Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge
Abstract
:1. Introduction
2. Materials and Methods
3. Review of Sida hermaphrodita (L.) Rusby
3.1. Origin and Botany
3.2. Agronomy of Sida hermaphrodita
3.2.1. Agroclimatic Requirements
3.2.2. Establishment Method
Establishment by Sowing
Establishment by Transplanting Seedlings or Rhizomes
3.2.3. Weeds, Pests, and Diseases
3.2.4. Nutrient Management
3.2.5. Harvesting Methods
4. Review of Silphium perfoliatum L.
4.1. Origin and Botany
4.2. Agronomy of Silphium perfoliatum
4.2.1. Agroclimatic Requirements
4.2.2. Establishment Method
Establishment by Sowing
Establishment by Transplanting Seedlings
4.2.3. Weeds, Pests, and Diseases
4.2.4. Nutrient Management
4.2.5. Harvesting Methods
5. Use of Sida hermaphrodita and Silphium perfoliatum to Produce Bioenergy
5.1. Sida hermaphrodita and Silphium perfoliatum Yields
5.1.1. Sida hermaphrodita Yield
5.1.2. Silphium perfoliatum Yield
5.2. Growing Sida hermaphrodita and Silphium perfoliatum as Solid Biofuel for Combustion
5.3. Using Sida hermaphrodita for Gasification
6. Alternative Uses
6.1. Forage and Fibre
6.2. Other Uses
- lipophilic substances from leaves, inflorescences, and roots [176];
- essential oils [177];
- stabilizers: Kowalski [179] verified the stabilizer action of extracts from three S. perfoliatum species on fatty acids of sunflower oil. Their research shows the extracts to have a similar effect to artificial stabilizers, even outperforming them in some cases, such as S. perfoliatum rhizome extracts after 120h heating of the sunflower oil;
- triterpenoid glycosides: Davidyans [181] demonstrated the effect of them on seed germination, noticing that these compounds increased α-amylase and total amylase activity, as well as total protein content;
- saponins: obtained from S. perfoliatum leaves reduced cholesterol from 12–19% in rats (Syrov et al., 1992, cited in [182]);
- anti-fungal properties: Zabka et al. [183] found inhibitory effects of extracts made from S. perfoliatum leaves on Fusarium oxysporum, Fusarium verticillioides, Penicillium brevicompactum, Aspergillus flavus, and Aspergillus fumigatus. Jamiolkowska and Kowalski [180] tested the antifungal properties of alcohol extracts from S. perfoliatum leaves on common fungal pathogens of pepper plants, obtaining very positive results and recommending its use for the creation of an organic antifungal control product. The highest growth inhibition was observed on Alternaria alternata and Colletotrichum coccodes, followed by Botrytis cinerea and Fusarium oxysporum;
- polysaccharides: Shang et al. [184] studied both extraction and drying methods and their antioxidant properties. They estimated the parameters for extraction of the highest number of polysaccharides and indicated freeze-drying as the best drying process to preserve antioxidant properties. Wu et al. [185] compared a variety of extraction methods and the antioxidant properties of the resulting polysaccharides, identifying the enzyme-assisted extraction method as most effective. Based on this result, Guo et al. [186] used the enzyme assisted extraction method and a purification method to isolate a polysaccharide with antioxidant as well as hypoglycaemic abilities;
- proteins: von Cossel et al. [102] described a protein extraction process from S. perfoliatum, suggesting that the residues after extraction could then be used in a biogas feedstock mix. They calculated that it is possible to extract 1479 kg of crude protein per ha from S. perfoliatum. They suggested this could increase the economic output of farms and create positive environmental impacts by reducing the use of soya for protein [102].
7. Environmental Benefits
7.1. Phytoremediation and Phytostabilisation
7.2. Biodiversity and Pollination
7.3. Soil Health Regulation
8. Economics of S. hermaphrodita and S. perfoliatum Cultivation
9. Energy Balances and LCAs
10. Recommendations for Future Research
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Author | Title | Year |
Tilvikiene, V., Kadziuliene, Z., Liaudanskiene, I., Zvicevicius, E., Cerniauskiene, Z., Cipliene, A., Raila, A. J., Baltrusaitis, J. | The quality and energy potential of introduced energy crops in northern part of temperate climate zone | 2020 |
Khanh-Quang, T., Werle, S., Trinh, T. T., Magdziarz, A. Sobek, S., Pogrzeba, M. | Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants | 2020 |
Kisielewska, M., Rusanowska, P., Dudek, M., Nowicka, A., Krzywik, A., Dębowski, M., Kazimierowicz, J., Zieliński, M. | Evaluation of ultrasound pretreatment for enhanced anaerobic digestion of Sida hermaphrodita | 2020 |
Magdziarz, A., Wilk, M., Wądrzyk, M. | Pyrolysis of hydrochar derived from biomass—Experimental investigation | 2020 |
Śliz, M., Wilk, M. | A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow | 2020 |
Lewtak, K., Fiołka, M.J., Czaplewska, P., Macur, K., Kaczyński, Z., Buchwald, T., Szczuka, E., Rzymowska, J. | Sida hermaphrodita seeds as the source of anti—Candida albicans activity | 2019 |
Purwin, C., Gugołek, A., Strychalski, J., Fijałkowska, M. | Productivity, nutrient digestibility, nitrogen retention, and meat quality in rabbits fed diets supplemented with Sida hermaphrodita | 2019 |
Bernat, P., Nesme, J., Paraszkiewicz, K., Schloter, M., Płaza, G. | Characterization of extracellular biosurfactants expressed by a Pseudomonas putida strain isolated from the interior of healthy roots from Sida hermaphrodita grown in a heavy metal contaminated soil | 2019 |
Feledyn-Szewczyk, B., Matyka, M., Staniak, M. | Comparison of the effect of perennial energy crops and agricultural crops on weed flora diversity | 2019 |
Jankowski, K.J., Dubis, B., Sokólski, M.M., Załuski, D., Bórawski, P., Szempliński, W. | Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland | 2019 |
Szwaja, S., Magdziarz, A., Zajemska, M., Poskart, A. | A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products | 2019 |
Siwek, H., Włodarczyk, M., Mozdzer, E., Bury, M., Kitczak, T. | Chemical composition and biogas formation potential of Sida hermaphrodita and Silphium perfoliatum | 2019 |
Zieliński, M., Kisielewska, M., Dudek, M., Rusanowska, P., Nowicka, A., Krzemieniewski, M., Kazimierowicz, J., Dębowski, M. | Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production | 2019 |
Stolarski, M.J., Krzyżaniak, M., Warmiński, K., Olba-Zięty, E., Penni, D., Bordiean, A. | Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops | 2019 |
Saletnik, B., Bajcar, M., Zaguła, G., Saletnik, A., Tarapatskyy, M., Puchalski, C. | Biochar as a stimulator for germination capacity in seeds of Virginia mallow (Sida hermaphrodita (L.) Rusby) | 2019 |
Nowicka, A., Zieliński, M., Dębowski, M., Dudek, M., Rusanowska, P. | Progress in the production of biogas from Virginia mallow after alkaline-heat pretreatment | 2019 |
Szwaja, S., Poskart, A., Zajemska, M. | A new approach for evaluating biochar quality from Virginia mallow biomass thermal processing | 2019 |
von Gehren, P., Gansberger, M., Pichler, W., Weigl, M., Feldmeier, S., Wopienka, E., Bochmann, G. | A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe | 2019 |
Zielinski, M., Rusanowska, P., Krzywik, A., Dudek, M., Nowicka, A., Ebowski, M.D. | Application of hydrodynamic cavitation for improving methane fermentation of Sida hermaphrodita silage | 2019 |
Schonhoff, A., Zapp, P., Schreiber, A., Jablonowski, N.D. | Environmental evaluation and comparison of process chains for the production and use of Sida hermaphrodita as a solid biofuel | 2019 |
Bury, M., Facciotto, G., Chiocchini, F., Cumplido-Marín, L., Graves, A., Kitczak, T., Martens, R., Morhart, C., Możdżer, E., Nahm, M., Paris, P., Siwek, H., Włodarczyk, M., Burgess, P., Kahle, H.-P. | Preliminary results regarding yields of Virginia mallow (Sida hermaphrodita (L.) Rusby) and cup plant (Silphium perfoliatum L.) in different condition of Europe | 2019 |
Antoszkiewicz, Z., Fijałkowska, M., Mazur-Kuśnirek, M., Przemieniecki, S., Purwin, C. | Effect of a harvest date and cutting height on the concentrations of carotenoids and tocopherols in Virginia fanpetals (Sida hermaphrodita) herbage and silage | 2019 |
Werle, S., Tran, K.-Q., Magdziarz, A., Sobek, S., Pogrzeba, M., Løvås, T. | Energy crops for sustainable phytoremediation—Fuel characterization | 2019 |
Kawecki, B., Podgórski, J., Głowacka, A. | Methods for determining elastic modulus in natural plant stems | 2019 |
Trinh, T.T., Werle, S., Tran, K.-Q., Magdziarz, A., Sobek, S., Pogrzeba, M. | Energy crops for sustainable phytoremediation—Thermal decomposition kinetics | 2019 |
Molas, R., Borkowska, H., Kupczyk, A., Osiak, J. | Virginia fanpetals (Sida) biomass can be used to produce high-quality bioenergy | 2019 |
Streikus, D., Jasinskas, A., Šarauskis, E., Romaneckas, K., Marks, M. | Technological-technical and environmental evaluation of herbaceous plant usage for the production and burning of granulated biofuel | 2019 |
Antonkiewicz, J., Kołodziej, B., Bielińska, E.J., Gleń-Karolczyk, K. | Research on the uptake and use of trace elements from municipal sewage sludge by multiflora rose and Virginia fanpetals | 2019 |
Tilvikiene V., Kadziuliene Z., Liaudanskiene I., Zvicevicius E., Cerniauskiene Z., Cipliene A., Raila A.J., Baltrusaitis J. | The quality and energy potential of introduced energy crops in northern part of temperate climate zone | 2019 |
Bilandžija, N., Krička, T., Matin, A., Leto, J., Grubor, M. | Effect of harvest season on the fuel properties of Sida hermaphrodita (L.) Rusby biomass as solid biofuel | 2018 |
Pogrzeba, M., Krzyżak, J., Rusinowski, S., Werle, S., Hebner, A., Milandru, A. | Case study on phytoremediation driven energy crop production using Sida hermaphrodita | 2018 |
Zachar, M., Lieskovský, M., Majlingová, A., Mitterová, I. | Comparison of thermal properties of the fast-growing tree species and energy crop species to be used as a renewable and energy-efficient resource | 2018 |
Nabel, M., Schrey, S.D., Poorter, H., Koller, R., Nagel, K.A., Temperton, V.M., Dietrich, C.C., Briese, C., Jablonowski, N.D. | Coming late for dinner: Localized digestate depot fertilization for extensive cultivation of marginal soil with Sida hermaphrodita | 2018 |
Nabel, M., Schrey, S.D., Temperton, V.M., Harrison, L., Jablonowski, N.D. | Legume intercropping with the bioenergy crop Sida hermaphrodita on marginal soil | 2018 |
Kurucz, E., Fári, M.G., Antal, G., Gabnai, Z., Popp, J., Bai, A. | Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita) | 2018 |
Nahm, M., Morhart, C. | Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: biomass yields, energetic valorization, utilization potentials, and management perspectives | 2018 |
Facciotto, G., Bury, M., Chiocchini, F., Marín, L.C., Czyż, H., Graves, A., Kitczak, T., Martens, R., Morhart, C., Paris, P., Nahm, M. | Performance of Sida hermaphrodita and Silphium perfoliatum in Europe: Preliminary results | 2018 |
Stolarski, M. J., Śnieg, M., Krzyżaniak, M., Tworkowski, J., Szczukowski, S., Graban, Ł., Lajszner, W. | Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time | 2018 |
Krzyżaniak, M., Stolarski, M.J., Warmiński, K. | Life cycle assessment of Virginia mallow production with different fertilisation options | 2018 |
Dobrowolski, J.W., Bedla, D., Czech, T., Gambuś, F., Górecka, K., Kiszczak, W., Kuźniar, T., Mazur, R., Nowak, A., Śliwka, M., Tursunov, O., Wagner, A., Wieczorek, J., Zabochnicka-Światek, M. | Integrated innovative biotechnology for optimization of environmental bioprocesses and a green economy | 2018 |
Matyka, M., Kuś, J. | Influence of soil quality for yield and biometric features of Sida hermaphrodita (L.) Rusby | 2018 |
Dudek, M., Rusanowska, P., Zieliński, M., Dȩbowski, M. | Influence of ultrasonic disintegration on efficiency of methane fermentation of Sida hermaphrodita silage | 2018 |
Sienkiewicz, S., Wierzbowska, J., Kovacik, P., Krzebietke, S., Zarczynski, P. | Digestate as a substitute of fertilisers in the cultivation of Virginia fanpetals | 2018 |
Zieliński, M., Dębowski, M., Kisielewska, M. | Effectiveness of biogas production from selected energy crops by anaerobic methane digestion supported by microwave radiation [Skuteczność wytwarzania biogazu z wybranych gatunków roślin energetycznych w procesie fermentacji metanowej wspomaganej promieniowaniem mikrofalowym] | 2018 |
Rusanowska, P., Zieliński, M., Dudek, M., Dȩbowski, M. | Mechanical pretreatment of lignocellulosic biomass for methane fermentation in innovative reactor with cage mixing system | 2018 |
Majlingová, A., Zachar, M., Lieskovský, M., Mitterová, I. | The analysis of mass loss and activation energy of selected fast-growing tree species and energy crops using the Arrhenius equation | 2018 |
Antonkiewicz, J., Kolodziej, B., Bielinska, E.J., Glen-Karolczyk, K. | The use of macroelements from municipal sewage sludge by the multiflora rose and the Virginia fanpetals | 2018 |
Kron, I., Porvaz, P., Kráľová-Hricindová, A., Tóth, Š., Sarvaš, J., Polák, M. | Green harvests of three perennial energy crops and their chemical composition | 2017 |
Nabel, M., Schrey, S.D., Poorter, H., Koller, R., Jablonowski, N.D. | Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility | 2017 |
Stolarski, M.J., Krzyżaniak, M., Warmiński, K., Tworkowski, J., Szczukowski, S. | Perennial herbaceous crops as a feedstock for energy and industrial purposes: Organic and mineral fertilisers versus biomass yield and efficient nitrogen utilization | 2017 |
Nesme, J., Cania, B., Zadel, U., Schöler, A., Płaza, G.A., Schloter, M. | Complete genome sequences of two plant-associated Pseudomonas putida isolates with increased heavy-metal tolerance | 2017 |
Krička, T., Matin, A., Bilandžija, N., Jurišić, V., Antonović, A., Voća, N., Grubor, M. | Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production | 2017 |
