Biomechanical Properties and Agro-Morphological Traits for Improved Lodging Resistance in Ethiopian Teff (Eragrostis tef (Zucc.) Trottor) Accessions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Population Panels and Design
2.3. Measurements and Data Collection
2.3.1. Visual Lodging Score and Lodging Index
2.3.2. Pushing Resistance
2.3.3. Culm Breaking Strength and Bending Moment
2.4. Root Characterization
2.5. Data Analysis
3. Results
3.1. Agro-Morphological Trait Variability
3.2. Comparison of Genotypes
3.3. Mechanical Properties and Lodging Index
3.4. Trait Associations
3.5. Root Characteristics
3.6. Trait Contributions to Lodging
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohammed, S.H.; Taye, H.; Sissay, T.A.; Larijani, B.; Esmaillzadeh, A. Teff consumption and anemia in pregnant Ethiopian women: A case-control study. Eur. J. Nutr. 2019, 58, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Jost, M.; Esfeld, K.; Burian, A.; Cannarozzi, G.; Chanyalew, S.; Kuhlemeier, C.; Assefa, K.; Tadele, Z. Semi-dwarfism and lodging tolerance in tef (Eragrostis tef) is linked to a mutation in the alpha-Tubulin 1 gene. J. Exp. Bot. 2015, 66, 933–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebre, E.; Schlüter, U.; Hedden, P.; Kunert, K. Gibberellin biosynthesis inhibitors help control plant height for improving lodging resistance in E. tef (Eragrostis tef). J. Crop. Improv. 2012, 26, 375–388. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Tsegaye Meshesha, D.; Schütt, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia. Prog. Phys. Geogr. Earth Environ. 2015, 39, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Costanza, S.; Dewet, J.; Harlan, J.R. Literature review and numerical taxonomy of Eragrostis tef (T’ef). Econ. Bot. 1979, 33, 413–424. [Google Scholar] [CrossRef]
- Burtt-Davy, J. Teff (Eragrostis abyssinica). South. Afr. Agric. J. 1917, 5, 27–37. [Google Scholar]
- D’Andrea, A.C. T’ef (Eragrostis tef) in ancient agricultural systems of highland Ethiopia. Econ. Bot. 2008, 62, 547–566. [Google Scholar] [CrossRef]
- Ebba, T. T’EF (ERAGR0ST1S TBF) CULTIVARS: MORPHOLOGY and CLASSIFICATION; Addis Ababa University, College of Agriculture: Addis Ababa, Ethiopia, 1975. [Google Scholar]
- Lee, H. Ethiopia Needs to Improve Production of Its Golden Crop Teff. Here’s How. 2019. Available online: https://theconversation.com/ethiopia-needs-to-improve-production-of-its-golden-crop-teff-heres-how-112987 (accessed on 12 May 2020).
- CSA. Agricultural Sample Survey: Report on Area and Production of Major Crops; Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Assefa, K.; Tefera, H.; Merker, A.; Kefyalew, T.; Hundera, F. Quantitative trait diversity in tef [Eragrostis tef (Zucc.) Trotter] germplasm from Central and Northern Ethiopia. Genet. Resour. Crop. Evol. 2001, 48, 53–61. [Google Scholar] [CrossRef]
- Teklu, Y.; Tefera, H. Genetic improvement in grain yield potential and associated agronomic traits of tef (Eragrostis tef). Euphytica 2005, 141, 247–254. [Google Scholar] [CrossRef]
- Pinthus, M.J. Lodging in Wheat, Barley, and Oats: The Phenomenon, its Causes, and Preventive Measures; Academic Press: Cambridge, MA, USA, 1974; pp. 209–263. [Google Scholar] [CrossRef]
- Gebre, E.; Gugsa, L.; Schlüter, U.; Kunert, K. Transformation of tef (Eragrostis tef) by Agrobacterium through immature embryo regeneration system for inducing semi-dwarfism. South. Afr. J. Bot. 2013, 87, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, D. Study on genetic variation of landraces of teff (Eragrostis tef (Zucc.) Trotter) in Ethiopia. Genet. Resour. Crop. Evol. 1993, 40, 101–104. [Google Scholar] [CrossRef]
