Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Preparation and Characterization
2.2. Collection of Rhizobacterial Strains
2.3. Soil Sampling and Analysis
2.4. Pot Trial
2.5. Field Trial
2.6. Nutrient Analyses in Grains
2.7. Post-Harvest Soil Sample Collection and Analysis
2.8. Statistical Analysis
3. Results
3.1. Pot Trial
3.2. Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. The World Population Prospects: The 2017 Revision, Published by the UN Department of Economic and Social Affairs. 2017. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 2 April 2020).
- Peerzado, M.B.; Magsi, H.; Sheikh, M.J. Land use conflicts and urban sprawl: Conversion of agriculture lands into urbanization in Hyderabad, Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 423–428. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Gao, G.; Zhao, J.; Wang, X.; Zhang, R. Production and cultivated area variation in cereal, rice, wheat and maize in China (1998–2016). Agronomy 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Tandzi, L.N.; Mutengwa, C.S. Estimation of maize (Zea mays L.) yield per harvest area: Appropriate methods. Agronomy 2020, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Patel, D.; Munda, G.C.; Ghosh, P.K. Effect of organic and inorganic sources of nutrients on yield, nutrient uptake and soil fertility of maize (Zea mays)—Mustard (Brassica campestris) cropping system. Indian J. Agric. Sci. 2010, 80, 85–88. [Google Scholar]
- Thilakarathna, M.S.; Raizada, M.N. A review of nutrient management studies involving finger millet in the semi-arid tropics of Asia and Africa. Agronomy 2015, 5, 262–290. [Google Scholar] [CrossRef] [Green Version]
- Cybulak, M.; Sokołowska, Z.; Boguta, P. Impact of biochar on physicochemical properties of haplic luvisol soil under different land use: A plot experiment. Agronomy 2019, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Wiedne, K.; Seeling, S.; Schmidt, H.P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Duku, H.M.; Gu, S.; Hagan, E.B. Biochar production potentials in Ghana-a review. Renew. Sustain. Energy Rev. 2011, 15, 3539–3551. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Huang, X.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L. Potential benefits of biochar in agricultural soils: A review. Pedosphere 2017, 27, 645–661. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Ok, Y.S.; Award, Y.M.; Lee, S.S.; Sung, J.K.; Kautsospyros, A.; Moon, D.H. Impact of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Ramzan, N.; Mustafa, A.; Samad, A.; Niamat, B.; Yaseen, M.; Ahmad, Z.; Hasanuzzaman, M.; Sun, N.; Shi, W.; et al. Alleviation of salinity induced oxidative stress in Chenopodium quinoa by Fe biofortification and biochar-endophyte interaction. Agronomy 2020, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Naveed, M.; Bashir, M.A.; Hussain, A.; Mustafa, A.; Zahir, Z.A.; Kamran, M.; Ditta, A.; Núñez-Delgado, A.; Saeed, Q.; et al. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J. Environ. Manag. 2020, 265, 110522. [Google Scholar] [CrossRef] [PubMed]
- Awad, Y.M.; Lee, S.S.; Kim, K.H.; Ok, Y.S.; Kuzyakov, Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere 2018, 198, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Hameed, A.; Hussain, S.A.; Yang, J.; Ijaz, M.U.; Liu, Q.; Suleria, H.A.R.; Song, Y. Antioxidants potential of the filamentous fungi (Mucor circinelloides). Nutrients 2017, 9, 1101. [Google Scholar] [CrossRef] [Green Version]