Fijałkowska, M., Przemieniecki, S.W., Kurowski, T., Lipiński, K., Nogalski, Z., Purwin, C. | Ensiling suitability and microbiological quality of Virginia fanpetals biomass | 2017 |
Dębowski, M., Zieliński, M., Kisielewska, M., Krzemieniewski, M. | Anaerobic co-digestion of the energy crop Sida hermaphrodita and microalgae biomass for enhanced biogas production | 2017 |
Damm, T., Pattathil, S., Günl, M., Jablonowski, N.D., O’Neill, M., Grün, K.S., Grande, P.M., Leitner, W., Schurr, U., Usadel, B., Klose, H. | Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance | 2017 |
Zajac, G., Szyszlak-Barglowicz, J., Slowik, T., Wasilewski, J., Kuranc, A. | Emission characteristics of biomass combustion in a domestic heating boiler fed with wood and Virginia mallow pellets | 2017 |
Werle, S., Bisorca, D., Katelbach-Woźniak, A., Pogrzeba, M., Krzyżak, J., Ratman-Kłosińska, I., Burnete, D. | Phytoremediation as an effective method to remove heavy metals from contaminated area—TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops | 2017 |
Antonkiewicz, J., Kołodziej, B., Bielińska, E.J. | Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita | 2017 |
Jablonowski, N.D., Kollmann, T., Nabel, M., Damm, T., Klose, H., Müller, M., Bläsing, M., Seebold, S., Krafft, S., Kuperjans, I., Dahmen, M., Schurr, U. | Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes | 2017 |
Zieliński, M., Dębowski, M., Rusanowska, P. | Influence of microwave heating on biogas production from Sida hermaphrodita silage | 2017 |
von Gehren, P., Gansberger, M. | Investigating the type of dormancy, imbibition and germination of Sida hermaphrodita seeds and its practical application in a sowing experiment | 2017 |
Stolarski, M.J., Krzyżaniak, M., Warmiński, K., Tworkowski, J., Szczukowski, S., Olba–Zięty, E., Gołaszewski, J. | Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilisers | 2017 |
Zieliński, M., Nowicka, A., Dȩbowski, M. | Hydrothermal depolymerization of Virginia fanpetals (Sida hermaphrodita) biomass with the use of microwave radiation as a potential method for substrate pre-treatment before the process of methane fermentation | 2017 |
Smoliński, A., Howaniec, N. | Chemometric modelling of experimental data on co-gasification of bituminous coal and biomass to hydrogen-rich gas | 2017 |
Uchman, W., Skorek-Osikowska, A., Werle, S. | Evaluation of the potential of the production of electricity and heat using energy crops with phytoremediation features | 2017 |
Urbanovičová, O., Krištof, K., Findura, P., Jobbágy, J., Angelovič, M. | Physical and mechanical properties of briquettes produced from energy plants | 2017 |
Šiaudinis, G., Skuodienė, R., Repšienė, R. | The investigation of three potential energy crops: Common mugwort, cup plant and Virginia mallow on Western Lithuania’s Albeluvisol | 2017 |
Werle, S., Ziółkowski, Ł., Bisorca, D., Pogrzeba, M., Krzyzak, J., Milandru, A. | Fixed-bed gasification process—The case of the heavy metal contaminated energy crops | 2017 |
Madej, J., Hilber, I., Bucheli, T.D., Oleszczuk, P. | Biochars with low polycyclic aromatic hydrocarbon concentrations achievable by pyrolysis under high carrier gas flows irrespective of oxygen content or feedstock | 2016 |
Jankowski, K.J., Dubis, B., Budzyński, W.S., Bórawski, P., Bułkowska, K. | Energy efficiency of crops grown for biogas production in a large-scale farm in Poland | 2016 |
Remlein-Starosta, D., Krzymińska, J., Kowalska, J., Bocianowski, J. | Evaluation of yeast-like fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum | 2016 |
Nabel, M., Temperton, V.M., Poorter, H., Lücke, A., Jablonowski, N.D. | Energizing marginal soils—The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping | 2016 |
Pachura, P., Ociepa-Kubicka, A., Skowron-Grabowska, B. | Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor | 2016 |
Bedlan, G., Plenk, A. | First report of Periconia sidae on Sida hermaphrodita in Europe [Erstnachweis von Periconia sidae an Sida hermaphrodita in Europa] | 2016 |
Bedlan, G. | Didymella sidae-hermaphroditae sp. nov., A new pathogen on Sida hermaphrodita (L.) Rusby [Didymella sidae-hermaphroditae sp. nov., Ein neues pathogen an Sida hermaphrodita (L.) Rusby] | 2016 |
Veste, M., Halke, C., Garbe, D., Freese, D. | Effect of nitrogen fertiliser and compost on photosynthesis and growth of Virginia fanpetals (Sida hermaphrodita Rusby) [Einfluss von Stickstoffdüngung und Kompost auf Photosynthese und Wachstum der Virginiamalve (Sida hermaphrodita Rusby)] | 2016 |
Piotrowski, K., Romanowska-Duda, Z., Grzesik, M. | Cyanobacteria, Asahi SL and biojodis as stimulants improving growth and development of the Sida hermaphrodita L. Rusby plant under changing climate conditions [Cyanobacteria, Asahi SL i Biojodis jako biostymulatory poprawiające wzrost i rozwój ślazowca pensylwańskiego w zmieniających się warunkach klimatycznych] | 2016 |
von Gehren, P., Gansberger, M., Pichler, W., Wopienka, E., Montgomery, L.F.R., Mayr, J. | Sida hermaphrodita L.—A promising energy crop for producing an intelligent, densified and versatile energy carrier for central Europe | 2016 |
Prelac, M., Bilandžija, N., Zgorelec, Ž. | The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review [Potencijal fitoremedijacije teških metala iz tla pomoću Poaceae kultura za proizvodnju energije: Pregledni rad] | 2016 |
Wierzbowska, J., Sienkiewicz, S., Krzebietke, S., Sternik, P. | Content of selected heavy metals in soil and in Virginia mallow (Sida hermaphrodita) fertilised with sewage sludge | 2016 |
Tilvikiene, V., Liaudanskiene, I., Pociene, L., Kadziuliene, Z. | The biomass potential of non-traditional energy crops in Lithuania | 2016 |
Goryachkovskaya, T., Slynko, N., Golubeva, E., Shekhovtsov, S.V., Nechiporenko, N., Veprev, S., Meshcheryakova, I., Starostin, K., Burmakina, N., Bryanskaya, A., Kolchanov, N., Shumny, V., Peltek, S.E. | “Soranovskii”: A new Miscanthus cultivar developed in Russia | 2016 |
Kocoń A., Jurga B. | The evaluation of growth and phytoextraction potential of Miscanthus × giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn | 2016 |
Poskart, A., Szwaja, S., Musiał, D. | Torrefaction of Virginia mallow as substitute fuel for domestic boilers [Karbonizat ślazowca pensylwańskiego jako paliwo do kotłów wȩglowych C.O.] | 2016 |
Hanzhenko, O. | SEEMLA Sustainable exploitation of biomass for bioenergy from marginal lands in Europe: Catalogue for bioenergy crops and their suitability in the categories of MagLs | 2016 |
Šiaudinis, G., Jasinskas, A., Šarauskis, E., Steponavičius, D., Karčauskiene, D., Liaudanskiene, I. | The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico-mechanical properties and energy expenses | 2015 |
Franzaring, J., Holz, I., Kauf, Z., Fangmeier, A. | Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO2 fertilization at different temperatures and water supply | 2015 |
Michalska, K., Bizukojć, M., Ledakowicz, S. | Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production | 2015 |
Pokój, T., Bułkowska, K., Gusiatin, Z.M., Klimiuk, E., Jankowski, K.J. | Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition | 2015 |
Goryachkovskaya, T.N., Starostin, K.V., Meshcheryakova, I.A., Slynko, N.M., Peltek, S.E. | Technology of Miscanthus biomass saccharification with commercially available enzymes | 2015 |
Bogusz, A., Oleszczuk, P., Dobrowolski, R. | Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water | 2015 |
Gansberger, M., Weinghappel, M., von Gehren, P., Ratzenbock, A., Liebhard, P., Mayr, J. | Seed germination of Silphium perfoliatum L. and Sida hermaphrodita L., and technological measures for its improvement | 2015 |
Stolarski, M. J., Tworkowski, J., Szczukowski, S., Kwiatkowski, J., Graban, L. | Cost-effectiveness and energy efficiency of the production of Pennsylvanian mallow biomass depending on the seed used [Opłacalność i efektywność energetyczna produkcji biomasy ślazowca pensylwańskiego w zależności od stosowanego materiału siewnego] | 2014 |
Stolarski, M. J., Krzyzaniak, M., Śnieg. M., Słomińska, E., Piórkowski, M., Filipkowski, R. | Thermophysical and chemical properties of perennial energy crops depending on harvest period | 2014 |
Nabel, M., Barbosa, D.B.P., Horsch, D., Jablonowski, N.D. | Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment | 2014 |
Szyszlak-Bargłowicz, J. | Content of chosen macroelements in biomass of Virginia mallow (Sida hermaphrodita Rusby) [Zawartość wybranych makroelementów w biomasie ślazowca pensylwańskiego (Sida hermaphrodita Rusby)] | 2014 |
Franzaring, J., Schmid, I., Bäuerle, L., Gensheimer, G., Fangmeier, A. | Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species Sida hermaphrodita Rusby and Silphium perfoliatum L. | 2014 |
Kurucz, E., Antal, G., Gábor, F.M., Popp, J. | Cost-effective mass propagation of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) from seeds | 2014 |
Barbosa, D.B.P., Nabel, M., Jablonowski, N.D. | Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea mays L. and Medicago sativa L. | 2014 |
Packa, D., Kwiatkowski, J., Graban, Ł., Lajszner, W. | Germination and dormancy of Sida hermaphrodita seeds | 2014 |
Czyzyk, F., Rajmund, A. | Influence of agricultural utilization of sludge and compost from rural wastewater treatment plant on nitrogen passes in light soil | 2014 |
Emmerling, C. | Impact of land-use change towards perennial energy crops on earthworm population | 2014 |
Michalsk, K., Ledakowicz, S. | Alkaline hydrogen peroxide pretreatment of energy crops for biogas production | 2014 |
Jasinskas, A., Sarauskis, E., Sakalauskas, A., Vaiciukevicius, E., Siaudinis, G., Cekanauskas, S. | Assessment of unconventional tall grasses cultivation and preparation for solid biofuel | 2014 |
Stolarski, M. J., Krzyzaniak, M., Śnieg, M., Słomińska, E., Piórkowski, M., Filipkowski, R. | Thermophysical and chemical properties of perennial energy crops depending on harvest period | 2014 |
Balezentiene, L., Streimikiene, D., Balezentis, T. | Fuzzy decision support methodology for sustainable energy crop selection | 2013 |
Szyszlak-Bargłowicz, J., Słowik, T., Zajac, G., Piekarski, W. | Inline plantation of Virginia mallow (Sida hermaphrodita R.) as biological acoustic screen [Pasowe nasadzenia ślazowca pensylwańskiego (Sida hermaphrodita R.) jako biologiczny ekran akustyczny] | 2013 |
Borkowska, H., Molas, R. | Yield comparison of four lignocellulosic perennial energy crop species | 2013 |
Oleszek, M., Matyka, M., Lalak, J., Tys, J., Paprota, E. | Characterization of Sida hermaphrodita as a feedstock for anaerobic digestion process | 2013 |
Kurucz, E., Fári, M.G. | Improvement of germination capacity of Sida hermaphrodita (L.) Rusby by seed priming techniques | 2013 |
Krzywy-Gawrońska, E. | The effect of industrial wastes and municipal sewage sludge compost on the quality of Virginia fanpetals (Sida hermaphrodita Rusby) biomass Part 2. Heavy metals content, their uptake dynamics and bioaccumulation | 2012 |
Michalska, K., Miazek, K., Krzystek, L., Ledakowicz, S. | Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass | 2012 |
Dobrowolski, J.W., Śliwka, M., Mazur, R. | Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas | 2012 |
Voigt, T.B., Lee, D.K., Kling, G.J. | Perennial herbaceous crops with potential for biofuel production in the temperate regions of the USA | 2012 |
Kocoń, A., Matyka, M. | Phytoextractive potential of Miscanthus giganteus and Sida hermaphrodita growing under moderate pollution of soil with Zn and Pb | 2012 |
Borkowska, H., Molas, R. | Two extremely different crops, Salix and Sida, as sources of renewable bioenergy | 2012 |
Krzywy-Gawrońska, E. | The effect of industrial wastes and municipal sewage sludge compost on the quality of Virginia fanpetals (Sida hermaphrodita Rusby) biomass Part 1. Macroelements content and their uptake dynamics | 2012 |
Pszczó£kowska, A., Romanowska-Duda, Z., Pszczó£Kowski, W., Grzesik, M., Wysokiñska, Z. | Biomass production of selected energy plants: Economic analysis and logistic strategies | 2012 |
Slepetys, J., Kadziuliene, Z., Sarunaite, L., Tilvikiene, V., Kryzeviciene, A. | Biomass potential of plants grown for bioenergy production | 2012 |
Ewa, O. | The effect of fertilization on yielding and heavy metals uptake by maize and Virginia fanpetals (Sida hermaphrodita) | 2011 |
Smoliński, A., Howaniec, N., Stańczyk, K. | A comparative experimental study of biomass, lignite and hard coal steam gasification | 2011 |
Howaniec, N., Smoliński, A. | Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas | 2011 |
Tarkowski, A., Truchliński, J. | Nutritional value of Virginia fanpetals (Sida hermaphrodita Rusby) protein in evaluation of nitrogen fertilization effect on environment | 2011 |
Poiša, L., Adamovičs, A., Antipova, L., Šiaudinis, G., Karčauskiene, D., Platače, R., Žukauskaite, A., Maiakauskaite, S., Teirumnieka, E. | The chemical content of different energy crops | 2011 |
Igliński, B., Iglińska, A., Kujawski, W., Buczkowski, R., Cichosz, M. | Bioenergy in Poland | 2011 |
Burczy, H., Mirowski, T., Kalawa, W., Sajdak, W. | Study on biomass trade in Poland | 2010 |
Wielgosz, E. | Effect of selected plant species on enzymatic activity of soil microorganisms [Wpływ zróżnicowanej obsady rooelinnej na aktywność enzymatyczna{ogonek} drobnoustrojów glebowych] | 2010 |
Thompson-Black, M.J. | Assessment and Status Report Virginia mallow Sida hermaphrodita in Canada | 2010 |
Borkowska, H., Molas, R., Kupczyk, A. | Virginia fanpetals (Sida hermaphrodita Rusby) cultivated on light soil; height of yield and biomass productivity | 2009 |
Tarkowski, A. | The yield and chemical composition of milk of cows fed the ration with protein-fibrous-extruderate [Wydajność i skład chemiczny mleka krow żywionych dawka{ogonek} z ekstruderatem białkowo-włóknistym] | 2008 |
Avula, B., Joshi, V., Wang, Y.-H., Jadhav, A.N., Khan, I.A. | Quantitative determination of ecdysteroids in Sida rhombifolia L. and various other Sida species using LC-UV, and their anatomical characterization | 2008 |
