Improving Productivity in Integrated Fish-Vegetable Farming Systems with Recycled Fish Pond Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experiment One: Organic Fertilizer Production
2.2.1. Collection of Rice Straw and Water Hyacinth Residues for Fertilizer Amendments
2.2.2. Collection of Pond Sediments for Fertilizer Amendments
2.2.3. Selection of Optimal Rice Straw-Pond Sediment and Water Hyacinth-Pond Sediment Organic Fertilizer Combinations
2.2.4. Preparation of Organic Fertilizer for Wet Season and Dry Season Cucumber Production
2.3. Experiment Two: Integrated Cucumber–Fish Cultivation with Organic–Chemical Fertilizer Combinations
2.3.1. Fertilizer Application
- T1—control treatment with cucumbers grown using 100% chemical fertilizer at an average rate for Vietnam (220 N‒180 P2O5‒140 K2O) [34];
- T2—75% of chemical fertilizer input used within T1, and 25% of organic fertilizers (PPSRS or PPSWH) used in T5;
- T3—50% of chemical fertilizer input used within T1, and 50% of organic fertilizers (PPSRS or PPSWH) used in T5;
- T4—25% of chemical fertilizer input used within T1, and 75% of organic fertilizers (PPSRS or PPSWH) used in T5; and
- T5—100% of organic fertilizer input of PPSRS or PPSWH at 100 kg per plot.
2.3.2. Production Area Preparation
2.3.3. Cucumber and Fish Preparation
2.3.4. Cucumber Planting and Growth Conditions
2.3.5. Plot Soil Sampling
2.3.6. Data Collection and Calculation
2.3.7. Data Analysis
3. Results
3.1. Experiment One: Organic Fertilizer Production
3.2. Experiment Two: Integrated Cucumber–Fish Cultivation with Organic–Chemical Fertilizer Combinations
3.2.1. Fertilizer and Soil Properties
3.2.2. Growth Performance and Plant Traits
3.2.3. Final Yield of Fish and Cucumber
4. Discussion
4.1. Characteristics of Individual Organic Amendments
4.2. Characteristics of the Organic Fertilizer after Composting
4.3. Organic Fertilizer Benefits to Soil and Plants
4.4. Organic Fertilizer Benefits to Crop Yields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2012; FAO—Food and Agriculture Organization of the United Nation: Rome, Italy, 2012; 230p. [Google Scholar]
- Rahman, M.M.; Yakupitiyage, A.; Ranamukhaarachchi, S.L. Agricultural use of fishpond sediment for environmental amelioration. Thammasat Inter. J. Sci. Tech. 2004, 9, 1–10. [Google Scholar]
- World Bank. Aquaculture Pollution: An Overview of Issues with a Focus on China, Vietnam, and the Philippines; The World Bank’s Agriculture and Environment and Natural Resources Global Practices; World Bank Regional Agricultural Pollution Study; Working Paper; World Bank: Washington, DC, USA, 2017; pp. 1–15. [Google Scholar]
- Vietnam Association of Seafood Exporters and Producers (VASEP). Vietnam’s Fisheries Industry Overview 2018 of Vietnam Association of Seafood Exporters and Producers; Ministry of Agriculture and Rural Development: Hanoi, Vietnam, 2019; Available online: http://vasep.com.vn/1192/OneContent/tong-quan-nganh.htm (accessed on 9 October 2019).
- The Ministry of Agriculture and Rural Development (MARD). Annual Reports of the Ministry of Agriculture and Rural Development; The Ministry of Agriculture and Rural Development (MARD): Hanoi, Vietnam, 2018. (In Vietnamese) [Google Scholar]
- General Statistics Office Vietnam (GSO). Production of Agriculture, Forestry and Fishing of Vietnam; Statistical Documentation and Service Centre, General Statistics Office of Vietnam: Hanoi, Vietnam, 2019. Available online: https://www.gso.gov.vn/default_en.aspx?tabid=778 (accessed on 18 February 2020).
- Halls, A.; Johns, M. Assessment of the Vulnerability of the Mekong Delta Pangasius Catfish Industry to Development and Climate Change in the Lower Mekong Basin; Report Prepared for the Sustainable Fisheries Partnership; Johns Associates Limited: Bath, UK, 2013; Available online: www.johnsassociates.co.uk (accessed on 20 November 2019).