- Bargaz, A.; Karim, L.; Chtouki, M.; Zeroual, Y.; Driss, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [Green Version]
- Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Ahmad, M.; Nadeem, S.M.; Zahir, Z.A. Plant-microbiome interactions in agroecosystem: An application. In Microbiome in Plant Health and Disease; Kumar, V., Ed.; Springer Nature: Singapore, 2019; pp. 251–291. [Google Scholar]
- Hussain, A.; Zahir, Z.A.; Asghar, H.N.; Ahmad, M.; Jamil, M.; Naveed, M.; Akhtar, M.F.Z. Zinc solubilizing bacteria for zinc biofortification in cereals: A step towards sustainable nutritional security. In Role of Rhizospheric Microbes in Soil. Volume 2: Nutrient Management and Crop Improvement; Meena, V.S., Ed.; Springer: New Delhi, India, 2018; pp. 203–227. [Google Scholar]
- Mumtaz, M.Z.; Barry, K.M.; Baker, A.L.; Nichols, D.S.; Ahmad, M.; Zahir, Z.A.; Britz, M.L. Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: A possible mechanism for Zn solubilization. Rhizosphere 2019, 12, 100170. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, I.; Hilger, T.H.; Nadeem, S.M.; Akhtar, M.F.; Jamil, M.; Hussain, A.; Zahir, Z.A. Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ 2018, 6, e5122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Asad, S.A.; Hafeez, F. Bacillus strains as potential alternate for zinc biofortification of maize grains. Int. J. Agric. Biol. 2018, 20, 1779–1786. [Google Scholar]
- Saha, M.; Maurya, B.R.; Meena, V.S.; Bahadur, I.; Kumar, A. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal. Agric. Biotechnol. 2016, 7, 202–209. [Google Scholar] [CrossRef]
- Ahmad, M.; Naseer, I.; Hussain, A.; Mumtaz, M.Z.; Mustafa, A.; Hilger, T.H.; Zahir, Z.A.; Minggang, X. Appraising endophyte—Plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance: An experimental investigation with chickpea (Cicer arietinum L.). Agronomy 2019, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Naveed, M.; Mustafa, A.; Abbas, A. The good, the bad, and the ugly of rhizosphere microbiome. In Probiotics and Plant Health; Springer: Singapore, 2017; pp. 253–290. [Google Scholar]
- Nazli, F.; Najm-ul-Seher; Khan, M.Y.; Jamil, M.; Nadeem, S.M.; Ahmad, M. Soil microbes and plant health. In Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches, Sustainability in Plant and Crop Protection; IUl Haq, I., Ijaz, S., Eds.; Springer Nature: Basel, Switzerland, 2020; pp. 111–135. [Google Scholar]
- Naseer, I.; Ahmad, M.; Nadeem, S.M.; Ahmad, I.; Najm-ul-Seher; Zahir, Z.A. Rhizobial inoculants for sustainable agriculture: Prospects and applications. In Biofertilizers for Sustainable Agriculture and Environment, Soil Biology; Giri, B., Ed.; Springer Nature: Basel, Switzerland, 2019; pp. 245–284. [Google Scholar]
- Hussain, A.; Ahmad, M.; Mumtaz, M.Z.; Ali, S.; Sarfraz, R.; Naveed, M.; Jamil, M.; Damalas, C.A. Integrated application of organic amendments with Alcaligenes sp. AZ9 improves nutrient uptake and yield of maize (Zea mays). J. Plant Growth Regul. 2020, 9, 1–16. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE 2019, 14, e0222302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pramanik, K.; Mitra, S.; Sarkar, A.; Soren, T.; Maiti, T.K. Characterization of cadmium resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ. Sci. Pollut. Res. 2017, 24, 24419–24437. [Google Scholar] [CrossRef]