Borkowska, H. | Virginia mallow and willow coppice yield on good wheat complex soil | 2007 |
Krzaczek, P., Szyszlak, J., Zarajczyk, J. | Assessment of the influence of selected operating parameters of S071/B KRUK seeder on seeding Sida hermaphrodita Rusby seeds | 2006 |
Borkowska, H., Wardzińska, K. | Some effects of Sida hermaphrodita R. cultivation on sewage sludge | 2003 |
Aguilar, J.F., Fryxell, P.A., Jansen, R.K. | Phylogenetic relationships and classification of the Sida generic alliance (Malvaceae) based on nrDNA ITS evidence | 2003 |
Borkowska, H., Jackowska, I., Piotrowski, J., Styk, B. | Suitability of cultivation of some perennial plant species on sewage sludge | 2001 |
Ligai, L.V., Bandyukova, V.A. | Chemical study of Sida hermaphrodita | 1990 |
Bandyukova, V.A., Ligai, L.V. | Study of the kinetics of the extraction of flavonoids from plant raw material I. Extraction of rutin from Sida hermaphrodita | 1987 |
Spooner, D.M., Cusick, A.W., Hall, G.F., Baskin, J.M. | Observations on the Distribution and Ecology of Sida hermaphrodita (L.) Rusby (Malvaceae) | 1985 |
Author | Title | Year |
von Cossel, M., Amarysti, C., Wilhelm, H., Priya, N., Winkler, B., Hoerner, L. | The replacement of maize (Zea mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant | 2020 |
Styks, J., Wróbel, M., Fraczek, J., Knapczyk, A. | Effect of compaction pressure and moisture content on quality parameters of perennial biomass pellets | 2020 |
Reinert, S., Hulke, B.S., Prasifka, J.R. | Pest potential of Neotephritis finalis (Loew) on Silphium integrifolium Michx., Silphium perfoliatum L., and interspecific hybrids | 2020 |
Mueller, A.L., Berger, C. A.,Schittenhelm, S., Stever-Schoo, B., Dauber, J. | Water availability affects nectar sugar production and insect visitation of the cup plant Silphium perfoliatum L. (Asteraceae) | 2020 |
Kowalska, G., Pankiewicz, U., Kowalski, R. | Evaluation of chemical composition of some Silphium L. species as alternative raw materials | 2020 |
Guo, Y., Shang, H., Zhao, J., Zhang, H., Chen, S. | Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) polysaccharide and its antioxidant and hypoglycemic activities | 2020 |
von Cossel, M., Steberl, K., Hartung, J., Pereira, L.A., Kiesel, A., Lewandowski, I. | Methane yield and species diversity dynamics of perennial wild plant mixtures established alone, under cover crop maize (Zea mays L.), and after spring barley (Hordeum vulgare L.) | 2019 |
Siwek, H., Włodarczyk, M., Mozdzer, E., Bury, M., Kitczak, T. | Chemical composition and biogas formation potential of Sida hermaphrodita and Silphium perfoliatum | 2019 |
Hryniewicz, M. | Determination of the normalized yield curve of the cup-plant (Silphium perfoliatum) according to the nitrogen dose [Wyznaczenie znormalizowanej krzywej plonowania rożnika przerośniętego (Silphium perfoliatum) względem dawki azotu] | 2019 |
Chmelíková, L., Wolfrum, S. | Mitigating the biodiversity footprint of energy crops—A case study on arthropod diversity | 2019 |
Oleszek, M., Kowalska, I., Oleszek, W. | Phytochemicals in bioenergy crops | 2019 |
Wever, C., Höller, M., Becker, L., Biertümpfel, A., Köhler, J., van Inghelandt, D., Westhoff, P., Pude, R., Pestsova, E. | Towards high-biomass yielding bioenergy crop Silphium perfoliatum L.: phenotypic and genotypic evaluation of five cultivated populations | 2019 |
Du, J., Zhang, L., Ali, A., Li, R., Xiao, R., Guo, D., Liu, X., Zhang, Z., Ren, C., Zhang, Z. | Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars | 2019 |
Bury, M., Facciotto, G., Chiocchini, F., Cumplido-Marín, L., Graves, A., Kitczak, T., Martens, R., Morhart, C., Możdżer, E., Nahm, M., Paris, P., Siwek, H., Włodarczyk, M., Burgess, P., Kahle, H.-P. | Preliminary results regarding yields of Virginia mallow (Sida hermaphrodita (L.) Rusby) and cup plant (Silphium perfoliatum L.) in different condition of Europe | 2019 |
Mueller, A.L., Biertümpfel, A., Friedritz, L., Power, E.F., Wright, G.A., Dauber, J. | Floral resources provided by the new energy crop, Silphium perfoliatum L. (Asteraceae) | 2019 |
Šiaudinis, G., Karčauskienė, D., Aleinikovienė, J. | Assessment of a single application of sewage sludge on the biomass yield of Silphium perfoliatum and changes in naturally acid soil properties [Nuotekų dumblo vienkartinio panaudojimo įtaka geltonžiedžių legėstų biomasės derliui ir natūraliai rūgštaus dirvožemio savybių kaitai] | 2019 |
Ruf, T., Audu, V., Holzhauser, K., Emmerling, C. | Bioenergy from periodically waterlogged cropland in Europe: A first assessment of the potential of five perennial energy crops to provide biomass and their interactions with soil | 2019 |
Ustak, S., Munoz, J. | Cup-plant potential for biogas production compared to reference maize in relation to the balance needs of nutrients and some microelements for their cultivation | 2018 |
Ruf, T., Makselon, J., Udelhoven, T., Emmerling, C. | Soil quality indicator response to land-use change from annual to perennial bioenergy cropping systems in Germany | 2018 |
Facciotto, G., Bury, M., Chiocchini, F., Marín, L.C., Czyż, H., Graves, A., Kitczak, T., Martens, R., Morhart, C., Paris, P., Nahm, M. | Performance of Sida hermaphrodita and Silphium perfoliatum in Europe: Preliminary results | 2018 |
Šimkūnas, A., Denisov, V., Valašinaitė, S., Jankauskienė, R., Ivanauskaitė, A. | From an empirical to conceptual modeling view of energy crop productivity | 2018 |
Schäfer, A., Leder, A., Graff, M., Damerow, L., Lammers, P.S. | Determination and sorting of cup plant seeds to optimize crop establishment | 2018 |
Schoo, B., Schroetter, S., Kage, H., Schittenhelm, S. | Root traits of cup plant, maize and lucerne grass grown under different soil and soil moisture conditions | 2017 |
Shang, H.-M., Zhou, H.-Z., Li, R., Duan, M.-Y., Wu, H.-X., Lou, Y.-J. | Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.) | 2017 |
Schoo, B., Kage, H., Schittenhelm, S. | Radiation use efficiency, chemical composition, and methane yield of biogas crops under rainfed and irrigated conditions | 2017 |
Schoo, B., Wittich, K.P., Böttcher, U., Kage, H., Schittenhelm, S. | Drought tolerance and water-use efficiency of biogas crops: a comparison of cup plant, maize and lucerne-grass | 2017 |
Eulenstein, F., Tauschke, M., Behrendt, A., Monk, J., Schindler, U., Lana, M.A., Monk, S. | The application of mycorrhizal fungi and organic fertilisers in horticultural potting soils to improve water use efficiency of crops | 2017 |
Kula R.R., Johnson P.J., Heidel-Baker T.T., Boe A. | A new species of Acanthocaudus Smith (Braconidae: Aphidiinae), with a key to species and new host and distribution records for aphidiines associated with Silphium perfoliatum L. (Asterales: Asteraceae) | 2017 |
Gansberger, M., Stüger, H.-P., Weinhappel, M., Moder, K., Liebhard, P., Von Gehren, P., Mayr, J., Ratzenböck, A. | Germination characteristic of Silphium perfoliatum L. seeds | 2017 |
Schorpp, Q., Schrader, S. | Dynamic of nematode communities in energy plant cropping systems | 2017 |
Van Tassel, D.L., Albrecht, K.A., Bever, J.D., Boe, A.A., Brandvain, Y., Crews, T.E., Gansberger, M., Gerstberger, P., González-Paleo, L., Hulke, B.S., Kane, N.C., Johnson, P.J., Pestsova, E.G., Picasso Risso, V.D., Prasifka, J.R., Ravetta, D.A., Schlautman, B., Sheaffer, C.C., Smith, K.P., Speranza, P.R., Turner, M.K., Vilela, A.E., von Gehren, P., Wever, C. | Accelerating Silphium domestication: An opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines | 2017 |
Schäfer, A., Damerow, L., Lammers, P.S. | Determination of the seed geometry of cup plant as requirement for precision seeding | 2017 |
Schittenhelm, S., Kottmann, L., Schoo, B. | Water as a limiting factor for crop yield [Wasser als ertragsbegrenzender faktor] | 2017 |
Šiaudinis, G., Skuodienė, R., Repšienė, R. | The investigation of three potential energy crops: Common mugwort, cup plant and Virginia mallow on Western Lithuania’s Albeluvisol | 2017 |
Konold Schürlein, A. | AVergärung von Durchwachsener Silphie—Beurteilung mittels eines Gärtestes | 2017 |
CABI | Silphium perfoliatum Datasheet. Retrieved from Invasive Species Compendium | 2017 |
Klímek, P., Meinlschmidt, P., Wimmer, R., Plinke, B., Schirp, A. | Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards | 2016 |
Schorpp, Q., Riggers, C., Lewicka-Szczebak, D., Giesemann, A., Well, R., Schrader, S. | Influence of Lumbricus terrestris and Folsomia candida on N2O formation pathways in two different soils—with particular focus on N2 emissions | 2016 |
Mueller, A.L., Dauber, J. | Hoverflies (Diptera: Syrphidae) benefit from a cultivation of the bioenergy crop Silphium perfoliatum L. (Asteraceae) depending on larval feeding type, landscape composition and crop management | 2016 |
Schorpp, Q., Schrader, S. | Earthworm functional groups respond to the perennial energy cropping system of the cup plant (Silphium perfoliatum L.) | 2016 |
Gansberger, M. | Seed morphology, germination process, seed processing and assessment of the viability of Silphium perfoliatum L. seeds [Samenmorphologie, Keimprozess, Saatgutaufbereitung und Bestimmung der Lebensfähigkeit von Silphium perfoliatum L. Samen] | 2016 |
Emmerling, C. | Soil quality through the cultivation of perennial bioenergy crops by example of Silphium perfoliatum—an innovative agro-ecosystem in future [Bodenqualität beim Anbau von Dauerkulturen für die Biomasseproduktion am Beispiel der Durchwachsenen Silphie (Silphium perfoliatum L.)—ein innovatives Agrarsystem der Zukunft] | 2016 |
Burmeister, J., Walter, R. | Studies on the ecological effect of Silphium perfoliatum in Bavaria [Untersuchungen zur ökologischen Wirkung der Durchwachsenen Silphie aus Bayern] | 2016 |
Gerstberger, P., Asen, F., Hartmann, C. | Economy and ecology of cup plant (Silphium perfoliatum L.) compared with silage maize [Zur ökonomie und ökologie der becherpflanze (Silphium perfoliatum L.) im vergleich zum silomais] | 2016 |
Schorpp, Q., Müller, A.L., Schrader, S., Dauber, J. | Agro-ecological potential of the cup plant (Silphium perfoliatum L.) from a biodiversity perspective [Agrarökologisches potential der durchwachsenen silphie (Silphium perfoliatum L.) aus sicht biologischer vielfalt] | 2016 |
Frölich, W., Brodmann, R., Metzler, T. | The cup plant (Silphium perfoliatum L.)—a story of success from agricultural practice [Die Durchwachsene Silphie (Silphium perfoliatum L.)—ein erfolgsbericht aus der praxis] | 2016 |
von Gehren, P., Gansberger, M., Mayr, J., Liebhard, P. | The effect of sowing date and seed pretreatments on establishment of the energy plant Silphium perfoliatum by sowing | 2016 |
Blüthner, W.-D., Krähmer, A., Hänsch, K.-T. | Breeding progress in cup plant—first steps [Züchterische Verbesserung der Silphie—erste Schritte] | 2016 |
Hartmann, A., Lunenberg, T. | Yield potential of cup plant under Bavarian cultivation conditions [Ertragspotenzial der Durchwachsenen Silphie unter bayerischen Anbaubedingungen] | 2016 |
Zilverberg, C.J., Teoh, K., Boe, A., Johnson, W.C., Owens, V. | Strategic use of native species on environmental gradients increases diversity and biomass relative to switchgrass monocultures | 2016 |
Köhler, J., Biertümpfel, A. | As the sowing, so the harvest—successful establishment of cup plant by sowing [Wie die saat, so die ernte—erfolgreiche etablierung durchwachsener silphie durch aussaat] | 2016 |
Schäfer, A., Damerow, L., Lammers, P.S. | Cup plant: Crop establishment by sowing [Durchwachsene silphie: Bestandesetablierung mittels aussaat] | 2016 |
Schittenhelm, S., Schoo, B., Schroetter, S. | Yield physiology of biogas crops: Comparison of cup plant, maize, and lucerne-grass [Ertragsphysiologie von biogaspflanzen: Vergleich von durchwachsener silphie, mais und luzernegras] | 2016 |
Lunenberg, T., Hartmann, A. | Nutrient uptake by cup plant in Bavaria [Nährstoffentzüge von durchwachsener silphie in Bayern] | 2016 |
Tilvikiene, V., Liaudanskiene, I., Pociene, L., Kadziuliene, Z. | The biomass potential of non-traditional energy crops in Lithuania | 2016 |
Šiaudinis, G., Jasinskas, A., Šarauskis, E., Steponavičius, D., Karčauskiene, D., Liaudanskiene, I. | The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico-mechanical properties and energy expenses | 2015 |
Franzaring, J., Holz, I., Kauf, Z., Fangmeier, A. | Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO2 fertilization at different temperatures and water supply | 2015 |
Skorupskaitė, V., Makarevičienė, V., Šiaudinis, G., Zajančauskaitė, V. | Green energy from different feedstock processed under anaerobic conditions | 2015 |
Haag, N.L., Nägele, H.-J., Reiss, K., Biertümpfel, A., Oechsner, H. | Methane formation potential of cup plant (Silphium perfoliatum) | 2015 |
Gansberger, M., Montgomery, L.F.R., Liebhard, P. | Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review | 2015 |
Schäfer, A., Meinhold, T., Damerow, L., Lammers, P.S. | Crop establishment of Silphium perfoliatum by precision seeding | 2015 |
Ruidisch, M., Nguyen, T.T., Li, Y.L., Geyer, R., Tenhunen, J. | Estimation of annual spatial variations in forest production and crop yields at landscape scale in temperate climate regions | 2015 |
Feng, W.-S., Pei, Y.-Y., Zheng, X.-K., Li, C.-G., Ke, Y.-Y., Lv, Y.-Y., Zhang, Y.-L. | A new kaempferol trioside from Silphium perfoliatum | 2014 |
Bedlan, G. | Ascochyta silphii sp. nov.—A new Ascochyta species on Silphium perfoliatum [Ascochyta silphii sp. nov.—Eine neue Ascochyta-art an Silphium perfoliatum] | 2014 |
Franzaring, J., Schmid, I., Bäuerle, L., Gensheimer, G., Fangmeier, A. | Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species Sida hermaphrodita Rusby and Silphium perfoliatum L. | 2014 |
Bauböck, R., Karpenstein-Machan, M., Kappas, M. | Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany) | 2014 |
Heděnec, P., Novotný, D., Usťak, S., Cajthaml, T., Slejška, A., Šimáčková, H., Honzík, R., Kovářová, M., Frouz, J. | The effect of native and introduced biofuel crops on the composition of soil biota communities | 2014 |