- Tefera, H.; Ketema, S. Production and Importance of Tef in Ethiopian Agriculture. In Proceedings of Narrowing the Rift: Proceedings of the International Workshop on Tef Genetics and Improvement; EARO: Addis Ababa, Ethiopia, 2001. [Google Scholar]
- Bennetzen, J.; Smith, S.; Yuan, Y.; Groth, D. Opening new avenues for the improvement of orphan crops in a time of rapid and potentially catastrophic change in worldwide agriculture. In Proceedings of the New approaches to plant breeding of orphan crops in Africa. Proceedings of an International Conference, Bern, Switzerland, 19–21 September 2007; pp. 11–19. [Google Scholar]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Nelson, A. Estimation of crop angle of inclination for lodged wheat using multi-sensor SAR data. Remote Sens. Environ. 2020, 236. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Berry, S. Ideotype design for lodging-resistant wheat. Euphytica 2006, 154, 165–179. [Google Scholar] [CrossRef]
- Hirano, K.; Okuno, A.; Hobo, T.; Ordonio, R.; Shinozaki, Y.; Asano, K.; Kitano, H.; Matsuoka, M. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS ONE 2014, 9, e96009. [Google Scholar] [CrossRef] [PubMed]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crop. Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.-L.; Fan, J.-J.; Sun, M.; Yi, Y.; Guo, W.-S.; Voldeng, H.D. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat. Field Crop. Res. 2019, 241. [Google Scholar] [CrossRef]
- Corbin, J.L.; Orlowski, J.M.; Harrell, D.L.; Golden, B.R.; Falconer, L.; Krutz, L.J.; Gore, J.; Cox, M.S.; Walker, T.W. Nitrogen Strategy and Seeding Rate Affect Rice Lodging, Yield, and Economic Returns in the Midsouthern United States. Agron. J. 2016, 108, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-J.; Li, G.-H.; Yang, Y.-M.; Li, Q.; Zhang, J.; Liu, J.-Y.; Wang, S.; Tang, S.; Ding, Y.-F. Effects of Nitrogen Application Rate and Ratio on Lodging Resistance of Super Rice with Different Genotypes. J. Integr. Agric. 2014, 13, 63–72. [Google Scholar] [CrossRef]
- Ben-Zeev, S.; Rabinovitz, O.; Orlov-Levin, V.; Chen, A.; Graff, N.; Goldwasser, Y.; Saranga, Y. Less Is More: Lower Sowing Rate of Irrigated Tef (Eragrostis tef) Alters Plant Morphology and Reduces Lodging. Agronomy 2020, 10, 570. [Google Scholar] [CrossRef]
- Miller, C.N.; Harper, A.L.; Trick, M.; Werner, P.; Waldron, K.; Bancroft, I. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics. BMC Genom. 2016, 17, 500. [Google Scholar] [CrossRef] [Green Version]
- Kelbert, A.; Spaner, D.; Briggs, K.; King, J. Screening for lodging resistance in spring wheat breeding programmes. Plant. Breed. 2004, 123, 349–354. [Google Scholar] [CrossRef]
- Nomura, T.; Arakawa, N.; Yamamoto, T.; Ueda, T.; Adachi, S.; Yonemaru, J.I.; Abe, A.; Takagi, H.; Yokoyama, T.; Ookawa, T. Next generation long-culm rice with superior lodging resistance and high grain yield, Monster Rice 1. PLoS ONE 2019, 14, e0221424. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Peng, S.; Visperas, R.M.; Ereful, N.; Bhuiya, M.S.U.; Julfiquar, A.W. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crop. Res. 2007, 101, 240–248. [Google Scholar] [CrossRef]
- Chen, W.Y.; Liu, Z.M.; Deng, G.B.; Pan, Z.F.; Liang, J.J.; Zeng, X.Q.; Tashi, N.M.; Long, H.; Yu, M.Q. Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses. Genet. Mol. Res. 2014, 13, 1909–1925. [Google Scholar] [CrossRef] [PubMed]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Sylvester-Bradley, R.; Mooney, S.J.; Tams, A.R.; Ennos, A.R. Understanding and Reducing Lodging in Cereals. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2004; Volume 84, pp. 217–271. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Baker, C.J.; Spink, J.; Sparkes, D.L. A calibrated model of wheat lodging compared with field measurements. Agric. For. Meteorol. 2003, 119, 167–180. [Google Scholar] [CrossRef]