- Tovar, A.C.; Moreno, M.P.; Manuel-Vez, M. Garcia-Vargas. Environmental impacts of intensive aquaculture in marine waters. Water. Res. 2000, 34, 334–342. [Google Scholar] [CrossRef]
- Lin, C.K.; Yi, Y. Minimizing environmental impacts of freshwater aquaculture and reuse of pond effluents and mud. Aquaculture 2003, 226, 57–68. [Google Scholar] [CrossRef]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Anh, P.T.; Kroeze, C.; Bush, S.R.; Mol, A.P.J. Water pollution by Pangasius production in the Mekong Delta, Vietnam: Causes and options for control. Aqua. Res. 2010, 42, 108–128. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, F.; Li, X.; Xu, C.; Fang, F. Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond. Ecol. Eng. 2016, 94, 315–319. [Google Scholar] [CrossRef]
- Haque, M.M.; Belton, B.; Alam, M.M.; Ahmed, A.G.; Alam, M.R. Reuse of fish pond sediments as fertilizer for fodder grass production in Bangladesh: Potential for sustainable intensification and improved nutrition. Agric. Ecosyst. Environ. 2016, 216, 226–236. [Google Scholar] [CrossRef]
- Oláh, J.; Pekár, F.; Szabó, P. Nitrogen cycling and retention in fish-cum-livestock ponds. J. Appl. Ichthyol. 1994, 10, 341–348. [Google Scholar] [CrossRef]
- Rahman, M.; Yakupitiyage, A. Use of fishpond sediment for sustainable aquaculture—Agriculture farming. Int. J. Sustain. Dev. Plan. 2006, 1, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Muendo, P.N.; Verdegem, M.C.J.; Stoorvogel, J.J.; Milstein, A.; Gamal, E.; Duc, P.M.; Verreth, J.A.J. Sediment accumulation in fish ponds: Its potential for agricultural use. Int. J. Fisher. Aquat. Stud. 2014, 1, 228–241. [Google Scholar]
- Da, C.T.; Phuoc, L.H.; Duc, H.N.; Troell, M.; Berg, H. Use of wastewater from striped catfish (Pangasianodon hypophthalmus) pond culture for integrated rice–fish–vegetable farming systems in the Mekong Delta, Vietnam. Agroecol. Sustain. Food Syst. 2015, 39, 580–597. [Google Scholar] [CrossRef]
- Boyd, C.E. Bottom Soils, Sediment, and Pond Aquaculture; Chapman and Hall: New York, NY, USA, 1995; 348p. [Google Scholar]
- Phu, T.Q.; Tinh, T.K. Chemical compositions of sludge from intensive striped catfish (Pangasianodon hypophthalmus) culture pond. J. Sci. Can Tho Univ. 2012, 22, 290–299. (In Vietnamese) [Google Scholar]
- Berg, H. Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—Economic and ecological considerations. Ecol. Econ. 2002, 41, 95–107. [Google Scholar] [CrossRef]
- Berg, H.; Nguyen, T.T. Integrated rice-fish farming: Safeguarding biodiversity and ecosystem services for sustainable food production in the Mekong Delta. J. Sustain. Agric. 2012, 36, 859–872. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.D.F.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Nhan, D.K.; Verdegem, M.C.J.; Milstein, A.J.; Verreth, A.V. Water and nutrient budgets of ponds in integrated agriculture–aquaculture systems in the Mekong Delta, Vietnam. Aqua. Res. 2008, 39, 1216–1228. [Google Scholar] [CrossRef]
- Snow, A.M.; Ghaly, A.E.; Snow, A. A comparative assessment of hydroponically grown cereal crops for the purification of aquaculture wastewater and the production of fish feed. Am. J. Agric. Biol. Sci. 2008, 3, 364–378. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Quynh, H.T.; Kazuto, S. Organic fertilizers in Vietnam’s markets: Nutrient composition and efficacy of their application. Sustainability 2018, 10, 2437. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, R.; Pang, Y. Characteristics of dairy manure composting with rice straw. Bioresour. Technol. 2008, 99, 359–367. [Google Scholar] [CrossRef]
- Karak, T.; Bhattacharyya, P.; Paul, R.K.; Das, T.; Saha, S.K. Evaluation of composts from agricultural wastes with fish pond sediment as bulking agent to improve compost quality. CLEAN Soil Air Water 2013, 41, 711–723. [Google Scholar] [CrossRef]
- Pouil, S.; Samsudin, R.; Slembrouck, J.; Sihabuddin, A.; Sundari, G.; Khazaidan, K.; Kristanto, A.H.; Pantjara, B.; Caruso, D. Nutrient budgets in a small-scale freshwater fish pond system in Indonesia. Aquaculture 2019, 504, 267–274. [Google Scholar] [CrossRef]