Jasinskas, A., Simonavičiute, R., Šiaudinis, G., Liaudanskiene, I., Antanaitis, Š., Arak, M., Olt, J. | The assessment of common mugwort (Artemisia vulgaris L.) and cup plant (Silphium perfoliatum L.) productivity and technological preparation for solid biofuel [Paprastojo kiečio (Artemisia vulgaris L.) bei geltonžiedžio legėsto (Silphium perfoliatum L.) produktyvumo ir kietojo kuro ruošimo technologinis vertinimas] | 2014 |
Jasinskas, A., Sarauskis, E., Sakalauskas, A., Vaiciukevicius, E., Siaudinis, G., Cekanauskas, S. | Assessment of unconventional tall grasses cultivation and preparation for solid biofuel | 2014 |
Amador, G.J., Yamada, Y., McCurley, M., Hu, D.L. | Splash-cup plants accelerate raindrops to disperse seeds | 2013 |
Wrobel, M., Fraczek, J., Francik, S., Slipek, Z., Krzysztof, M. | Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. | 2013 |
FNR | Gülzower technical discussions, 4th symposium on energy crops [Gülzower Fachgespräche, 4. Symposium Energiepflanzen], 22-23 Oktober 2013, Berlin. | 2013 |
Šiaudinis, G., Jasinskas, A., Šlepetiene, A., Karčauskiene, D. | The evaluation of biomass and energy productivity of common mugwort (Artemisia vulgaris L.) and cup plant (Silphium perfoliatum L.) in albeluvisol [Paprastojo kiečio (Artemisia vulgaris L.) bei geltonžiedžio legėsto (Silphium perfoliatum l.) biomasės ir energinis produktyvumas balkšvažemyje] | 2012 |
Jamiołkowska, A., Kowalski, R. | In-vitro estimate of influence of Silphium perfoliatum L. leaves extract on some fungi colonizing the pepper plants [Ocena wpływu ekstraktu z liści Silphium perfoliatum L. w warunkach in-vitro, na niektóre grzyby zasiedlaja{ogonek}ce rośliny papryki] | 2012 |
Pichard, G. | Management, production, and nutritional characteristics of cup-plant (Silphium perfoliatum) in temperate climates of southern Chile [Manejo, producción, y características nutricionales del silfo (Silphium perfoliatum) en climas templados del sur de Chile] | 2012 |
Voigt T.B., Lee D.K., Kling G.J. | Perennial herbaceous crops with potential for biofuel production in the temperate regions of the USA | 2012 |
Davidyans, E.S. | Effect of triterpenoid glycosides on α- and β-amylase activity and total protein content in wheat seedlings | 2011 |
Pan, G., Ouyang, Z., Luo, Q., Yu, Q., Wang, J. | Water use patterns of forage cultivars in the North China plain | 2011 |
Zhang, X., Xia, H., Li, Z., Zhuang, P., Gao, B. | Potential of four forage grasses in remediation of Cd and Zn contaminated soils | 2010 |
Celesti-Grapow, L., Alessandrini, A., Arrigoni, P. V, Banfi, E., Bernardo, L., Bovio, M., … Blasi, C. | Inventory of the non-native flora of Italy | 2009 |
Kowalski, R. | Silphium L. extracts—Composition and protective effect on fatty acids content in sunflower oil subjected to heating and storage | 2009 |
Fiedler, A.K., Landis, D.A. | Attractiveness of Michigan native plants to arthropod natural enemies and herbivores | 2007 |
Shilin W., Jones R.M., Minggang X., Pingna H. | Quality and seasonal yields of promising forage species in the red soils region of southern China | 2007 |
Kowalski, R., Kȩdzia, B. | Antibacterial activity of Silphium perfoliatum extracts | 2007 |
Kowalski, R. | Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types | 2007 |
Olson D.M., Andow D.A. | Walking pattern of Trichogramma nubilale Ertle & Davis (Hymenoptera; Trichogrammatidae) on various surfaces | 2006 |
Piłat, J., Majtkowski, W., Majtkowska, G., Mikołajczak, J., & Góralska, A. | The usefulness for ensiling of chosen plant forms of species of Silphium genus | 2007 |
Blay, G., García, B., Molina, E., Pedro, J.R. | Syntheses of (+)-alismoxide and (+)-4-epi-alismoxide | 2006 |
Kowalski, R., Wolski, T. | The chemical composition of essential oils of Silphium perfoliatum L | 2005 |
Kowalski, R. | Analysis of lipophilic fraction from leaves, inflorescences and rhizomes of Silphium perfoliatum L. | 2005 |
Weir I., Lu J., Cook H., Causier B., Schwarz-Sommer Z., Davies B. | Cupuliformis establishes lateral organ boundaries in Antirrhinum | 2004 |
Jabłonski, B., & Kołtowski, Z. | Nectar Secretion and honey potential of honey plants growing under Poland ’s conditions—part XV | 2005 |
Kowalski, R., Wolski, T. | TLC and HPLC analysis of the phenolic acids in Silphium perfoliatum L. leaves, inflorescences and rhizomes | 2003 |
El-Sayed, N.H., Wojcińska, M., Drost-Karbowska, K., Matlawska, I., Williams, J., Mabry, T.J. | Kaempferol triosides from Silphium perfoliatum | 2002 |
Konarev, A.V., Anisimova, I.N., Gavrilova, V.A., Vachrusheva, T.E., Konechnaya, G.Yu., Lewis, M., Shewry, P.R. | Serine proteinase inhibitors in the Compositae: Distribution, polymorphism and properties | 2002 |
Han, K.J., Albrecht, K.A., Mertens, D.R., Kim, D.A. | Comparison of in-vitro digestion kinetics of cup-plant and alfalfa | 2000 |
Han, K.J., Albrecht, K.A., Muck, R.E., Kim, D.A. | Moisture effect on fermentation characteristics of cup-plant silage | 2000 |
Wojcińska, M., Drost-Karbowska, K. | Phenolic acids in Silphium perfoliatum L. flowers (Asteraceae/Compositae) | 1998 |
Pcolinski, M.J., Doskotch, R.W., Lee, A.Y., Clardy, J. | Chlorosilphanol a and silphanepoxol, labdane diterpenes from Silphium perfoliatum | 1994 |
Davidyants, E.S., Putieva, Zh.M., Shashkov, A.S., Bandyukova, V.A., Abubakirov, N.K. | Triterpene glycosides of Silphium perfoliatum. IV. Structure of siliphioside C | 1986 |
Davidyants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K. | Triterpene glycosides of Silphium perfoliatum. V. The structure of silphioside A | 1986 |
Davidyants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K. | Triterpene glycosides of Silphium perfoliatum. III. Structure of silphioside E | 1985 |
Davidyants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K. | Triterpene glycosides of Silphium perfoliatum. II | 1984 |
Davidyants, E.S., Putieva, Zh.M., Bandyukova, V.A., Abubakirov, N.K. | Triterpene glycosides of Silphium perfoliatum | 1984 |
Albretch, K.A., Bures, E.J. | Long-term performance of cup-plant as a forage crop | 1999 |
Stanford, G. | Silphium Perfoliatum (Cup-Plant) as a new forage | 1990 |
Paquette, L.A., Leone-Bay, A. | Triquinane sesquiterpenes. An iterative, highly stereocontrolled synthesis of (±)-silphinene | 1983 |
Dudkin, M.S., Shkantova, N.G., Parfent’eva, M.A. | Alkali-soluble polysaccharides of the stems of Silphium perfoliatum | 1980 |
Dudkin, M.S., Cherno, N.K., Shkantova, N.G. | Characteristics of the water-soluble polysaccharides of the leaves of Silphium perfoliatum | 1979 |
Appendix B
Silphium perfoliatum BBCH-code | ||
Germination, sprouting, bud development | ||
00 | S: dry seed (achene) | |
R: winter dormancy or resting period | ||
01 | S: beginning of seed imbibition | |
R: beginning of bud swelling | ||
02 | S:seed imbibition complete | |
R: end of bud swelling | ||
05 | S: radicle emerged from seed | |
06 | S: elongation of radicle, formation of root hairs and/or lateral roots | |
07 | S: hypocotyl with cotyledons merged from seed | |
08 | R: hypocotyl with cotyledons growing towards soil surface | |
09 | Emergence: cotyledons emerge through soil surface | |
1st year after sowing or planting | ||
1 | Leaf development (single shoot) | |
10 | S: cotyledons completely unfolded | |
11 | S: one true leaf | |
12 | S:two true leaves unfolded | |
13 | S: three true leaves | |
14 | S: four true leaves (second pair) unfolded (stages continuous till 18) | |
19 | S: nine or more true leaves | |
2 | Formation of basal rosette | |
21 | 10% of plants of neighbouring rows strike each other/leaves cover 10% of ground | |
22 | 20% of plants of neighbouring rows strike each other/leaves cover 20% of ground | |
23 | 30% of plants of neighbouring rows strike each other /leaves cover 30% of ground (stages continuous till 28) | |
29 | 90% or more of plants of neighbouring rows strike each other/leaves cover 90% of ground | |
2nd year after sowing or planting | ||
1 | Leaf development (single shoot) | |
11 | 1 pair of oppositely arranged leaves | |
12 | 2 couples of oppositely arranged leaves | |
13 | 3 couples of oppositely arranged leaves | |
19 | 9 or more couples of oppositely arranged leaves | |
3 | Stalk development | |
31 | 10% of final length | |
32 | 20% of final length | |
33 | 30% of final length (stages continuous till 38) | |
39 | Maximum stem length reached | |
5 | Inflorescence emergence | |
51 | 501 | Inflorescence just visible between youngest leaves |
53 | 503 | Inflorescence separating from youngest leaves, bracts distinguishable from foliage leaves |
55 | 505 | Inflorescence separated from youngest leaves |
57 | 507 | Inflorescence clearly separated from youngest leaves |
59 | 509 | Golden-yellow ray florets visible between the bracts |
521 | Second order stem inflorescence visible | |
525 | Second order stem inflorescence separated from youngest | |
529 | First flower formed on secondary inflorescence | |
5N1 | Nth order stem inflorescence visible | |
5N5 | Nth order stem inflorescence separated from youngest | |
5N9 | First flower formed on nth inflorescence | |
6 | Flowering | |
61 | 601 | Beginning of flowering: ray florets extended, disc florets visible in outer part of inflorescence |
62 | 602 | Disc florets in blooms (stages continuous till 64) |
65 | 605 | Full flowering: disc florets in middle part of inflorescence in bloom |
67 | 607 | Flowering declining: disc floret in inner part of inflorescence in bloom |
69 | 609 | End of flowering: most disc florets finished flowering, ray florets dry or fallen |
621 | Ray florets extended and disk florets visible in outer part on secondary inflorescence | |
625 | Full flowering: disc florets in middle part of inflorescence in bloom on secondary inflorescence | |
629 | End of flowering: most disc florets have finished flowering, ray florets dry or fallen on secondary inflorescence | |
6N1 | Ray florets extended and disk florets visible in outer part on nth order inflorescence | |
6N5 | Full flowering: disc florets in middle part of inflorescence in bloom on nth order inflorescence | |
6N9 | End of flowering: most disc florets have finished flowering, ray florets dry or fallen on nth order inflorescence | |
7 | Development of seeds | |
71 | 701 | Seed on the outer edge of the first head have reached the final size |
79 | 709 | Seed on the inner edge of the first head have reached the final size |
721 | Seed on the outer edge of the secondary head have reached the final size | |
729 | Seed on the inner edge of the secondary head have reached the final size | |
7N1 | Seed on the outer edge of the nth order head have reached the final size | |
7N9 | Seed on the inner edge of the nth order head have reached the final size | |
Outer bracts of the head still green seeds of on outer edge ripe and grey | ||
8 | Ripening or maturity of seed | |
81 | 801 | Outer bracts of first head still green, seeds of on outer edge ripe and grey-brown |
82 | 802 | Outer bracts of first head begin to became grey-brown, 20% of seed grey-brown |
89 | 809 | Outer bracts of first head completely grey-brown, all seeds ripe and grey-brown |
821 | Outer bracts of secondary head still green, seeds of on outer edge ripe and grey-brown | |
822 | Outer bracts of secondary head begin to became grey-brown, 20% of seed ripe and grey-brown | |
829 | Outer bracts of secondary heads completely grey-brown, all seeds ripe and grey-brown | |
8N1 | Outer bracts of nth order head still green, seeds of on outer edge ripe and grey-brown | |
8N2 | Outer bracts of nth order head begin to became grey-brown, 20% of seed ripe and grey-brown | |
8N9 | Outer bracts of nth order head completely grey-brown, all seeds ripe and grey-brown | |
9 | Senescence, beginning of dormancy | |
91 | Shoot development completed, foliage still green | |
93 | Basal leaf completely dead, caulicle leaves discoloured | |
95 | Majority of leaves are dead | |
97 | All leaves dead | |
98 | Above ground parts dead | |
99 | Plant dead and dry (dry matter more than 80%) | |
Additional descriptions: S: plant from seed; R: plant from rhizome; C: crop carpet If the description is valid for all, no additional description is given. | ||
Acknowledgements: This work was carried out as part of the SidaTim project (FACCE SURPLUS). This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 652615. | ||
Literature: Hack H, Bleiholder H, Buhr L, Meier U, Schnechock-Fricke U, Weber E, Witzenberger A (1992) Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen Erweiterte BBCH-Skala. Allgemein - Nachrichtenblatt Deutscher Pflanzenschutzdienst, 44, 265–270. |
References
- EurObserv’ER. The State of Renewable Energies in Europe. Available online: http://www.eurobserv-er.org/pdf/bilan11.asp (accessed on 22 March 2020).
- World Bioenergy Association. Global Bioenergy Statistics. 2019. Available online: https://worldbioenergy.org/uploads/191129WBAGBS2019_HQ.pdf (accessed on 22 March 2020).
- Morhart, C.D.; Douglas, G.C.; Dupraz, C.; Graves, A.R.; Nahm, M.; Paris, P.; Sauter, U.H.; Sheppard, J.; Spiecker, H. Alley coppice-a new system with ancient roots. Ann. For. Sci. 2014, 71, 527–542. [Google Scholar] [CrossRef]
- Krička, T.; Matin, A.; Bilandžija, N.; Jurišić, V.; Antonović, A.; Voća, N.; Grubor, M. Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production. Int. Agrophysics 2017, 31, 575–581. [Google Scholar] [CrossRef]
- Ruf, T.; Makselon, J.; Udelhoven, T.; Emmerling, C. Soil quality indicator response to land-use change from annual to perennial bioenergy cropping systems in Germany. GCB Bioenergy 2018, 10, 444–459. [Google Scholar] [CrossRef]
- Euro (EUR) to Polish Zloty (PLN) Annual Average Exchange Rate from 1999 to 2018. Available online: https://www.statista.com/statistics/412729/euro-to-polish-zloty-annual-average-exchange-rate/ (accessed on 18 March 2020).