- Sterling, M.; Baker, C.J.; Berry, P.M.; Wade, A. An experimental investigation of the lodging of wheat. Agric. For. Meteorol. 2003, 119, 149–165. [Google Scholar] [CrossRef]
- Van Delden, S.H.; Vos, J.; Ennos, A.R.; Stomph, T.J. Analysing lodging of the panicle bearing cereal teff (Eragrostis tef). New Phytol. 2010, 186, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, W.; Ellis, M.H.; Chandler, P.M. Semidwarf (sd-1),“green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 2002, 99, 9043–9048. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Stockman, Y. Increased kernel number in Norin 10-derived dwarf wheat: Evaluation of the cause. Funct. Plant. Biol. Aust. J. Plant. Physiol. 1986, 13, 767–784. [Google Scholar] [CrossRef]
- Evenson, R.E.; Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Assefa, K.; Yu, J.K.; Zeid, M.; Belay, G.; Tefera, H.; Sorrells, M.E. Breeding tef [Eragrostis tef (Zucc.) trotter]: Conventional and molecular approaches. Plant. Breed. 2011, 130, 1–9. [Google Scholar] [CrossRef]
- Tadele, Z. Orphan crops: Their importance and the urgency of improvement. Planta 2019, 250, 677–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.M.; Yuan, Y.; Doust, A.N.; Bennetzen, J.L. Haplotype Analysis and Linkage Disequilibrium at Five Loci in Eragrostis tef. G3 (Bethesda) 2012, 2, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Shah, F.; Duncan, R.W.; Ma, B.L. Grain yield, root growth habit and lodging of eight oilseed rape genotypes in response to a short period of heat stress during flowering. Agric. For. Meteorol. 2020, 287. [Google Scholar] [CrossRef]
- Crook, M.J.; Ennos, A.R. Stem and root characteristics associated with lodging resistance in four winter wheat cultivars. J. Agric. Sci. 1994, 123, 167–174. [Google Scholar] [CrossRef]
- Baker, C.; Berry, P.; Spink, J.; Sylvester-Bradley, R.; Griffin, J.; Scott, R.; Clare, R. A method for the assessment of the risk of wheat lodging. J. Theor. Biol. 1998, 194, 587–603. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.-L. Assessment of canola crop lodging under elevated temperatures for adaptation to climate change. Agric. For. Meteorol. 2018, 248, 329–338. [Google Scholar] [CrossRef]
- Caldicott, J.; NUTTALL, A. A method for the assessment of lodging in cereal crops. J. Natl. Inst. Agric. Bot. 1979, 15, 88–91. [Google Scholar]
- Wu, W.; Huang, J.; Cui, K.; Nie, L.; Wang, Q.; Yang, F.; Shah, F.; Yao, F.; Peng, S. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crop. Res. 2012, 128, 101–108. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.L. A new method for assessing plant lodging and the impact of management options on lodging in canola crop production. Sci. Rep. 2016, 6, 31890. [Google Scholar] [CrossRef] [Green Version]
- Hai, L.; Guo, H.; Xiao, S.; Jiang, G.; Zhang, X.; Yan, C.; Xin, Z.; Jia, J. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 2005, 141, 1–9. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Ishimaru, K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant. Physiol. 2004, 134, 676–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crook, M.; Ennos, A. Mechanical differences between free-standing and supported wheat plants, Triticum aestivum L. Ann. Bot. 1996, 77, 197–202. [Google Scholar] [CrossRef] [Green Version]
- SAS. The SAS System for Windows ver. 9.0; SAS Institute: Cary, NC, USA, 2005. [Google Scholar]