- Saeed, Z.; Naveed, M.; Imran, M.; Bashir, M.A.; Sattar, A.; Mustafa, A.; Hussain, A.; Xu, M. Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE 2019, 14, e0213016. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, M.; Tahir, M.; Shahid, M.; Ul-Allah, S.; Sattar, A.; Sher, A.; Mahmood, K.; Hussain, M. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. Braz. J. Microbiol. 2019, 50, 449–458. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmad, M.; Mumtaz, M.Z.; Nazli, F.; Farooqi, M.A.; Khalid, I.; Iqbal, Z.; Arshad, H. Impact of integrated use of enriched compost, biochar, humic acid and Alcaligenes sp. AZ9 on maize productivity and soil biological attributes in natural field conditions. Ital. J. Agron. 2019, 14, 101–107. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Khalid, A.; Mehmood, S.; Rizwan, M.S.; Ashraf, M.; Mubeen, F.; Imtiaz, M.; Iqbal, M.M. Integrated effect of algal biochar and plant growth promoting rhizobacteria on physiology and growth of maize under deficit irrigations. J. Soil Sci. Plant Nutr. 2019, 20, 346–356. [Google Scholar] [CrossRef]
- Naeem, M.A.; Khalid, M.; Ahmad, Z.; Naveed, M. Low pyrolysis temperature biochar improve growth and nutrient availability of maize on typic Calciargid. Commun. Soil Sci. Plant Anal. 2015, 47, 41–51. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science of America and American Society of Agronomy; Black, C.A., Ed.; ACSESS: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agriculture in Dry Areas (ICARDA): Aleppo, Syria, 2001; p. 172. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: New York, NY, USA, 1962. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; Agronomy Monographs; SSSA: Madison, WI, USA, 1982; pp. 570–571. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Sarfraz, M.; Ashraf, Y.; Ashraf, S. A Review: Prevalence and antimicrobial susceptibility profile of listeria species in milk products. Matrix Sci. Media 2017, 1, 3–9. [Google Scholar] [CrossRef]
- Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2017. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture, FAO Irrigation and Drainage Papers 29 (Rev.1); Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; pp. 1–11. [Google Scholar]
- Wolf, B. The comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Bullock, D.; Moore, K. Protein and Fat Determination in Corn. In Seed Analysis. Modern Methods of Plant Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 14, pp. 181–197. [Google Scholar]
- Jenkinson, D.S.; Ladd, J.N. Microbial Biomass in Soil, Measurement and Turn Over; Marcel Dekker: New York, NY, USA, 1981. [Google Scholar]
- Bremner, E.; Kessel, V. Extractability of microbial 14C and 15N following addition of variable rates of labeled glucose and ammonium sulphate to soil. Soil Biol. Biochem. 1990, 22, 707–713. [Google Scholar] [CrossRef]
- Kamphake, L.J.; Hannah, S.A.; Cohen, J.M. Automated analysis for nitrate by hydrazine reduction. Water Res. 1967, 1, 205–216. [Google Scholar] [CrossRef]
- Sims, J.R.; Jackson, D.G. Rapid analysis of soil nitrate with chromotropic acid. Soil Sci. Soc. Am. J. 1971, 35, 603–606. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics. In A Biometrical Approach, 3rd ed.; McGraw Hill Book Co.: New York, NY, USA, 2007. [Google Scholar]