- Borkowska, H.; Molas, R. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenergy 2012, 36, 234–240. [Google Scholar] [CrossRef]
- Remlein-Starosta, D.; Krzymińska, J.; Kowalska, J.; Bocianowski, J. Evaluation of yeast-like fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum. Can. J. Plant. Sci. 2016, 96, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Spooner, D.M.; Cusick, A.W.; Hall, G.F.; Baskin, J.M. Observations on the distribution and ecology of Sida hermaphrodita (L.) Rusby (Malvaceae). SIDA Contrib. Bot. 1985, 11, 215–225. [Google Scholar]
- Franzaring, J.; Holz, I.; Kauf, Z.; Fangmeier, A. Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO2 fertilization at different temperatures and water supply. Biomass Bioenergy 2015, 81, 574–583. [Google Scholar] [CrossRef]
- Kurucz, E.; Antal, G.; Gábor, F.M.; Popp, J. Cost-effective mass propagation of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) from seeds. Environ. Eng. Manag. J. 2014, 13, 2845–2852. [Google Scholar] [CrossRef]
- Burczy, H.; Mirowski, T.; Kalawa, W.; Sajdak, W. WP 4.2.4 Study on Biomass Trade in Poland. Available online: http://www.central2013.eu/fileadmin/user_upload/Downloads/outputlib/4biomass_Poland_trade_study_uploaded.pdf (accessed on 15 October 2017).
- Igliński, B.; Iglińska, A.; Kujawski, W.; Buczkowski, R.; Cichosz, M. Bioenergy in Poland. Renew. Sustain. Energy Rev. 2011, 15, 2999–3007. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Oleszek, M.; Matyka, M.; Lalak, J.; Tys, J.; Paprota, E. Characterization of Sida hermaphrodita as a feedstock for anaerobic digestion process. J. Food, Agric. Environ. 2013, 11, 1839–1841. [Google Scholar]
- Pszczółkowska, A.; Romanowska-Duda, Z.; Pszczółkowski, W.; Grzesik, M.; Wysokińska, Z. Biomass production of selected energy plants: Economic analysis and logistic strategies. Comp. Econ. Res. Cent. East. Eur. 2012, 15, 77–103. [Google Scholar] [CrossRef] [Green Version]
- Jablonowski, N.D.; Kollmann, T.; Nabel, M.; Damm, T.; Klose, H.; Müller, M.; Bläsing, M.; Seebold, S.; Krafft, S.; Kuperjans, I.; et al. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 2017, 9, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.; Beringen, R.; Huijbregts, M.A.J.; van der Mheen, H.J.; Odé, B.; Trindade, L.; van Valkenburg, J.L.C.H.; van der Velde, G.; Leuven, R.S.E.W. Horizon scanning and environmental risk analyses of non-native biomass crops in the Netherlands. Available online: https://edepot.wur.nl/376535 (accessed on 11 November 2017).
- Jasinskas, A.; Sarauskis, E.; Sakalauskas, A.; Vaiciukevicius, E.; Siaudinis, G.; Cekanauskas, S. Assessment of unconventional tall grasses cultivation and preparation for solid biofuel. In Proceedings of the 13th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 19–30 May 2014; Volume 43, pp. 253–258. [Google Scholar]
- Borkowska, H.; Molas, R.; Kupczyk, A. Virginia fanpetals (Sida hermaphrodita Rusby) cultivated on light soil; height of yield and biomass productivity. Polish J. Environ. Stud. 2009, 18, 563–568. [Google Scholar]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. In Growing and Processing Technologies of Energy Crops, Proceedings of the International Scientific Conference Renewable Energy and Energy Efficiency, Jelgava, Latvia, 28–30 May 2012; Latvia University of Agriculture: Jelgava, Latvia, 2012; pp. 66–72. [Google Scholar]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčauskiene, D.; Liaudanskiene, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico-mechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Krzaczek, P.; Szyszlak, J.; Zarajczyk, J. Assessment of the influence of selected operating parameters of S071 / B KRUK seeder on seeding Sida hermaphrodita Rusby seeds. Int. Agrophysics 2006, 20, 297–300. [Google Scholar]
- Kurucz, E.; Fári, M.G.; Antal, G.; Gabnai, Z.; Popp, J.; Bai, A. Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita). Renew. Sustain. Energy Rev. 2018, 90, 824–834. [Google Scholar] [CrossRef]
- Borkowska, H.; Wardzińska, K. Some effects of Sida hermaphrodita R. cultivation on sewage sludge. Polish J. Environ. Stud. 2003, 12, 119–122. [Google Scholar]
- Kurucz, E.; Fári, M.G. Improvement of germination capacity of Sida hermaphrodita (L.) Rusby by seed priming techniques. Int. Rev. Appl. Sci. Eng. 2013, 4, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Int. J. Phytoremediation 2017, 19, 309–318. [Google Scholar] [CrossRef]
- Franzaring, J.; Schmid, I.; Bäuerle, L.; Gensheimer, G.; Fangmeier, A. Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species Sida hermaphrodita Rusby and Silphium perfoliatum L. J. Appl. Bot. Food Qual. 2014, 87, 36–45. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Tworkowski, J.; Szczukowski, S.; Kwiatkowski, J.; Graban, L. Opłacalność i efektywność energetyczna produkcji biomasy ślazowca pensylwańskiego w zależności od stosowanego materiału siewnego [Cost-effectiveness and energy efficiency of the production of Pennsylvanian mallow biomass depending on the seed used]. Fragm. Agron. 2014, 31, 96–106. [Google Scholar]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the effect of perennial energy crops and agricultural crops on weed flora diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef] [Green Version]
- Molas, R.; Borkowska, H.; Kupczyk, A.; Osiak, J. Virginia fanpetals (Sida) biomass can be used to produce high-quality bioenergy. Agron. J. 2018, 110, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Von Gehren, P.; Gansberger, M.; Pichler, W.; Weigl, M.; Feldmeier, S.; Wopienka, E.; Bochmann, G. A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe. Biomass Bioenergy 2018, 122, 99–108. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Skuodienė, R.; Repšienė, R. The investigation of three potential energy crops: Common mugwort, cup plant and Virginia mallow on Western Lithuania’s Albeluvisol. Appl. Ecol. Environ. Res. 2017, 15, 611–620. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Graban, Ł.; Lajszner, W. Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Ind. Crops Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Facciotto, G.; Bury, M.; Chiocchini, F.; Cumplido Marin, L.; Czyż, H.; Graves, H.; Kitczak, T.; Martens, R.; Morhart, C.; Paris, P.; et al. Performance of Sida hermaphrodita and Silphium perfoliatum in Europe: Preliminary results. In Biomass Crops and Energy Grasses, Proceedings of the 26th European Biomass Conference and Exhibition, Copenhagen, Denmark, 14–17 May 2018; ETA-Florence Renewable Energies: Florence, Italy, 2018; pp. 350–352. [Google Scholar] [CrossRef]
- Bury, M.; Facciotto, G.; Chiocchini, F.; Cumplido-Marin, L.; Graves, A.; Kitczak, T.; Martens, R.; Morhart, C.; Możdżer, E.; Nahm, M.; et al. Preliminary results regarding yields of Virginia mallow (Sida hermaphrodita (L.) Rusby) and cup plant (Silphium perfoliatum L.) in different condition of Europe. In Biomass Crops and Energy Grasses, Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; pp. 101–104. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Tworkowski, J.; Szczukowski, S.; Olba-Zięty, E.; Gołaszewski, J. Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers. Energy 2017, 134, 50–60. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life cycle assessment of Virginia mallow production with different fertilisation options. J. Clean. Prod. 2018, 177, 824–836. [Google Scholar] [CrossRef]
- Pogrzeba, M.; Krzyżak, J.; Rusinowski, S.; Werle, S.; Hebner, A.; Milandru, A. Case study on phytoremediation driven energy crop production using Sida hermaphrodita. Int. J. Phytoremediation 2018, 20, 1194–1204. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J.; Gleń-karolczyk, K. The use of macroelements from municipal sewage sludge by the multiflora Rose and the Virginia fanpetals. J. Ecol. Eng. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 2013, 51, 145–153. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Budzyński, W.S.; Bórawski, P.; Bułkowska, K. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy 2016, 109, 277–286. [Google Scholar] [CrossRef]
- Matyka, M.; Kuś, J. Influence of soil quality for yield and biometric features of Sida hermaphrodita L. Rusby. Polish J. Environ. Stud. 2018, 27, 2669–2675. [Google Scholar] [CrossRef]
- Bedlan, G. (Institute of Sustainable Plant Production, Vienna, Austria). Personal communication, 2018. [Google Scholar]
- Bedlan, G. Didymella sidae-hermaphroditae sp. nov., ein neues pathogen an Sida hermaphrodita (L.) Rusby [Didymella sidae-hermaphroditae sp. nov., a new pathogen on Sida hermaphrodita (L.) Rusby]. J. FÜR Kult. 2016, 68, 130–133. [Google Scholar] [CrossRef]
- Bedlan, G.; Plenk, A. Erstnachweis von Periconia sidae an Sida hermaphrodita in Europa [First report of Periconia sidae on Sida hermaphrodita in Europe]. J. FÜR Kult. 2016, 68, 270–272. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Słowik, T.; Zając, G.; Piekarski, W. Inline plantation of Virginia mallow (Sida hermaphrodita R.) as biological acoustic screen. Mid. Pom. Sci. Soc. Environ. Prot. Annu. Set Environ. Protection 2013, 15, 524–537. [Google Scholar]
- Nabel, M.; Temperton, V.M.; Poorter, H.; Lücke, A.; Jablonowski, N.D. Energizing marginal soils—The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 2016, 87, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Tworkowski, J.; Szczukowski, S. Perennial herbaceous crops as a feedstock for energy and industrial purposes: Organic and mineral fertilizers versus biomass yield and efficient nitrogen utilization. Ind. Crops Prod. 2017, 107, 244–259. [Google Scholar] [CrossRef]
- Tilvikiene, V.; Kadziuliene, Z.; Liaudanskiene, I.; Zvicevicius, E.; Cerniauskiene, Z.; Cipliene, A.; Raila, A.J.; Baltrusaitis, J. The quality and energy potential of introduced energy crops in northern part of temperate climate zone. Renew. Energy 2020, 151, 887–895. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Olba-Zięty, E.; Penni, D.; Bordiean, A. Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Ind. Crops Prod. 2019, 135, 10–20. [Google Scholar] [CrossRef]
- Siwek, H.; Włodarczyk, M.; Mozdzer, E.; Bury, M.; Kitczak, T. Chemical composition and biogas formation potential of Sida hermaphrodita and Silphium perfoliatum. Appl. Sci. 2019, 9, 4016. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland. Energy 2019, 185, 612–623. [Google Scholar] [CrossRef]
- Sienkiewicz, S.; Wierzbowska, J.; Kovacik, P.; Krzebietke, S.; Zarczynski, P. Digestate as a substitute of fertilizers in the cultivation of Virginia fanpetals. Fresenius Environ. Bull. 2018, 27, 3970–3976. [Google Scholar]
- Bilandžija, N.; Krička, T.; Matin, A.; Leto, J.; Grubor, M. Effect of harvest season on the fuel properties of Sida hermaphrodita (L.) Rusby biomass as solid biofuel. Energies 2018, 11, 3398. [Google Scholar] [CrossRef] [Green Version]
- Paris, P.; Mareschi, L.; Sabatti, M.; Tosi, L.; Scarascia-Mugnozza, G. Nitrogen removal and its determinants in hybrid Populus clones for bioenergy plantations after two biennial rotations in two temperate sites in northern Italy. IForest 2015, 8, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Stellacci, A.M.; Campi, P.; Vitti, C.; Modugno, F.; Mastrorilli, M. Feasibility of SRC species for growing in Mediterranean conditions. Bioenergy Res. 2016, 9, 208–223. [Google Scholar] [CrossRef]
- Krzywy-Gawrońska, E. The Effect of industrial wastes and municipal sewage sludge compost on the quality of Virginia fanpetals (Sida hermaphrodita Rusby) biomass Part 1. Macroelements content and their uptake dynamics. Polish J. Chem. Technol. 2012, 14, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, D.B.P.; Nabel, M.; Jablonowski, N.D. Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea Mays L. and Medicago Sativa L. Energy Procedia 2014, 59, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Czyżyk, F.; Rajmund, A. Influence of agricultural utilization of sludge and compost from rural wastewater treatment plant on nitrogen passes in light soil. Polish J. Chem. Technol. 2014, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nabel, M.; Barbosa, D.B.P.; Horsch, D.; Jablonowski, N.D. Energy crop (Sida Hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment. Energy Procedia 2014, 59, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Nagel, K.A.; Temperton, V.M.; Dietrich, C.C.; Briese, C.; Jablonowski, N.D. coming late for dinner: Localized digestate depot fertilization for extensive cultivation of marginal soil with Sida Hermaphrodita. Front. Plant. Sci. 2018, 9, 1095. [Google Scholar] [CrossRef] [PubMed]
- Nabel, M.; Schrey, S.D.; Temperton, V.M.; Harrison, L.; Jablonowski, N.D. Legume intercropping with the bioenergy crop Sida hermaphrodita on marginal soil. Front. Plant. Sci. 2018, 9, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saletnik, B.; Bajcar, M.; Zaguła, G.; Saletnik, A.; Tarapatskyy, M.; Puchalski, C. biochar as a stimulator for germination capacity in seeds of Virginia mallow (Sida hermaphrodita (L.) Rusby). Appl. Sci. 2019, 9, 3213. [Google Scholar] [CrossRef] [Green Version]
- Wielgosz, E. Effect of selected plant species on enzymatic activity of soil microorganisms. Polish J. Soil Sci. 2010, 43, 73–79. [Google Scholar]
- Streikus, D.; Jasinskas, A.; Šarauskis, E.; Romaneckas, K.; Marks, M. Technological-technical and environmental evaluation of herbaceous plant usage for the production and burning of granulated biofuel. Polish J. Environ. Stud. 2019, 28, 4369–4379. [Google Scholar] [CrossRef] [Green Version]
- Pokój, T.; Bułkowska, K.; Gusiatin, Z.M.; Klimiuk, E.; Jankowski, K.J. Semi-continuous anaerobic digestion of different silage crops: VFAS formation, methane yield from fiber and non-fiber components and digestate composition. Bioresour. Technol. 2015, 190, 201–210. [Google Scholar] [CrossRef]
- Kowalski, R.; Kȩdzia, B. Antibacterial activity of Silphium perfoliatum. Extracts. Pharm. Biol. 2007, 45, 494–500. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, H.; Li, Z.; Zhuang, P.; Gao, B. Potential of Four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour. Technol. 2010, 101, 2063–2066. [Google Scholar] [CrossRef]
- Von Gehren, P.; Gansberger, M.; Mayr, J.; Liebhard, P. The effect of sowing date and seed pretreatments on establishment of the energy plant Silphium Perfoliatum by sowing. Seed Sci. Technol. 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Schorpp, Q.; Müller, A.L.; Schrader, S.; Dauber, J. Agrarökologisches potential der durchwachsenen Silphie (Silphium perfoliatum L.) aus sicht biologischer vielfalt [Agro-ecological potential of the cup plant (Silphium perfoliatum L.) from a biodiversity perspective]. J. FÜR Kult. 2016, 68, 412–422. [Google Scholar] [CrossRef]
- Stanford, G. Silphium perfoliatum (cup-plant) as a new forage. In Proceedings of the 12th North American Prairie Conference, Dallas, TX, USA, 5–9 August 1990; pp. 33–38. [Google Scholar]
- Pichard, G. Management, Production, and Nutritional Characteristics of Cup-Plant (Silphium Perfoliatum) in Temperate Climates of Southern Chile. Cienc. Investig. Agrar. 2012, 39, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Celesti-Grapow, L.; Alessandrini, A.; Arrigoni, P.V.; Banfi, E.; Bernardo, L.; Bovio, M.; Brundu, G.; Cagiotti, M.R.; Camarda, I.; Carli, E.; et al. Inventory of the non-native flora of Italy. Plant. Biosyst. 2009, 143, 386–430. [Google Scholar] [CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S.; et al. An updated checklist of the vascular flora alien to Italy. Plant. Biosyst. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- CABI. Silphium perfoliatum Datasheet. Available online: https://www.cabi.org/isc/datasheet/117171 (accessed on 4 April 2018).