- Tham, H.T. Water Hyacinth (Eichhornia Crassipes) Biomass Production, Ensilability and Feeding Value to Growing Cattle. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2012. [Google Scholar]
- Thanh, X.B.; Hien, V.T.M.; Cong, T.T.; Da, C.T.; Berg, H. Reuse of sediment from catfish pond through composting with water hyacinth and rice straw. Sustain. Environ. Res. 2015, 25, 1–5. [Google Scholar]
- Saldarriaga, J.F.; Gallego, J.L.; López, J.E.; Aguado, R.; Olazar, M. Selecting monitoring variables in the manual composting of municipal solid waste based on principal component analysis. Waste Biomass Valoriz. 2019, 10, 1811–1819. [Google Scholar] [CrossRef]
- Hien, N.T. Organic Fertilizer: Biofertilizer and Compost Fertilizer; Institute for Research and Universalization for Encyclopedic Knowledge (IREUK): Hanoi, Vietnam, 2003. [Google Scholar]
- Dung, P.T.; Huong, D.T. Effect of Compost and Micro-Organic Fertilizers on Growth Performances and Yield of Cucumber in Organic Farming System in Gia Lam—Hanoi, Vietnam; Vietnam National University of Agriculture: Hanoi, Vietnam, 2012. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agricultural Engineers: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Cochrane, K.; De Young, C.; Soto, D.; Bahri, T. Climate change implications for fisheries and aquaculture; FAO of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Molle, F.; Foran, T.; Käkönen, M. Contested waterscapes in the Mekong region: Hydropower, livelihoods and governance; Earthscan: Sterling, VA, USA, 2009. [Google Scholar]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Stirling, H.P. Chemical and Biological Methods of Water Analysis for Aquaculturists; Institute of Aquaculture, University of Stirling: Stirling, NJ, USA, 1985; 117p. [Google Scholar]
- Tirado, M.C.; Clarke, R.L.; Jaykus, A.; McQuatters-Gollop, A.; Frank, J.M. Climate change and food safety: A review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Edwards, P. Environmental issues in integrated agriculture—Aquaculture in wastewater-fed fish culture systems. In Environment and Aquaculture in Developing Countries; Pullin, R.S.V., Rosenthal, H., Maclean, J.L., Eds.; International Center for Living Aquatic Resources Management: Makati, Philippines, 1993; Volume 31, pp. 139–170. [Google Scholar]
- Prein, M. Integration of aquaculture into crop–animal systems in Asia. Agric. Syst. 2002, 71, 127–146. [Google Scholar] [CrossRef]
- Roca-Pérez, L.; Martínez, C.; Marcilla, P.; Boluda, R. Composting rice straw with sewage sludge and compost effects on the soil–plant system. Chemosphere 2009, 75, 781–787. [Google Scholar] [CrossRef]
- Zayed, G.; Abdel-Motaal, H. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea. Bioresour. Technol. 2005, 96, 929–935. [Google Scholar] [CrossRef]
- Zhu, N.; Deng, C.; Xiong, Y.; Qian, H.Q. Performance characteristics of three aeration systems in the swine manure composting. Bioresour. Technol. 2004, 95, 319–326. [Google Scholar] [CrossRef]
- Abdelhamid, M.T.; Horiuchi, T.; Oba, S. Composting of rice straw with oilseed rape cake and poultry manure and its effects on Faba bean (Vicia Faba L.) growth and soil properties. Bioresour. Technol. 2004, 93, 183–189. [Google Scholar] [CrossRef]
- Tumuhairwe, J.B.; Tenywa, J.S.; Otabbong, E.; Ledin, S. Comparison of four low-technology composting methods for market crop wastes. Waste Manag. 2009, 29, 2274–2281. [Google Scholar] [CrossRef]
- Thunjai, T.; Boyd, C.E.; Boonyaratpalin, M. Bottom soil quality in tilapia ponds of different age in Thailand. Aqua. Res. 2004, 35, 698–705. [Google Scholar] [CrossRef]
- Karak, T. Heavy metal accumulation in soil amended with roadside pond sediment and uptake by rice (Oryza sativa L.). Commun. Soil Sci. Plant Anal. 2010, 41, 2577–2594. [Google Scholar] [CrossRef]
- Boyd, B.C.E.; Rajts, F.; Firth, J. Sludge management at Pangasius farm cuts discharges. Environmental and Social Responsibility. Available online: https://www.aquaculturealliance.org/advocate/sludge-management-pangasius-farm-cuts-discharges (accessed on 18 February 2020).