- Zuber, U.; Winzeler, H.; Messmer, M.; Keller, M.; Keller, B.; Schmid, J.; Stamp, P. Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J. Agron. Crop. Sci. 1999, 182, 17–24. [Google Scholar] [CrossRef]
- Ma, J.; Ma, W.; Tian, Y.; Yang, J.; Zhou, K.; Zhu, Q. The culm lodging resistance of heavy panicle type of rice. Zuo Wu Xue Bao 2004, 30, 143–148. [Google Scholar]
- Navabi, A.; Iqbal, M.; Strenzke, K.; Spaner, D. The relationship between lodging and plant height in a diverse wheat population. Can. J. Plant. Sci. 2006, 86, 723–726. [Google Scholar] [CrossRef]
- Stanca, A.; Jenkins, G.; Hanson, P. Varietal responses in spring barley to natural and artificial lodging and to a growth regulator. J. Agric. Sci. 1979, 93, 449–457. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Wu, X.; Ding, Y.; Li, G.; Li, J.; Weng, F.; Liu, Z.; Tang, S.; Ding, C.; et al. Lodging Resistance of Japonica Rice (Oryza Sativa, L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates. Rice (N. Y.) 2016, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Okuno, A.; Hirano, K.; Asano, K.; Takase, W.; Masuda, R.; Morinaka, Y.; Ueguchi-Tanaka, M.; Kitano, H.; Matsuoka, M. New Approach to Increasing Rice Lodging Resistance and Biomass Yield Through the Use of High Gibberellin Producing Varieties. PLoS ONE 2014, 9, e86870. [Google Scholar] [CrossRef]
- Flintham, J.; Börner, A.; Worland, A.; Gale, M. Optimizing wheat grain yield: Effects of Rht (gibberellin-insensitive) dwarfing genes. J. Agric. Sci. 1997, 128, 11–25. [Google Scholar] [CrossRef]
- Milach, S.; Federizzi, L. Dwarfing genes in plant improvement. Adv. Agron. 2001, 73, 35–63. [Google Scholar]
- Madić, M.; Knežević, D.; Paunović, A.; Đurović, D. Plant height and internode length as components of lodging resistance in barley. Acta Agric. Serbica 2016, 21, 99–106. [Google Scholar] [CrossRef]
- Tripathi, S.C.; Sayre, K.D.; Kaul, J.N.; Narang, R.S. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: Effects of genotypes, N levels and ethephon. Field Crop. Res. 2003, 84, 271–290. [Google Scholar] [CrossRef]
- Blosch, R.; Plaza-Wuthrich, S.; Barbier de Reuille, P.; Weichert, A.; Routier-Kierzkowska, A.L.; Cannarozzi, G.; Robinson, S.; Tadele, Z. Panicle Angle is an Important Factor in Tef Lodging Tolerance. Front. Plant. Sci. 2020, 11, 61. [Google Scholar] [CrossRef]
Study Site | pH | EC * (dS/m) | Total N (g/kg) | Available P (mg/kg) | Exchangeable K (cmol(+)/kg) | Available Mn (mg/kg) | Available S (mg/kg) |
---|---|---|---|---|---|---|---|
Adet | 5.17 | 0.07 | 1.57 | 27.69 | 0.88 | 78.12 | 48.09 |
Bichena | 5.85 | 0.08 | 1.04 | 35.23 | 1.34 | 31.52 | 31.88 |
Trait | Sources of Variation 1 | % Explained 2 | CV (%) | ||||
---|---|---|---|---|---|---|---|
G | E | G × E | R | B(R) | |||
Plant height | 759.4 ** | 85,122.3 ** | 13.3 ns | 3731.9 ** | 1512.9 ** | 1.7 (49.4) | 6.8 |
Panicle length | 194.5 ** | 24,600.8 ** | 15.1 ** | 406.2 ** | 236.3 ** | 7.6 (49.2) | 3.7 |
Culm length | 304.0 ** | 18,103.6 ** | 22.6 ** | 6263.6 ** | 654.7 ** | 8.1 (54.4) | 6.1 |
Peduncle length | 78.7 ** | 2421.1 ** | 0.237 ns | 587.5 ** | 102.3 ** | 0.43 (70.8) | 7.4 |
Tiller number | 42.8 ** | 1390.2 ** | 11.2 ** | 122.7 ** | 25.2 ** | 23.4 (44.9) | 18.1 |
Panicle weight | 0.404 ** | 47.8 ** | 0.099 ** | 0.139 ns | 0.346 ** | 18.5 (37.7) | 20.8 |
Grain yield | 1.99 ** | 144.3 ** | 0.026 ns | 1.29 ** | 2.64 ** | 1.6 (62.3) | 9.6 |
Lodging score visual | 1352.5 ** | 18,091.2 ** | 519.7 ** | 4.31 ns | 885.0 ** | 34.4 (44.8) | 18.4 |
Lodging index | 22,493.2 ** | 60,424.7 ** | 10,925.7 ** | 5.29 ns | 171.8 ns | 10.2 (21.1) | 2.58 |
Diameter | 0.819 ** | 29.7 ** | 0.043 ns | 17.2 ** | 1.39 ** | 6.5 (61.4) | 8.4 |