- Bashir, M.A.; Naveed, M.; Ahmad, Z.; Gao, B.; Mustafa, A.; Núñez-Delgado, A. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 2020, 259, 110051. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, R.A.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W. Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis. Bioenergy Res. 2013, 6, 114–130. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Limkowicz-Pawlas, A.; Baran, A.; Bajda, T. Sewage sludge biochars management-ecotoxicity, mobility of heavy metals, and soil microbial biomass. Environ. Toxicol. Chem. 2017, 37, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Karhu, K.; Mattila, T.; Irina, B.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Shenbagavalli, S.; Mahimairaja, S. Characterization and effect of biochar on nitrogen and carbon dynamics in soil. Int. J. Adv. Biol. Res. 2012, 2, 249–255. [Google Scholar]
- Haider, G.; Koyro, H.W.; Azam, F.; Steffens, D.; Müller, C.; Kam-mann, C. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 2015, 395, 141–157. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Rathke, S.J.; Karlen, D.L. Biochar impact on midwestern mollisols and maize nutrient availability. Geoderma 2014, 23, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Hedley, M.; Arbestain, M.C.; Kirschbaum, M.U.F. Can biochar increase the bioavailability of phosphorus? J. Soil Sci. Plant Nutr. 2016, 16, 268–286. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.; Malik, Z.; Parveen, A.; Zong, Y.; Abbasi, G.H.; Rafiq, M.T.; Shaaban, M.; Mustafa, A.; Bashir, S.; Rafay, M.; et al. Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. J. Environ. Manag. 2019, 250, 109500. [Google Scholar] [CrossRef]
- Naveed, M.; Mustafa, A.; Azhar, A.Q.; Kamran, M.; Zahir, Z.A.; Núñez-Delgado, A. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.). J. Environ. Manag. 2020, 257, 109974. [Google Scholar] [CrossRef]
- Mustafa, A.; Naveed, M.; Saeed, Q.; Ashraf, M.N.; Hussain, A.; Abbas, T.; Kamran, M.; Minggang, X. Application potentials of plant growth promoting rhizobacteria and fungi as an alternative to conventional weed control methods. In Crop Production; IntechOpen: London, UK, 2019. [Google Scholar]
- Yang, S.; Chen, X.; Jiang, Z.; Ding, J.; Sun, X.; Xu, J. Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation. Int. J. Environ. Res. Public Health 2020, 17, 333. [Google Scholar] [CrossRef] [Green Version]
Parameters | Egyptian Acacia Biochar | Farmyard Manure Biochar | Wheat Straw Biochar |
---|---|---|---|
Turnover rate (%) | 28.45 ± 1.27 | 23.31 ± 0.94 | 38.76 ± 1.78 |
pH | 9.3 ± 0.25 | 8.67 ± 0.12 | 8.43 ± 0.21 |
EC (dS cm−1) | 1.85 ± 0.03 | 2.1 ± 0.02 | 1.9 ± 0.03 |
Bulk density (g cm−3) | 0.36 ± 0.01 | 0.43 ± 0.01 | 0.46 ± 0.03 |
Nitrogen (%) | 0.31 ± 0.02 | 0.28 ± 0.01 | 0.47 ± 0.02 |
Carbon (%) | 68.45 ± 3.24 | 44.21 ± 2.16 | 52.67 ± 1.89 |
Parameter | Pot Trial | Field Trial |
---|---|---|
ECe (dS m−1) | 1.6 ± 0.01 | 1.8 ± 0.01 |
pH | 8.1 ± 0.04 | 7.9 ± 0.02 |
Organic matter (%) | 0.39 ± 0.02 | 0.47 ± 0.02 |
Available N (%) | 0.024 ± 0.001 | 0.059 ± 0.003 |
Available P (mg kg−1) | 3.7 ± 0.01 | 4.5 ± 0.03 |
Extractable K (mg kg−1) | 53 ± 1.68 | 77 ± 3.21 |
Saturation percentage (%) | 33 ± 0.76 | 36 ± 0.71 |
Water-holding capacity (Inches ft−1) | 1.27 ± 0.05 | 1.29 ± 0.03 |
Textural class | Sandy loam | Sandy loam |
Treatment | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
---|---|---|---|---|---|
Root Fresh Biomass (g pot−1) | Root Dry Biomass (g pot−1) | ||||
Control | 28.00 f | 36.00 c–e | 14.33 d | 15.67 c,d | |
Egyptian acacia biochar (0.1%) | 29.33 f | 38.33 b–d | 15.33 c,d | 17.33 a–d | |