- Haag, N.L.; Nägele, H.J.; Reiss, K.; Biertümpfel, A.; Oechsner, H. Methane formation potential of cup plant (Silphium perfoliatum). Biomass Bioenergy 2015, 75, 126–133. [Google Scholar] [CrossRef]
- Gansberger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium Perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- European Commission. Commission Delegated Regulation (EU) 2018/1784 of 9 July 2018 Amending Delegated Regulation (EU) No 639/2014 as regards certain provisions on the greening practices established by regulation (EU) No 1307/2013 of the European Parliament and of the Council. Off. J. Eur. Union 2018, L293, 1–4. [Google Scholar]
- Wever, C.; Höller, M.; Becker, L.; Biertümpfel, A.; Köhler, J.; van Inghelandt, D.; Westhoff, P.; Pude, R.; Pestsova, E. Towards high-biomass yielding bioenergy crop Silphium Perfoliatum L.: Phenotypic and genotypic evaluation of five cultivated populations. Biomass Bioenergy 2019, 124, 102–113. [Google Scholar] [CrossRef]
- Hartmann, A.; Lunenberg, T. Ertragspotenzial der durchwachsenen Silphie unter Bayerischen anbaubedingungen [Yield potential of cup plant under Bavarian cultivation conditions]. J. FÜR Kult. 2016, 68, 385–388. [Google Scholar] [CrossRef]
- Van Tassel, D.L.; Albrecht, K.A.; Bever, J.D.; Boe, A.A.; Brandvain, Y.; Crews, T.E.; Gansberger, M.; Gerstberger, P.; González-Paleo, L.; Hulke, B.S.; et al. Accelerating Silphium domestication: An opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop. Sci. 2017, 57, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Jasinskas, A.; Simonavičiūtė, R.; Šiaudinis, G.; Liaudanskienė, I.; Antanaitis, Š.; Arak, M.; Olt, J. The Assessment of Common Mugwort (Artemisia Vulgaris L.) and Cup Plant (Silphium Perfoliatum L.) Productivity and Technological Preparation for Solid Biofuel. Zemdirb. Agric. 2014, 101, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Han, K.J.; Albrecht, K.A.; Muck, E.; Kim, D.A. Moisture effect on fermentation characteristics of cup-plant silage. Asian Australas. J. Anim. Sci. 2000, 13, 636–640. [Google Scholar] [CrossRef]
- Zilverberg, C.J.; Teoh, K.; Boe, A.; Johnson, W.C.; Owens, V. Strategic use of native species on environmental gradients increases diversity and biomass relative to switchgrass monocultures. Agric. Ecosyst. Environ. 2016, 215, 110–121. [Google Scholar] [CrossRef]
- Bauböck, R.; Karpenstein-Machan, M.; Kappas, M. Computing the Biomass Potentials for Maize and Two Alternative Energy Crops, Triticale and Cup Plant (Silphium Perfoliatum L.), with the Crop Model BioSTAR in the Region of Hannover (Germany). Environ. Sci. Eur. 2014, 26, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ruf, T.; Audu, V.; Holzhauser, K.; Emmerling, C. Bioenergy from periodically waterlogged cropland in Europe: A first assessment of the potential of five perennial energy crops to provide biomass and their interactions with soil. Agronomy 2019, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Schoo, B.; Wittich, K.P.; Böttcher, U.; Kage, H.; Schittenhelm, S. Drought tolerance and water-use efficiency of biogas crops: A comparison of cup plant, maize and lucerne-grass. J. Agron. Crop. Sci. 2017, 203, 117–130. [Google Scholar] [CrossRef]
- Schoo, B.; Kage, H.; Schittenhelm, S. Radiation use efficiency, chemical composition, and methane yield of biogas crops under rainfed and irrigated conditions. Eur. J. Agron. 2017, 87, 8–18. [Google Scholar] [CrossRef]
- Pan, G.; Ouyang, Z.; Luo, Q.; Yu, Q.; Wang, J. Water use patterns of forage cultivars in the North China plain. Int. J. Plant. Prod. 2011, 5, 181–194. [Google Scholar]
- Schittenhelm, S.; Schoo, B.; Schroetter, S. Ertragsphysiologie von Biogaspflanzen: Vergleich von durchwachsener Silphie, mais und luzernegras [Yield physiology of biogas crops: Comparison of cup plant, maize, and lucerne-grass]. J. FÜR Kult. 2016, 68, 378–384. [Google Scholar] [CrossRef]
- Schoo, B.; Schroetter, S.; Kage, H.; Schittenhelm, S. Root traits of cup plant, maize and lucerne grass grown under different soil and soil moisture conditions. J. Agron. Crop. Sci. 2017, 203, 345–359. [Google Scholar] [CrossRef]
- Schittenhelm, S.; Kottmann, L.; Schoo, B. Wasser als ertragsbegrenzender faktor [Water as a limiting factor for crop yield]. J. Für Kult. 2017, 69, 80–86. [Google Scholar] [CrossRef]
- Gansberger, M. Samenmorphologie, keimprozess, saatgutaufbereitung und bestimmung der lebensfähigkeit von Silphium perfoliatum L. samen [Seed morphology, germination process, seed processing and assessment of the viability of Silphium Perfoliatum L. seeds]. J. FÜR Kult. 2016, 68, 363–366. [Google Scholar] [CrossRef]
- Schäfer, A.; Damerow, L.; Schulze Lammers, P. Durchwachsene Silphie: Bestandesetablierung mittels aussaat [Cup plant: Crop establishment by sowing]. J. Für Kult. 2016, 68, 367–371. [Google Scholar] [CrossRef]
- Schäfer, A.; Leder, A.; Graff, M.; Damerow, L.; Schulze Lammers, P. Determination and sorting of cup plant seeds to optimize crop establishment. Landtechnik 2018, 73, 97–105. [Google Scholar] [CrossRef]
- Schäfer, A.; Damerow, L.; Schulze Lammers, P. Determination of the seed geometry of cup plant as requirement for precision seeding. Landtechnik 2017, 72, 122–128. [Google Scholar] [CrossRef]
- Köhler, J.; Biertümpfel, A. Wie Die Saat, so Die Ernte—Erfolgreiche etablierung durchwachsener Silphie durch aussaat [As the Sowing, so the Harvest – Successful establishment of cup plant by sowing]. J. Für Kult. 2016, 68, 356–362. [Google Scholar] [CrossRef]
- Schäfer, A.; Meinhold, T.; Damerow, L.; Lammers, P.S. Crop establishment of Silphium perfoliatum by precision seeding. Landtechnik 2015, 70, 254–261. [Google Scholar] [CrossRef]
- Han, K.J.; Albrecht, K.A.; Mertens, D.R.; Kim, D.A. Comparison of in-vitro digestion kinetics of cup-plant and alfalfa. Asian Australas. J. Anim. Sci. 2000, 13, 641–644. [Google Scholar] [CrossRef]
- Gansberger, M.; Stüger, H.P.; Weinhappel, M.; Moder, K.; Liebhard, P.; Von Gehren, P.; Mayr, J.; Ratzenböck, A. Germination characteristic of Silphium perfoliatum L. seeds. Die Bodenkult. J. L. Manag. Food Environ. 2017, 68, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Von Cossel, M.; Amarysti, C.; Wilhelm, H.; Priya, N.; Winkler, B.; Hoerner, L. The replacement of maize (Zea Mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant. Biofuels Bioprod. Bioref. 2020, 14, 152–179. [Google Scholar] [CrossRef] [Green Version]
- Metzler & Brodmann Saaten GmbH. Available online: https://www.donau-silphie.de/Anbauvertrag (accessed on 8 June 2020).
- Šiaudinis, G.; Jasinskas, A.; Slepetienė, A.; Karčauskienė, D. The evaluation of biomass and energy productivity of common mugwort (Artemisia vulgaris L.) and cup plant (Silphium perfoliatum L.) in Albeluvisol. Zemdirb. Agric. 2012, 99, 357–362. [Google Scholar]
- Mueller, A.L.; Dauber, J. Hoverflies (Diptera: Syrphidae) benefit from a cultivation of the bioenergy crop Silphium perfoliatum L. (Asteraceae) depending on larval feeding type, landscape composition and crop management. Agric. For. Entomol. 2016, 18, 419–431. [Google Scholar] [CrossRef]
- Schorpp, Q.; Schrader, S. Dynamic of nematode communities in energy plant cropping systems. Eur. J. Soil Biol. 2017, 78, 92–101. [Google Scholar] [CrossRef]
- Bedlan, G. Ascochyta silphii sp. nov. – eine neue Ascochyta-Art an Silphium perfoliatum [Ascochyta silphii sp. nov.—A new Ascochyta species on Silphium perfoliatum]. J. Für Kult. 2014, 66, 281–283. [Google Scholar] [CrossRef]
- Reinert, S.; Hulke, B.S.; Prasifka, J.R. Pest potential of Neotephritis finalis (Loew) on Silphium integrifolium Michx., Silphium perfoliatum L., and interspecific hybrids. Agron. J. 2020, 112, 1462–1465. [Google Scholar] [CrossRef]
- Kowalski, R. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. J. Agric. Food Chem. 2007, 55, 656–662. [Google Scholar] [CrossRef]
- Emmerling, C. bodenqualität beim anbau von dauerkulturen für die biomasseproduktion am beispiel der durchwachsenen Silphie (Silphium perfoliatum L.)—Ein innovatives agrarsystem der zukunft [Soil Quality through the Cultivation of Perennial Bioenergy Crops by Example of Silphium perfoliatum—An innovative agroecosystem in future]. J. FÜR Kult. 2016, 68, 399–406. [Google Scholar] [CrossRef]
- Frölich, W.; Brodmann, R.; Metzler, T. Die durchwachsene Silphie (Silphium perfoliatum L.)—Ein erfolgsbericht aus der praxis [The cup plant (Silphium perfoliatum L.)—As story of success from agricultural practice]. J. Für Kult. 2016, 68, 351–355. [Google Scholar] [CrossRef]
- Ustak, S.; Munoz, J. Cup-plant potential for biogas production compared to reference maize in relation to the balance needs of nutrients and some microelements for their cultivation. J. Environ. Manag. 2018, 228, 260–266. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Karčauskienė, D.; Aleinikovienė, J. Assessment of a single application of sewage sludge on the biomass yield of Silphium perfoliatum and changes in naturally acid soil properties. Zemdirb. Agric. 2019, 106, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Šimkūnas, A.; Denisov, V.; Valašinaitė, S.; Jankauskienė, R.; Ivanauskaitė, A. From an empirical to conceptual modeling view of energy crop productivity. Appl. Ecol. Environ. Res. 2018, 16, 1919–1933. [Google Scholar] [CrossRef]
- Aurbacher, J.; Benke, M.; Formowitz, B.; Glauert, T.; Heiermann, M.; Herrmann, C.; Idler, C.; Kornatz, P.; Nehring, A.; Rieckmann, C.; et al. Energiepflanzen Fur Biogasanlagen Niedersachsen [Energy Crops for Biogas Plants Lower Saxony]. 2012. Available online: https://mediathek.fnr.de/media/downloadable/files/samples/b/r/brosch.energiepflanzen-niedersachsen-webpdf_1.pdf (accessed on 8 March 2020).
- Lunenberg, T.; Hartmann, A. Nährstoffentzüge von durchwachsener Silphie in Bayern [Nutrient uptake by cup plant in Bavaria]. J. FÜR Kult. 2016, 68, 389–391. [Google Scholar] [CrossRef]
- Conrad, M.; Biertümpfel, A.; Vetter, A. Durchwachsene Silphie (Silphium perfoliatum L.)—Von der futterpflanze zum koferment [Silphium—From the fodder to the coenzyme]. Energiepflanzenkongress 2009. Available online: http://veranstaltungen.fnr.de/fileadmin/allgemein/pdf/veranstaltungen/Energiepflanzen2009/Conrad_freigegeben.pdf (accessed on 9 July 2018).
- Szwaja, S.; Magdziarz, A.; Zajemska, M.; Poskart, A. A Torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products. Renew. Energy 2019, 141, 894–902. [Google Scholar] [CrossRef]
- Von Cossel, M.; Steberl, K.; Hartung, J.; Pereira, L.A.; Kiesel, A.; Lewandowski, I. Methane yield and species diversity dynamics of perennial wild plant mixtures established alone, under cover crop maize (Zea Mays L.), and after spring barley (Hordeum vulgare L.). GCB Bioenergy 2019, 11, 1376–1391. [Google Scholar] [CrossRef] [Green Version]
- Ruidisch, M.; Nguyen, T.T.; Li, Y.L.; Geyer, R.; Tenhunen, J. Estimation of annual spatial variations in forest production and crop yields at landscape scale in temperate climate regions. Ecol. Res. 2015, 30, 279–292. [Google Scholar] [CrossRef]
- Schorpp, Q.; Schrader, S. Earthworm functional groups respond to the perennial energy cropping system of the cup plant (Silphium perfoliatum L.). Biomass Bioenergy 2016, 87, 61–68. [Google Scholar] [CrossRef]
- Majlingová, A.; Zachar, M.; Lieskovský, M.; Mitterová, I. The analysis of mass loss and activation energy of selected fast-growing tree species and energy crops using the Arrhenius equation. Acta Fac. Xylo. Zvol. 2018, 60, 175–186. [Google Scholar] [CrossRef]
- DEFRA. Best Practice Guidelines for Applicants to Defra’s Energy Crops Scheme. Growing Short Rotation Coppice; 2004; pp. 1–30. Available online: https://www.forestry.gov.uk/pdf/Growing_Short_Rotation_Coppice_tcm6_2004.pdf/$FILE/Growing_Short_Rotation_Coppice_tcm6_2004.pdf (accessed on 9 August 2017).
- Stolarski, M.J.; Krzyzaniak, M.; Śnieg, M.; Słomińska, E.; Piórkowski, M.; Filipkowski, R. Thermophysical and chemical properties of perennial energy crops depending on harvest period. Int. Agrophysics 2014, 28, 201–211. [Google Scholar] [CrossRef] [Green Version]
- UK Department of Business, Energy and Industrial Strategy (BEIS). Digest of United Kingdom Energy Statistics 2017. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/643414/DUKES_2017.pdf (accessed on 12 May 2018).