Pushing resistance | 92.25 ** | 16,066.3 ** | 9.26 ns | 1838.5 ** | 251.5 ** | 5.0 (49.7) | 18.7 |
2nd moment of area | 4.5 ** | 146.4 ** | 0.27 ** | 89.0 ** | 9.8 ** | 7.6 (63.7) | 25.7 |
Section modulus | 1.35 ** | 50.5 ** | 0.061 ** | 27.8 ** | 2.82 ** | 5.6 (63.4) | 19.9 |
Base failure moment | 0.027 ** | 1.94 ** | 0.0006 ns | 0.51 ** | 0.055 ** | 2.57 (58.4) | 11.8 |
Variable | Minimum | Maximum | Mean | SD * |
---|---|---|---|---|
Plant height (cm) | 74.00 | 135.00 | 100.17 | 11.22 |
Panicle length (cm) | 19.40 | 51.57 | 33.87 | 5.69 |
Culm length (cm) | 49.10 | 87.17 | 66.30 | 7.12 |
Peduncle length (cm) | 14.10 | 35.23 | 25.26 | 3.62 |
Tiller number per plant | 8.57 | 28.30 | 14.35 | 2.67 |
Panicle weight (g) | 0.46 | 2.20 | 1.09 | 0.26 |
Grain yield (t/ha) | 0.89 | 3.52 | 2.18 | 0.58 |
Lodging score visual (%) | 22.00 | 100.00 | 65.54 | 16.09 |
Lodging index (%) | 132.0 | 155.0 | 140.5 | 2.39 |
2nd basal internode diameter (mm) | 1.51 | 3.89 | 2.47 | 0.37 |
Pushing resistance at heading (N) | 1.59 | 7.47 | 3.85 | 1.18 |
2nd moment of area (10−12 m4) | 0.15 | 6.31 | 1.44 | 0.87 |
Section modulus (10−9 m3) | 0.19 | 3.27 | 1.06 | 0.47 |
Base failure moment (Nm) | 0.03 | 0.25 | 0.11 | 0.03 |
Culm length to plant height ratio | 0.59 | 0.76 | 0.66 | 0.03 |
Panicle + peduncle length to height ratio | 0.50 | 0.67 | 0.59 | 0.03 |
Peduncle length to plant height ratio | 0.13 | 0.41 | 0.26 | 0.05 |
Panicle length to plant height ratio | 0.24 | 0.41 | 0.34 | 0.03 |
Panicle length to culm length ratio | 0.31 | 0.70 | 0.51 | 0.07 |
Peduncle length to culm length ratio | 0.21 | 0.54 | 0.38 | 0.06 |
Variables | Coefficient | Std. Error | t-Statistic | P |
---|---|---|---|---|
Constant | 0.052 | 0.147 | 0.354 | 0.724 |
Plant height | 0.143 | 0.001 | 4.592 | 0.000 |
Tiller number | −0.141 | 0.004 | −4.615 | 0.000 |
Panicle weight | 0.057 | 0.039 | 2.161 | 0.031 |
Pushing resistance | 0.709 | 0.008 | 29.96 | 0.000 |
R2 | 0.922 | Residual mean square | 0.012 | |
Adjusted R2 | 0.921 | F-statistic | 930.1 | |
Std. error of regression | 0.108 | Probability (F-statistic) | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayable, M.; Tsunekawa, A.; Haregeweyn, N.; Ishii, T.; Alemayehu, G.; Tsubo, M.; Adgo, E.; Tassew, A.; Tsuji, W.; Asaregew, F.; et al. Biomechanical Properties and Agro-Morphological Traits for Improved Lodging Resistance in Ethiopian Teff (Eragrostis tef (Zucc.) Trottor) Accessions. Agronomy 2020, 10, 1012. https://doi.org/10.3390/agronomy10071012
Bayable M, Tsunekawa A, Haregeweyn N, Ishii T, Alemayehu G, Tsubo M, Adgo E, Tassew A, Tsuji W, Asaregew F, et al. Biomechanical Properties and Agro-Morphological Traits for Improved Lodging Resistance in Ethiopian Teff (Eragrostis tef (Zucc.) Trottor) Accessions. Agronomy. 2020; 10(7):1012. https://doi.org/10.3390/agronomy10071012
Chicago/Turabian StyleBayable, Muluken, Atsushi Tsunekawa, Nigussie Haregeweyn, Takayoshi Ishii, Getachew Alemayehu, Mitsuru Tsubo, Enyew Adgo, Asaminew Tassew, Wataru Tsuji, Fekremariam Asaregew, and et al. 2020. "Biomechanical Properties and Agro-Morphological Traits for Improved Lodging Resistance in Ethiopian Teff (Eragrostis tef (Zucc.) Trottor) Accessions" Agronomy 10, no. 7: 1012. https://doi.org/10.3390/agronomy10071012
APA StyleBayable, M., Tsunekawa, A., Haregeweyn, N., Ishii, T., Alemayehu, G., Tsubo, M., Adgo, E., Tassew, A., Tsuji, W., Asaregew, F., & Masunaga, T. (2020). Biomechanical Properties and Agro-Morphological Traits for Improved Lodging Resistance in Ethiopian Teff (Eragrostis tef (Zucc.) Trottor) Accessions. Agronomy, 10(7), 1012. https://doi.org/10.3390/agronomy10071012