Egyptian acacia biochar (0.2%) | 31.67 e,f | 42.00 a,b | 16.33 a–d | 17.67 a–c | |
FYM biochar (0.1%) | 30.67 e,f | 41.33 a–c | 16.00 b–d | 17.67 a–c | |
FYM biochar (0.2%) | 33.00 d–f | 43.67 a,b | 17.67 a–c | 19.00 a,b | |
Wheat straw biochar (0.1%) | 31.00 e,f | 43.00 a,b | 17.33 a–d | 18.33 a–c | |
Wheat straw biochar (0.2%) | 35.67 d,e | 46.67 a | 18.00 a–c | 19.33 a | |
LSD (p ≤ 0.05) | 5.5636 | 3.1110 | |||
p value | PGPR | 0.0000 | 0.0192 | ||
Biochar | 0.0020 | 0.0314 | |||
PGPR + Biochar | 0.9586 | 0.9996 | |||
100 Grain Weight (g) | Grain Yield (g pot−1) | ||||
Control | 18.67 c | 19.67 b,c | 103.3 f | 106.3 e,f | |
Egyptian acacia biochar (0.1%) | 20.33 b,c | 21.33 a–c | 114.3 d,e | 116.0 d | |
Egyptian acacia biochar (0.2%) | 21.00 a–c | 21.67 a–c | 116.3 d | 121.0 b–d | |
FYM biochar (0.1%) | 21.00 a–c | 21.67 a–c | 116.0 d | 121.7 b–d | |
FYM biochar (0.2%) | 21.67 a–c | 23.67 a,b | 122.0 b–d | 127.0 a–c | |
Wheat straw biochar (0.1%) | 21.33 a–c | 23.00 a,b | 120.0 c,d | 126.0 a–c | |
Wheat straw biochar (0.2%) | 22.33 a–c | 24.67 a | 129.0 a,b | 133.7 a | |
LSD (p ≤ 0.05) | 4.3030 | 8.9777 | |||
p value | PGPR | 0.1039 | 0.0134 | ||
Biochar | 0.1421 | 0.0000 | |||
PGPR + Biochar | 0.9956 | 0.9755 |
Treatment | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
---|---|---|---|---|---|
Stover Yield (g pot−1) | Nitrogen Conc. in Grains (%) | ||||
Control | 20.33 c | 23.00 a–c | 2.17 g | 2.19 f,g | |
Egyptian acacia biochar (0.1%) | 22.00 b,c | 24.33 a–c | 2.21 f,g | 2.21 e–g | |
Egyptian acacia biochar (0.2%) | 23.00 a–c | 26.33 a,b | 2.24 c–g | 2.25 c–f | |
FYM biochar (0.1%) | 26.00 a–c | 25.67 a–c | 2.22 d–g | 2.25 c–f | |
FYM biochar (0.2%) | 25.00 a–c | 27.00 a,b | 2.28 a–e | 2.30 a–c | |
Wheat straw biochar (0.1%) | 24.33 a–c | 26.33 a,b | 2.28 b–e | 2.29 a–d | |
Wheat straw biochar (0.2%) | 25.67 a–c | 28.00 a | 2.32 a,b | 2.35 a | |
LSD (p ≤ 0.05) | 5.9763 | 0.0705 | |||
p value | PGPR | 0.0737 | 0.1857 | ||
Biochar | 0.2071 | 0.0000 | |||
PGPR + Biochar | 0.9862 | 0.9971 | |||
Phosphorus Conc. in Grains (%) | Potassium Conc. in Grains (%) | ||||
Control | 0.373 e | 0.390 c–e | 2.57 h | 2.60 g,h | |
Egyptian acacia biochar (0.1%) | 0.380 d,e | 0.403 b–d | 2.61 g,h | 2.63 f,g | |
Egyptian acacia biochar (0.2%) | 0.390 c–e | 0.410 a–c | 2.64 e–g | 2.69 c–e | |
FYM biochar (0.1%) | 0.387 c–e | 0.407 a–c | 2.62 g,h | 2.67 d–f | |
FYM biochar (0.2%) | 0.397 b–e | 0.417 a,b | 2.70 b–d | 2.74 a,b | |
Wheat straw biochar (0.1%) | 0.400 b–d | 0.410 a–c | 2.67 d–f | 2.72 b,c | |
Wheat straw biochar (0.2%) | 0.407 a–c | 0.430 a | 2.74 a,b | 2.77 a | |
LSD (p ≤ 0.05) | 0.0250 | 0.0499 | |||
p value | PGPR | 0.0000 | 0.0003 | ||
Biochar | 0.0000 | 0.0000 | |||
PGPR + Biochar | 0.0000 | 0.9546 |
Treatment | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
---|---|---|---|---|---|
Plant Height (cm) | Shoot Fresh Biomass (g pot−1) | ||||
Control | 136.3 f | 139.3 e,f | 243.6 g | 245.3 g | |
Egyptian acacia biochar (0.1%) | 141.0 d–f | 143.3 c–f | 255.0 f | 260.3 e,f | |
Egyptian acacia biochar (0.2%) | 144.0 e,f | 150.3 a–c | 262.3 e | 266.0 d,e | |
FYM biochar (0.1%) | 143.7 c–f | 146.7 b–e | 261.7 e,f | 265.7 d,e | |
FYM biochar (0.2%) | 147.0 b–e | 154.3 a,b | 273.3 b,c | 278.0 b,c | |
Wheat straw biochar (0.1%) | 146.3 b–e | 149.7 a–d | 271.0 c,d | 276.3 b,c | |
Wheat straw biochar (0.2%) | 153.0 a,b | 157.0 a | 279.0 a,b | 286.0 a | |