- Urbanovičová, O.; Krištof, K.; Findura, P.; Jobbágy, J.; Angelovič, M. Physical and mechanical properties of briquettes produced from energy plants. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Zajac, G.; Szyszlak-Barglowicz, J.; Slowik, T.; Wasilewski, J.; Kuranc, A. Emission characteristics of biomass combustion in a domestic heating boiler fed with wood and Virginia mallow pellets. Fresenius Environ. Bull. 2017, 26, 4663–4670. [Google Scholar]
- Trinh, T.T.; Werle, S.; Tran, K.Q.; Magdziarz, A.; Sobek, S.; Pogrzeba, M. Energy crops for sustainable phytoremediation—Thermal decomposition kinetics. Energy Procedia 2019, 158, 873–878. [Google Scholar] [CrossRef]
- Werle, S.; Khanh-Quang, T.; Magdziarz, A.; Sobek, S.; Pogrzeba, M.; Løvås, T. Energy crops for sustainable phytoremediation—Fuel characterization. Energy Procedia 2019, 158, 867–872. [Google Scholar] [CrossRef]
- Wrobel, M.; Fraczek, J.; Francik, S.; Slipek, Z.; Krzysztof, M. Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. In Proceedings of the 12th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 653–657. [Google Scholar]
- Styks, J.; Wróbel, M.; Fraczek, J.; Knapczyk, A. Effect of compaction pressure and moisture content on quality parameters of perennial biomass pellets. Energies 2020, 13, 1859. [Google Scholar] [CrossRef] [Green Version]
- Zachar, M.; Lieskovský, M.; Majlingová, A.; Mitterová, I. Comparison of thermal properties of the fast-growing tree species and energy crop species to be used as a renewable and energy-efficient resource. J. Therm. Anal. Calorim. 2018, 134, 543–548. [Google Scholar] [CrossRef]
- Schonhoff, A.; Zapp, P.; Schreiber, A.; Jablonowski, N.D. Environmental evaluation and comparison of process chains for the production and use of Sida hermaphrodita as a solid biofuel. In Environmental Impacts of Bioenergy, Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; ETA-Florence Renewable Energy: Florence, Italy, 2019; pp. 1595–1598. [Google Scholar] [CrossRef]
- Szwaja, S.; Poskart, A.; Zajemska, M. A New approach for evaluating biochar quality from Virginia mallow biomass thermal processing. J. Clean. Prod. 2019, 214, 356–364. [Google Scholar] [CrossRef]
- Magdziarz, A.; Wilk, M.; Wądrzyk, M. Pyrolysis of hydrochar derived from biomass – experimental investigation. Fuel 2020, 267, 1–10. [Google Scholar] [CrossRef]
- Śliz, M.; Wilk, M. A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow. Renew. Energy 2020, 156, 942–950. [Google Scholar] [CrossRef]
- Michalska, K.; Miazek, K.; Krzystek, L.; Ledakowicz, S. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour. Technol. 2012, 119, 72–78. [Google Scholar] [CrossRef]
- Rusanowska, P.; Zieliński, M.; Dudek, M.; Dȩbowski, M. Mechanical pretreatment of lignocellulosic biomass for methane fermentation in innovative reactor with cage mixing system. J. Ecol. Eng. 2018, 19, 219–224. [Google Scholar] [CrossRef]
- Borkowska, H.; Jackowska, I.; Piotrowski, J.; Styk, B. Suitability of cultivation of some perennial plant species on sewage sludge. Polish J. Environ. Stud. 2001, 10, 379–381. [Google Scholar]
- Michalska, K.; Bizukojć, M.; Ledakowicz, S. Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass Bioenergy 2015, 80, 213–221. [Google Scholar] [CrossRef]
- Damm, T.; Pattathil, S.; Günl, M.; Jablonowski, N.D.; O’Neill, M.; Grün, K.S.; Grande, P.M.; Leitner, W.; Schurr, U.; Usadel, B.; et al. insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr. Polym. 2017, 168, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goryachkovskaya, T.N.; Starostin, K.V.; Meshcheryakova, I.A.; Slynko, N.M.; Peltek, S.E. Technology of Miscanthus biomass saccharification with commercially available enzymes. Russ. J. Genet. Appl. Res. 2015, 5, 370–374. [Google Scholar] [CrossRef]
- Dudek, M.; Rusanowska, P.; Zieliński, M.; Dębowski, M. Influence of ultrasonic disintegration on efficiency of methane fermentation of Sida hermaphrodita silage. J. Ecol. Eng. 2018, 19, 128–134. [Google Scholar] [CrossRef]
- Zieliński, M.; Rusanowska, P.; Krzywik, A.; Dudek, M.; Nowicka, A.; Dębowski, M. Application of hydrodynamic cavitation for improving methane fermentation of Sida hermaphrodita silage. Energies 2019, 12, 526. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, M.; Dębowski, M.; Rusanowska, P. Influence of microwave heating on biogas production from Sida hermaphrodita silage. Bioresour. Technol. 2017, 245, 1290–1293. [Google Scholar] [CrossRef]
- Zieliński, M.; Nowicka, A.; Dȩbowski, M. Hydrothermal depolymerization of Virginia fanpetals (Sida hermaphrodita) biomass with the use of microwave radiation as a potential method for substrate pre-treatment before the process of methane fermentation. Energy Procedia 2017, 105, 694–699. [Google Scholar] [CrossRef]
- Zieliński, M.; Kisielewska, M.; Dudek, M.; Rusanowska, P.; Nowicka, A.; Krzemieniewski, M.; Kazimierowicz, J.; Dębowski, M. Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production. Biomass Bioenergy 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Nowicka, A.; Zieliński, M.; Dębowski, M.; Dudek, M.; Rusanowska, P. Progress in the production of biogas from Virginia mallow after alkaline-heat pretreatment. Biomass Bioenergy 2019, 126, 174–180. [Google Scholar] [CrossRef]
- Kisielewska, M.; Rusanowska, P.; Dudek, M.; Nowicka, A.; Krzywik, A.; Dębowski, M.; Joanna, K.; Zieliński, M. Evaluation of ultrasound pretreatment for enhanced anaerobic digestion of Sida hermaphrodita. Bioenergy Res. 2020. [Google Scholar] [CrossRef] [Green Version]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Krzemieniewski, M. Anaerobic co-digestion of the energy crop Sida hermaphrodita and microalgae biomass for enhanced biogas production. Int. J. Environ. Res. 2017, 11, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Smoliński, A.; Howaniec, N.; Stańczyk, K. A Comparative experimental study of biomass, lignite and hard coal steam gasification. Renew. Energy 2011, 36, 1836–1842. [Google Scholar] [CrossRef]
- Howaniec, N.; Smoliński, A. Steam gasification of energy crops of high cultivation potential in poland to hydrogen-rich gas. Int. J. Hydrogen Energy 2011, 36, 2038–2043. [Google Scholar] [CrossRef]
- Werle, S.; Bisorca, D.; Katelbach-Woźniak, A.; Pogrzeba, M.; Krzyżak, J.; Ratman-Kłosińska, I.; Burnete, D. Phytoremediation as an effective method to remove heavy metals from contaminated area—TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops. J. Energy Inst. 2017, 90, 408–417. [Google Scholar] [CrossRef]
- Uchman, W.; Skorek-Osikowska, A.; Werle, S. Evaluation of the potential of the production of electricity and heat using energy crops with phytoremediation features. Appl. Therm. Eng. 2017, 126, 194–203. [Google Scholar] [CrossRef]
- Werle, S.; Ziółkowski, Ł.; Bisorca, D.; Pogrzeba, M.; Krzyżak, J.; Milandru, A. Fixed-bed gasification process—The case of the heavy metal contaminated energy crops. Chem. Eng. Trans. 2017, 61, 1393–1398. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N. Chemometric modelling of experimental data on co-gasification of bituminous coal and biomass to hydrogen-rich gas. Waste Biomass Valor. 2017, 8, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Tarkowski, A. The yield and chemical composition of milk of cows fed the ration with protein-fibrous-extruderate [Wydajność i skład chemiczny mleka krow żywionych dawką z ekstruderatem białkowo-włóknistym]. J. Cent. Eur. Agric. 2008, 9, 645–650. [Google Scholar]
- Antoszkiewicz, Z.; Fijałkowska, M.; Mazur-Kuśnirek, M.; Przemieniecki, S.; Purwin, C. Effect of a harvest date and cutting height on the concentrations of carotenoids and tocopherols in Virginia fanpetals (Sida hermaphrodita) Herbage and Silage. J. Elem. 2019, 24, 1195–1202. [Google Scholar] [CrossRef]
- Purwin, C.; Gugołek, A.; Strychalski, J.; Fijałkowska, M. Productivity, nutrient digestibility, nitrogen retention, and meat quality in rabbits fed diets supplemented with Sida hermaphrodita. Animals 2019, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Fijałkowska, M.; Przemieniecki, S.W.; Kurowski, T.; Lipiński, K.; Nogalski, Z.; Purwin, C. Ensiling suitability and microbiological quality of Virginia fanpetals biomass. Can. J. Anim. Sci. 2017, 97, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Piłat, J.; Majtkowski, W.; Majtkowska, G.; Mikołajczak, J.; Góralska, A. The usefulness for ensiling of chosen plant forms of species of Silphium genus [Przydatność do zakiszania wybranych form gatunku roślin z rodzaju Silphium]. J. Cent. Eur. Agric. 2007, 8, 363–368. [Google Scholar]
- Klímek, P.; Meinlschmidt, P.; Wimmer, R.; Plinke, B.; Schirp, A. Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards. Ind. Crops Prod. 2016, 92, 157–164. [Google Scholar] [CrossRef]
- Martens, R. (3N Kompetenzzentrum Niedersachsen Netzwerk Nachwachsende Rohstoffe und Bioökonomie e.V., Werlte, Germany). Personal communication, 2017. [Google Scholar]
- Rumpf, J.; Do, X.T.; Burger, R.; Monakhova, Y.B.; Schulze, M. Extraction of High-Purity Lignins via Catalyst-Free Organosolv Pulping from Low-Input Crops. Biomacromolecules 2020, 21, 1929–1942. [Google Scholar] [CrossRef] [PubMed]
- Lewtak, K.; Fiołka, M.J.; Czaplewska, P.; Macur, K.; Kaczyński, Z.; Buchwald, T.; Szczuka, E.; Rzymowska, J. Sida Hermaphrodita Seeds as the Source of Anti—Candida Albicans Activity. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bernat, P.; Nesme, J.; Paraszkiewicz, K.; Schloter, M.; Płaza, G. Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas Putida Strain Isolated from the Interior of Healthy Roots from Sida Hermaphrodita Grown in a Heavy Metal Contaminated Soil. Curr. Microbiol. 2019, 76, 1320–1329. [Google Scholar] [CrossRef]
- Du, J.; Zhang, L.; Ali, A.; Li, R.; Xiao, R.; Guo, D.; Liu, X.; Zhang, Z.Z.; Ren, C.; Zhang, Z.Z. Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars. Process. Saf. Environ. Prot. 2019, 125, 260–268. [Google Scholar] [CrossRef]
- Madej, J.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. Biochars with Low Polycyclic Aromatic Hydrocarbon Concentrations Achievable by Pyrolysis under High Carrier Gas Flows Irrespective of Oxygen Content or Feedstock. J. Anal. Appl. Pyrolysis 2016, 122, 365–369. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour. Technol. 2015, 196, 540–549. [Google Scholar] [CrossRef]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Evaluation of chemical composition of some Silphium L. species as alternative raw materials. Agriculture 2020, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Paquette, L.A.; Leone-Bay, A. Triquinane Sesquiterpenes. An Iterative, Highly Stereocontrolled Synthesis of (±)-Silphinene. J. Am. Chem. Soc. 1983, 105, 7352–7358. [Google Scholar] [CrossRef]
- Konarev, A.V.; Anisimova, I.N.; Gavrilova, V.A.; Vachrusheva, T.E.; Konechnaya, G.Y.; Lewis, M.; Shewry, P.R. Serine proteinase inhibitors in the Compositae: Distribution, polymorphism and properties. Phytochemistry 2002, 59, 279–291. [Google Scholar] [CrossRef]
- El-Sayed, N.H.; Wojcińska, M.; Drost-Karbowska, K.; Matławska, I.; Williams, J.; Mabry, T.J. Kaempferol triosides from Silphium perfoliatum. Phytochemistry 2002, 60, 835–838. [Google Scholar] [CrossRef]
- Blay, G.; García, B.; Molina, E.; Pedro, J.R. Syntheses of (+)-Alismoxide and (+)-4-Epi-Alismoxide. J. Org. Chem. 2006, 71, 7866–7869. [Google Scholar] [CrossRef]
- Feng, W.S.; Pei, Y.Y.; Zheng, X.K.; Li, C.G.; Ke, Y.Y.; Lv, Y.Y.; Zhang, Y.L. A New kaempferol trioside from Silphium perfoliatum. J. As. Nat. Prod. Res. 2014, 16, 393–399. [Google Scholar] [CrossRef]
- Kowalski, R. Analysis of Lipophilic Fraction from Leaves, Inflorescences and Rhizomes of Silphium Perfoliatum L. Acta Soc. Bot. Pol. 2005, 74, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, R.; Wolski, T. The chemical composition of essential oils of Silphium perfoliatum L. Flavour Fragr. J. 2005, 20, 306–310. [Google Scholar] [CrossRef]
- Kowalski, R.; Wolski, T. TLC and HPLC Analysis of the phenolic acids in Silphium perfoliatum L. leaves, inflorescences and rhizomes. J. Planar Chromatogr. 2003, 16, 230–236. [Google Scholar] [CrossRef]
- Kowalski, R. Silphium L. extracts—Composition and protective effect on fatty acids content in sunflower oil subjected to heating and storage. Food Chem. 2009, 112, 820–830. [Google Scholar] [CrossRef]
