||
Tl | 0.088 | ||||
Zn | −0.873 * | ||||
D. tenuifolia | Cu | 0.974 * | |||
Pb | −0.680 | ||||
Tl | 0.958 * | ||||
Zn | −0.738 * | ||||
S. latifolia | Cu | 0.944 * | |||
Pb | 0.187 | ||||
Tl | −0.658 | ||||
Zn | −0.957 * |
HQ | |||||||
---|---|---|---|---|---|---|---|
Plant | Age group | Cd | Cu | Pb | Tl | Zn | HI |
L. Sativa | Children | 3.14 × 10−2 | 2.71 × 10−2 | 1.27 × 10−2 | 4.66 × 10−1 | 1.17 × 10−2 | 5.49 × 10−1 |
Teenagers | 2.33 × 10−2 | 2.01 × 10−2 | 9.42 × 10−3 | 3.45 × 10−1 | 8.65 × 10−3 | 4.06 × 10−1 | |
Adults | 2.54 × 10−2 | 2.19 × 10−2 | 1.03 × 10−2 | 3.76 × 10−1 | 9.43 × 10−3 | 4.43 × 10−1 | |
Elderly | 2.53 × 10−2 | 2.18 × 10−2 | 1.02 × 10−2 | 3.75 × 10−1 | 9.41 × 10−3 | 4.42 × 10−1 | |
S. latifolia | Children | 1.34 × 10−1 | 1.48 × 10−1 | 5.51 × 10−2 | 7.46 × 101 | 1.98 × 10−2 | 7.49 × 101 |
Teenagers | 9.70 × 10−2 | 1.07 × 10−1 | 3.98 × 10−2 | 5.39 × 101 | 1.43 × 10−2 | 5.41 × 101 | |
Adults | 8.48 × 10−2 | 9.38 × 10−2 | 3.48 × 10−2 | 4.71 × 101 | 1.25 × 10−2 | 4.73 × 101 | |
Elderly | 6.24 × 10−2 | 6.90 × 10−2 | 2.56 × 10−2 | 3.47 × 101 | 9.21 × 10−3 | 3.48 × 101 | |
D. tenuifolia | Children | 7.36 × 10−3 | 1.07 × 10−2 | 3.81 × 10−3 | 3.95 × 10−1 | 3.43 × 10−3 | 4.20 × 10−1 |
Teenagers | 4.72 × 10−3 | 6.87 × 10−3 | 2.44 × 10−3 | 2.54 × 10−1 | 2.20 × 10−3 | 2.70 × 10−1 | |
Adults | 4.98 × 10−3 | 7.24 × 10−3 | 2.58 × 10−3 | 2.67 × 10−1 | 2.32 × 10−3 | 2.84 × 10−1 | |
Elderly | 6.45 × 10−3 | 9.38 × 10−3 | 3.33 × 10−3 | 3.46 × 10−1 | 3.00 × 10−3 | 3.68 × 10−1 |
HQ | ||||||
---|---|---|---|---|---|---|
Exposure Pathway | Cd | Cu | Pb | Tl | Zn | HI |
Ingestion | 4.31 × 10−4 | 4.38 × 10−3 | 5.04 × 10−2 | 2.93 × 10−1 | 6.38 × 10−4 | 3.49 × 10−1 |
Dermal | 1.52 × 10−5 | 1.93 × 10−5 | 2.22 × 10−4 | 2.59 × 10−4 | 2.81 × 10−6 | 5.18 × 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duri, L.G.; Visconti, D.; Fiorentino, N.; Adamo, P.; Fagnano, M.; Caporale, A.G. Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System. Agronomy 2020, 10, 890. https://doi.org/10.3390/agronomy10060890
Duri LG, Visconti D, Fiorentino N, Adamo P, Fagnano M, Caporale AG. Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System. Agronomy. 2020; 10(6):890. https://doi.org/10.3390/agronomy10060890
Chicago/Turabian StyleDuri, Luigi Giuseppe, Donato Visconti, Nunzio Fiorentino, Paola Adamo, Massimo Fagnano, and Antonio Giandonato Caporale. 2020. "Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System" Agronomy 10, no. 6: 890. https://doi.org/10.3390/agronomy10060890
APA StyleDuri, L. G., Visconti, D., Fiorentino, N., Adamo, P., Fagnano, M., & Caporale, A. G. (2020). Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System. Agronomy, 10(6), 890. https://doi.org/10.3390/agronomy10060890