LSD (p ≤ 0.05) | 8.9702 | 7.2668 | |||
p value | PGPR | 0.0174 | 0.0022 | ||
Biochar | 0.0003 | 0.0000 | |||
PGPR + Biochar | 0.9774 | 0.9678 | |||
Shoot Dry Biomass (g pot−1) | 1000-Grain Weight (g) | ||||
Control | 79.67 g | 80.33 f,g | 222.33 g | 232.67 e,f | |
Egyptian acacia biochar (0.1%) | 84.33 d–f | 83.67 e–g | 229.00 f,g | 237.67 d,e | |
Egyptian acacia biochar (0.2%) | 85.00 d,e | 87.67 c–e | 236.00 b–f | 243.33 b–d | |
FYM biochar (0.1%) | 84.33 d–f | 87.00 c–e | 234.00 e,f | 242.67 b–d | |
FYM biochar (0.2%) | 88.67 c,d | 95.00 a,b | 243.00 b–d | 248.33 a,b | |
Wheat straw biochar (0.1%) | 88.67 c,d | 93.67 a,b | 239.33 c–e | 246.33 a–c | |
Wheat straw biochar (0.2%) | 91.33 b,c | 97.00 a | 247.67 a,b | 251.33 a | |
LSD (p ≤ 0.05) | 4.5478 | 7.6490 | |||
p value | PGPR | 0.0008 | 0.0000 | ||
Biochar | 0.0000 | 0.0000 | |||
PGPR + Biochar | 0.2527 | 0.8961 |
Treatment | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
---|---|---|---|---|---|
Grain Yield (t ha−1) | Nitrogen Conc. in Grains (%) | ||||
Control | 7.40 f | 7.90 d,e | 2.20 i | 2.24 g–i | |
Egyptian acacia biochar (0.1%) | 7.57 e,f | 8.23 c,d | 2.23 h,i | 2.31 e,f | |
Egyptian acacia biochar (0.2%) | 8.07 d | 8.60 c | 2.28 f,g | 2.34 b–e | |
FYM biochar (0.1%) | 7.93 d,e | 8.57 c | 2.27 f–h | 2.34 b–e | |
FYM biochar (0.2%) | 8.33 c,d | 9.10 b | 2.33 c–e | 2.38 a,b | |
Wheat straw biochar (0.1%) | 8.27 c,d | 9.10 b | 2.31 d–f | 2.35 b–d | |
Wheat straw biochar (0.2%) | 8.63 c | 9.63 a | 2.37 a–c | 2.41 a | |
LSD (p ≤ 0.05) | 0.4485 | 0.0434 | |||
p value | PGPR | 0.0000 | 0.0000 | ||
Biochar | 0.0000 | 0.0000 | |||
PGPR + Biochar | 0.6905 | 0.7951 | |||
Phosphorus Conc. in Grain (%) | Potassium Conc. in Grain (%) | ||||
Control | 0.393 g | 0.403 e–g | 2.64 i | 2.69 g–i | |
Egyptian acacia biochar (0.1%) | 0.400 fg | 0.417 c–f | 2.68 h,i | 2.74 d–g | |
Egyptian acacia biochar (0.2%) | 0.410 d–g | 0.423 b–d | 2.71 f–h | 2.80 b–d | |
FYM biochar (0.1%) | 0.407 d–g | 0.420 b–e | 2.71 f–h | 2.78 c–e | |
FYM biochar (0.2%) | 0.420 b–e | 0.437 a,b | 2.76 c–f | 2.85 a,b | |
Wheat straw biochar (0.1%) | 0.413 c–f | 0.430 a–c | 2.74 e–h | 2.82 b,c | |
Wheat straw biochar (0.2%) | 0.430 a–c | 0.447 a | 2.82 b,c | 2.89 a | |
LSD (p ≤ 0.05) | 0.0197 | 0.0622 | |||
p value | PGPR | 0.0004 | 0.0000 | ||
Biochar | 0.0001 | 0.0000 | |||
PGPR + Biochar | 0.9981 | 0.9359 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Wang, X.; Hilger, T.H.; Luqman, M.; Nazli, F.; Hussain, A.; Zahir, Z.A.; Latif, M.; Saeed, Q.; Malik, H.A.; et al. Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy 2020, 10, 1055. https://doi.org/10.3390/agronomy10071055
Ahmad M, Wang X, Hilger TH, Luqman M, Nazli F, Hussain A, Zahir ZA, Latif M, Saeed Q, Malik HA, et al. Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy. 2020; 10(7):1055. https://doi.org/10.3390/agronomy10071055
Chicago/Turabian StyleAhmad, Maqshoof, Xiukang Wang, Thomas H. Hilger, Muhammad Luqman, Farheen Nazli, Azhar Hussain, Zahir Ahmad Zahir, Muhammad Latif, Qudsia Saeed, Hina Ahmed Malik, and et al. 2020. "Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate" Agronomy 10, no. 7: 1055. https://doi.org/10.3390/agronomy10071055
APA StyleAhmad, M., Wang, X., Hilger, T. H., Luqman, M., Nazli, F., Hussain, A., Zahir, Z. A., Latif, M., Saeed, Q., Malik, H. A., & Mustafa, A. (2020). Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy, 10(7), 1055. https://doi.org/10.3390/agronomy10071055