- Phung, V.C.; Nguyen, B.P.; Hoang, T.K.; Bell, R.W. Recycling of fishpond waste from rice cultivation in Cuu Long Delta, Vietnam. In Technologies and Management for Sustainable Biosystems; Nair, J., Furedy, C., Hoysala, C., Doelle, H., Eds.; Nova Science Publishers: New York, NY, USA, 2009; pp. 85–97. [Google Scholar]
- Phu, T.Q.; Tinh, T.K.; Giang, H.T. Reuse ability of bottom sediment from intensive catfish (Pangasianodon hypophthalmus) ponds for rice cultivation. J. Sci. Can Tho Univ. 2012, 24, 135–143. (In Vietnamese) [Google Scholar]
- Nguyen, P.Q.; Be, N.V.; Cong, N.V. Quantifying and qualifying sediment load from intensive catfish (Pangasianodon hypophthalmus) ponds and sediment application for vegetable-cultured (in Vietnamese). J. Sci. Can Tho Univ. 2014, 35, 78–89. [Google Scholar]
- Cofie, O.; Kone, D.; Rothenberger, S.; Moser, D.; Zubruegg, C. Co-composting of faecal sludge and organic solid waste for agriculture: Process dynamics. Water. Res. 2009, 43, 4665–4675. [Google Scholar] [CrossRef]
- Sun, X.; Wang, S.; Wang, J.; Lu, W.; Wang, H. Co-composting of night soil and green wastes. Comp. Sci. Util. 2012, 20, 254–259. [Google Scholar] [CrossRef]
- Zhu, N. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Biotechnology 2007, 98, 9–13. [Google Scholar] [CrossRef]
- NACA. Integrated Fish Farming in China; NACA Technical Manual 7; A World Food Day Publication of the Network of Aquaculture Centres in Asia and the Pacific: Bangkok, Thailand, 1989; 278p, Available online: www.idl-bnc-idrc.dspacedirect.org (accessed on 15 October 2019).
- Ghasem, S.; Morteza, A.S.; Maryam, T. Effect of organic fertilizers on cucumber (Cucumis sativus) yield. Int. J. Agric. Crop Sci. 2014, 7, 808–814. [Google Scholar]
Parameters | Pond Sediments | Rice Straw | Water Hyacinth | Soil (Initial) | Soil (Final) |
---|---|---|---|---|---|
pH | 6.97 | - | - | 5.01 | 5.92 |
Organic carbon (% C) | 4.51 | 47.31 | 40.19 | 5.17 | 5.24 |
Total N (% N) | 0.35 | 0.81 | 2.32 | 0.28 | 0.30 |
Total P (% P2O5) | 0.82 | - | 0.05 | 0.05 | 0.06 |
Total K (% K2O) | 1.07 | 2.24 | 1.46 | 1.72 | 1.10 |
Phosphate (Bray II) (PO43−, ppm) | 43.71 | - | - | 19.97 | 70.98 |
Ammonium (NH4+, mg kg−1) | 37.16 | - | - | 13.76 | 325.0 |
Nitrate (NO3−, mg kg−1) | 2.103 | - | - | 2.64 | 431.1 |
Parameters | PPS + RS (PPSRS) | PPS + WH (PPSWH) | ||||||
---|---|---|---|---|---|---|---|---|
PPSRS-10 | PPSRS-30 | PPSRS-50 | PPSRS-70 1 | PPSWH-10 | PPSWH-30 | PPSWH-50 | PPSWH-70 1 | |
Plant residues (%) | 10 | 30 | 50 | 70 | 10 | 30 | 50 | 70 |
Organic carbon (% C) | 6.03 | 11.70 | 11.39 | 16.68 | 6.53 | 10.11 | 9.94 | 16.54 |
TN (% N) | 0.42 | 0.70 | 0.70 | 1.12 | 0.63 | 0.70 | 0.70 | 0.98 |
TP (% P2O5) | 0.88 | 0.63 | 0.68 | 0.65 | 0.68 | 0.67 | 0.63 | 0.83 |
TK (% K2O) | 22.75 | 26.63 | 25.98 | 24.90 | 25.46 | 26.39 | 26.53 | 24.58 |
C/N | 14.36 | 16.71 | 16.27 | 14.89 | 10.41 | 14.44 | 14.20 | 16.88 |
Parameters | Wet Season | Dry Season | Standard for Organic Fertilizer 1 | ||
---|---|---|---|---|---|
PPSRS-70 | PPSWH-70 | PPSRS-70 | PPSWH-70 | ||
pH | 6.85 | 7.38 | 7.35 | 7.26 | 6.0–8.0 |
Organic carbon (% C) | 12.67 | 11.41 | 18.10 | 12.91 | >13 |
TN (% N) | 1.33 | 0.77 | 1.05 | 0.91 | >2.5 |
TP (% P2O5) | 0.84 | 1.14 | 1.36 | 1.80 | >2.5 |
TK (% K2O) | 1.35 | 2.06 | 1.76 | 2.14 | >1.5 |
C/N | 9.52 | 14.82 | 17.24 | 14.19 | - |
Phosphate (Bray II) (PO43−, ppm) | 62.77 | 65.41 | 35.36 | 42.98 | - |
Ammonium (NH4+, mg kg−1) | 34.49 | 7.12 | 50.42 | 12.10 | - |
Treatment | Fertilizer Composition (kg per Plot) | Total N-P-K from Chemical+PPSWH-70 Fertilizer Combinations (kg ha−1) | Total N-P-K from Chemical+PPSRS-70 Fertilizer Combinations (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet Season | Dry Season | Wet Season | Dry Season | |||||||||||
Chemical | Organic | N | P | K | N | P | K | N | P | K | N | P | K | |
T1 | 4.5 | 0 | 171 | 147 | 95 | 171 | 147 | 95 | 171 | 147 | 95 | 171 | 147 | 95 |
T2 | 3.4 | 25 | 137 | 116 | 79 | 130 | 112 | 73 | 134 | 118 | 83 | 134 | 121 | 84 |
T3 | 2.3 | 50 | 102 | 85 | 64 | 89 | 77 | 50 | 96 | 88 | 71 | 98 | 95 | 72 |
T4 | 1.2 | 75 | 68 | 53 | 48 | 47 | 42 | 28 | 59 | 58 | 61 | 61 | 69 | 61 |
T5 | 0 | 100 | 30 | 19 | 30 | 23 | 30 | 39 | 17 | 25 | 46 | 20 | 40 | 48 |
Crop | Fruit | RS | WH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T1 | T2 | T3 | T4 | T5 | ||
Wet Season | Tot No. of fruit | 4380 | 6001 | 6596 | 5826 | 3323 | 3517 | 5536 | 6091 | 5981 | 2992 |
Tot fruit weight (kg) | 364 | 491.8 | 549.9 | 489.1 | 249.4 | 317 | 459.1 | 510.6 | 459.5 | 230.8 | |
Dry Season | Tot No. of fruit | 3288 | 3425 | 3903 | 3248 | 2114 | 2935 | 3608 | 3359 | 3389 | 2311 |
Tot fruit weight (kg) | 344.4 | 355.9 | 393.3 | 340.5 | 190.7 | 292.3 | 350.9 | 352.4 | 332.2 | 209.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thi Da, C.; Anh Tu, P.; Livsey, J.; Tang, V.T.; Berg, H.; Manzoni, S. Improving Productivity in Integrated Fish-Vegetable Farming Systems with Recycled Fish Pond Sediments. Agronomy 2020, 10, 1025. https://doi.org/10.3390/agronomy10071025
Thi Da C, Anh Tu P, Livsey J, Tang VT, Berg H, Manzoni S. Improving Productivity in Integrated Fish-Vegetable Farming Systems with Recycled Fish Pond Sediments. Agronomy. 2020; 10(7):1025. https://doi.org/10.3390/agronomy10071025
Chicago/Turabian StyleThi Da, Chau, Phan Anh Tu, John Livsey, Van Tai Tang, Håkan Berg, and Stefano Manzoni. 2020. "Improving Productivity in Integrated Fish-Vegetable Farming Systems with Recycled Fish Pond Sediments" Agronomy 10, no. 7: 1025. https://doi.org/10.3390/agronomy10071025
APA StyleThi Da, C., Anh Tu, P., Livsey, J., Tang, V. T., Berg, H., & Manzoni, S. (2020). Improving Productivity in Integrated Fish-Vegetable Farming Systems with Recycled Fish Pond Sediments. Agronomy, 10(7), 1025. https://doi.org/10.3390/agronomy10071025