- Jamiolkowska, A.; Kowalski, R. In-vitro estimate of influence of Silphium perfoliatum L. leaves extract on some fungi colonizing the pepper plants. Acta Sci. Pol., Hort. Cult. 2012, 11, 43–55. [Google Scholar]
- Davidyans, E.S. Effect of triterpenoid glycosides on α- and β-amylase activity and total protein content in wheat seedlings. Appl. Biochem. Microbiol. 2011, 47, 480–486. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Oleszek, W. Phytochemicals in bioenergy crops. Phytochem. Rev. 2019, 18, 893–927. [Google Scholar] [CrossRef] [Green Version]
- Zabka, M.; Pavela, R.; Gabrielova-Slezakova, L. Promising antifungal effect of some Euro-Asiatic plants against dangerous pathogenic and toxinogenic fungi. J. Sci. Food Agric. 2011, 91, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.M.; Zhou, H.Z.; Li, R.; Duan, M.Y.; Wu, H.X.; Lou, Y.J. Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.). PLoS ONE 2017, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Shang, H.; Guo, Y.; Zhang, H.; Wu, H. Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.). Process. Biochem. 2020, 90, 241–248. [Google Scholar] [CrossRef]
- Guo, Y.; Shang, H.; Zhao, J.; Zhang, H.; Chen, S. Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) polysaccharide and its antioxidant and hypoglycemic activities. Process. Biochem. 2020, 92, 17–28. [Google Scholar] [CrossRef]
- Fiedler, A.K.; Landis, D.A. Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environ. Entomol. 2007, 36, 751–765. [Google Scholar] [CrossRef]
- Dobrowolski, J.W.; Śliwka, M.; Mazur, R. Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas. J. Chem. Technol. Biotechnol. 2012, 87, 1354–1359. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Sienkiewicz, S.; Krzebietke, S.; Sternik, P. Content of selected heavy metals in soil and in Virginia mallow (Sida hermaphrodita) fertilised with sewage sludge. J. Elem. 2016, 21, 247–258. [Google Scholar] [CrossRef]
- Prelac, M.; Bilandžija, N.; Zgorelec, Ž. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review. J. Cent. Eur. Agric. 2016, 17, 901–916. [Google Scholar] [CrossRef] [Green Version]
- Kocoń, A.; Jurga, B. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ. Sci. Pollut. Res. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanh-Quang, T.; Werle, S.; Trinh, T.T.; Magdziarz, A.; Sobek, S.; Pogrzeba, M. Fuel Characterization and Thermal Degradation Kinetics of Biomass from Phytoremediation Plants. Biomass Bioenergy 2020, 134, 1–7. [Google Scholar] [CrossRef]
- Chmelíková, L.; Wolfrum, S. Mitigating the biodiversity footprint of energy crops – a case study on arthropod diversity. Biomass Bioenergy 2019, 125, 180–187. [Google Scholar] [CrossRef]
- Emmerling, C. Impact of land-use change towards perennial energy crops on earthworm population. Appl. Soil Ecol. 2014, 84, 12–15. [Google Scholar] [CrossRef]
- Burmeister, J.; Walter, R. Untersuchungen zur ökologischen wirkung der durchwachsenen Silphie aus Bayern [Studies on the ecological effect of Silphium Perfoliatum in Bavaria]. J. FÜR Kult. 2016, 68, 407–411. [Google Scholar] [CrossRef]
- Heděnec, P.; Novotný, D.; Usťak, S.; Cajthaml, T.; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Frouz, J. The effect of native and introduced biofuel crops on the composition of soil biota communities. Biomass Bioenergy 2014, 60, 137–146. [Google Scholar] [CrossRef]
- Jabłonski, B.; Kołtowski, Z. Nectar secretion and honey potential of honey plants growing under Poland ’s conditions—Part XV. J. Apic. Sci. 2005, 49, 59–63. [Google Scholar]
- Mueller, A.L.; Biertümpfel, A.; Friedritz, L.; Power, E.F.; Wright, G.A.; Dauber, J. Floral resources provided by the new energy crop, Silphium perfoliatum L. (Asteraceae). J. Apic. Res. 2020, 59, 232–245. [Google Scholar] [CrossRef]
- Mueller, A.L.; Berger, C.A.; Schittenhelm, S.; Stever-Schoo, B.; Dauber, J. Water availability affects nectar sugar production and insect visitation of the cup plant Silphium perfoliatum L. (Asteraceae). J. Agro. Crop. Sci. 2020, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schorpp, Q.; Riggers, C.; Lewicka-Szczebak, D.; Giesemann, A.; Well, R.; Schrader, S. Influence of Lumbricus terrestris and Folsomia candida on N2O formation pathways in two different soils—With particular focus on N2 emissions. Rapid Commun. Mass Spectrom. 2016, 30, 2301–2314. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Balezentiene, L.; Streimikiene, D.; Balezentis, T. Fuzzy decision support methodology for sustainable energy crop selection. Renew. Sustain. Energy Rev. 2013, 17, 83–93. [Google Scholar] [CrossRef]
S. hermaphrodita | S. perfoliatum | |
---|---|---|
Total number of documents initially found | 122 | 103 |
Number of documents written in other than English, German, and Polish | 1 | 10 |
Number of documents considered out of scope | 3 | 2 |
Number of documents with restricted access/not available | 12 | 11 |
Number of additional papers identified during the review | 20 | 17 |
Number of documents finally reviewed | 125 | 97 |
N | P | K | Author, Year | Reference |
---|---|---|---|---|
100/200 | 39/52 | 83 | Borkowska et al., 2009 | [20] |
100 | 35 | 83 | Borkowska and Molas, 2012 | [7] |
0/60 e/120 | 60 e | 60 e | Slepetys et al., 2012 | [21] |
90 | 13–39 | 42–82 | Pszczółkowska et al., 2012 | [16] |
100 | 39 | 75 | Borkowska and Molas, 2013 | [41] |
158 e/79 | 88 e/44 | 116 e/58 | Szyszlak-Bargłowicz et al., 2013 | [47] |
0/60/120 | 26 | 33 | Šiaudinis et al., 2015 | [22] |
90 e/120 | 35 e/43 | 66 e/82 | Jankowski et al., 2016 | [42] |
160 | 5% | 8% | Nabel et al., 2016 | [48] |
0/60/120 | 60 SSP | 31 | Šiaudinis et al., 2017 | [33] |
68/136 | 23–58 | 55–204 | Stolarski et al., 2017 | [49] |
0/68/136 | 0/26/52 | 0/73/146 | Stolarski et al., 2017 | [37] |
120 | 30 | 80 | Matyka and Kuś, 2018 | [43] |
85/170 | 13 | 33 | Krzyżaniak et al., 2018 | [38] |
140 | - | 25 | Facciotto et al., 2018 | [35] |
90/170 | - | - | Tilvikiene et al., 2019 | [50] |
100/200 | 83 | 39 | Molas et al., 2019 | [31] |
60 e/40–80 | 35 e | 80 e | Bury et al., 2019 | [36] |
70 | - | - | von Gehren et al., 2019 | [32] |
90 | 13 | 33 | Stolarski et al., 2019 | [51] |
100 e/100 | 35 e/35 | 110 e/110 | Siwek et al., 2019 | [52] |
120 e/150 | 44 e/44 | 82 e/82 | Jankowski et al., 2019 | [53] |
80 e/80 | 26 e/26 | 44 e/44 | Feledyn-Szewczyk et al., 2019 | [30] |
90/170 | - | - | Tilvikiene et al., 2020 | [50] |
Nutrient | S. hermaphrodita | Poplar | ||
---|---|---|---|---|
Antonkiewicz et al. a [40] | Sienkiewicz et al. b [54] | Bilandžija et al. c [55] | ||
N | 8.8 | 7.9–12.8 | - | 7.8 [56] |
P | 0.4 | 1.8–2.8 | - | 0.6 [57] |
K | 2.5 | 17.5–24.7 | 11.3 | 3.9 [57] |
Mg | 0.4 | 1.3–1.9 | 0.5 | 0.9 [57] |
Ca | 3.4 | 18.4–22.6 | 7.6 | 13.6 [57] |
Na | 0.2 | 1.2–2.2 | 0.02 | 0.18 [57] |
N | P | K | Author, Year | Reference |
---|---|---|---|---|
150 | - | - | Han et al., 2000 | [84] |
100 | 80 | 100 | Kowalski, 2007 | [109] |
92 e | 79 e | 66 e | Pan et al., 2011 | [91] |
0/60/120 | 26 | 33 | Slepetys et al., 2012 | [21] |
0/60/120 | 26 | 33 | Šiaudinis et al., 2012 | [104] |
200 e/0–400 | 0–175 | 55 e/110 | Pichard, 2012 | [73] |
0/60/120 | 26 e | 33 e | Jasinskas et al., 2014 | [83] |
160 | - | - | Emmerling, 2016 | [110] |
150 e | 40 e | 150–200 e | Frölich et al., 2016 | [111] |
170 | 30–41 | 199–237 | Schoo et al., 2017 | [93] |
0/60/120 | 26 | 33 | Šiaudinis et al., 2017 | [33] |
140 | - | 25 | Facciotto et al., 2018 | [35] |
50/100/150 | 21 | 27 | Ustak and Munoz, 2018 | [112] |
90 | 13 | 33 | Stolarski et al., 2019 | [51] |
60 e/40–80 | 35 e | 80 e | Bury et al., 2019 | [36] |
60 | 60 | 60 | Šiaudinis et al., 2019 | [113] |
100 e/150 | - | - | Wever et al., 2019 | [80] |
Species | N | P | K | Mg | Ca |
---|---|---|---|---|---|
S. perfoliatum | 8.1 | 2.1 | 14.1 | 3.9 | 22.1 |
Silage maize | 11.0 | 2.6 | 12.5 | 1.2 | 2.1 |
Calorific value (MJ kg−1) | Moisture Content (%) | Ash Content (%) | Sulphur Content (%) | Details | Author, Year | Reference | ||
---|---|---|---|---|---|---|---|---|
S. hermaphrodita | Stems | 16.0 (CV) | - | - | - | December/April | Franzaring et al., 2014 | [28] |
18.7 (CV) | 14.1/5.9 | - | - | chaff/mill | Jasinskas et al., 2014 | [19] | ||
18.7 (HHV); 14.9 (LHV) | 18.0 | 2.4 | 0.029 | April | Stolarski et al., 2014 | [124] | ||
19.2 (HHV); 15.0 (LHV) | 20 | 1.8 | 0.03 | March | Stolarski et al., 2018 | [34] | ||
16.1 (LHV) | 14.0 | - | - | - | Kurucz et al., 2018 | [24] | ||
18.7 (HHV); 15.6 (LHV) | 32.2 | 2.9 | - | - | Zachar et al., 2018 | [132] | ||
17.6 (LHV) | 18.6 | 1.9 | 0.23 | spring | Bilandžija et al., 2018 | [55] | ||
16.1 (CV) | 9.9 | - | - | - | Schonhoff et al., 2019 | [133] | ||
17.0–17.7 (LHV) | 19.0–23.6 | 2.1–5.1 | 0.024–0.042 | BBCH 98 | von Gehren et al., 2019 | [32] | ||
18.0 (HHV); 16.6 (LWV) | 10 | 1.57 | - | - | Szwaja et al., 2019 | [134] | ||
17.3–19.4 (HHV) | - | - | - | - | Jankowski et al., 2019 | [53] | ||
17.5 (HHV)-16.2 (LHV) | 7.5 | 0.55 | 0 | mill | Magdziarz et al., 2020 | [135] | ||
17.8 (HHV)-16.5 (LHV) | 6.9 | 1.97 | - | - | Śliz and Wilk, 2020 | [136] | ||
Pellets | 17.5–18.4 (LHV) | 9.6 | 6.1 | 0.17 | - | Šiaudinis et al., 2015 | [22] | |
16.8 (CV) | 7.7 | 2.9 | 0.07 | - | Zajac et al., 2017 | [127] | ||
19.5 (HHV); 16.5–17.2 (LHV) | 12 | 2.7–3.0 | 0.024–0.028 | - | Jablonowski et al., 2017 | [17] | ||
17.4 (CV) | 9.6 | - | - | - | Streikus et al., 2019 | [66] | ||
17.2 (CV) | 7.1 | - | - | - | Schonhoff et al., 2019 | [133] | ||
17.5 (LHV) | 7.8 | 2.6 | - | - | von Gehren et al., 2019 | [32] | ||
S. perfoliatum | Stems | 16.5 (CV) | - | - | - | September | Šiaudinis et al., 2012 | [104] |
18.9 (HHV); 14.9 (LHV) | 18.5 | 3.0 | 0.034 | April | Stolarski et al., 2014 | [124] | ||
17.2–17.5 (CV) | 15.2/8.2 | - | - | chaff/mill | Jasinskas et al., 2014 | [19] | ||
18.8 (HHV); 14 (LHV) | 22 | 3.4 | 0.04 | March | Stolarski et al., 2018 | [34] | ||
Pellets | 17.2–17.5 (LHV) | 11.6 | 10.0 | 0.07 | - | Šiaudinis et al., 2015 | [22] |
S. hermaphrodita | S. perfoliatum | Maize | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Michalska et al., 2012 | Slepetys et al., 2012 | Oleszek et al., 2013 | Pokój et al., 2015 | Dębowski et al., 2017 | Rusanowska et al., 2018 | Dudek et al., 2018 | Slepetys et al., 2012 | Haag et al., 2015 | Pokój et al., 2015 |
Material | Silage | Silage | Silage | Silage | Silage | Silage | Silage | |||
Time of harvest | October | July | Flowering | BBCH 55 | October | August | BBCH 12 | |||
Dry matter, DM (%) a | 51.0 | 25.55 | 37.43 | 28 | 27.60 | 38.5 | 24.65 | |||
Organic dry matter, oDM (% DM) b | 90.91 | 77.12 | 92.20 | 91.90 | 22.02 | |||||
pH | 5.53 | 7.24 | 7.6–7.9 | |||||||
C (%) | 45.9 | 47.3 | 39.21 | 44.7 | 43.95 CT org = 39.77 | 41.3 | 41.7 | 44.67 | 43.9 | |
N (%) | 0.3 | 0.34 | Norg = 1.68 Nam = 0.13 | 1.5 | 0.28 | 0.5 | 0. 5 | 0.50 | 1.6 | |
C:N | 129.7–198.8 | 22.43 | 142.55 | 75.0–124.4 | ||||||
S (%) | 0.0 | 0.05 | 0.04 | |||||||
Ash (%) | 3.6 | 3.75 | 9.46 | 6.8 (%DM) | 9.76 | 10.6 | ||||
Neutral detergent fibre, NDF (%) | 81.17 | 60.2 | 69.83 | 54.9 | 40.0 | |||||
Acid detergent fibre, ADF (%) | 71.40 | 50.3 | 62.73 | 47.7 | 25.0 | |||||
Lignin content (%) | 19.1 | 12.60 | 8.5 | 12.97 | 3.6 |
Details | Biogas yield (dm3 kg−1 oDM) | Methane yield (dm3 kg−1 oDM) | Reference | |
---|---|---|---|---|
S. hermaphrodita | Double harvest | 435 | 220 | [15] |
BBCH 55 | 420 | 204 | [17] | |
BBCH 77 | 269 | 131 | [17] | |
BBCH 91 | 256 | 125 | [17] | |
Novel reactor | 630–730 | 340–394 | [138] | |
Batch/Continuous | - | 316/252 | [32] | |
S. perfoliatum | BMP * | - | 260 | [78] |
BMP | - | 290 | [10] | |
CBT */HBT * | - | 227/251 | [77] | |
- | - | 296/315 | [92] | |
Batch | - | 254–298 | [112] | |
HBT | - | 266 | [80] | |
Batch | - | 260 | [119] | |
Real biogas plant | - | 300 | [102] |
Parameter | S. hermaphrodita | Maize | |
---|---|---|---|
Pokój et al. [67] | Sienkiewicz et al. [54] | Pokój et al. [67] | |
DM (%) | 3.66 | 4.04 | 3.39 |
oDM (% DM) | 76.5 | 76.2 | |
pH | 7.35 | 9.96 | |
Electric conductivity (mS cm−1) | 7.9 | 9.7 | |
N (% DM) | 1.8 | 0.07 | 4.1 |
P (% DM) | 0.66 | 3.48 | |
Available P (% DM) | 0.50 | 0.11 | 0.44 |
K (% DM) | 3.46 | 0.22 | 0.59 |
Mg (% DM) | 0.37 | 0.00 | 3.62 |
Ca (% DM) | 1.33 | 0.05 | 0.37 |
Heavy metals (mg kg−1 DM) | 0.0 Cd, 8.4 Cu, 5.1 Ni, 0.0 Pb, 23.4 Zn | 0.15 Cd, 81.6 Cu. 10.9 Ni, 0.0 Pb, 80.6 Zn |
Method | Total (€ ha−1) | Plant Material (€ DM t−1) |
---|---|---|
Sowing | 3159–3190 | 129–138 |
Transplanting | 5159–5190 | 148–161 |
Technology | Input (GJ ha−1 y−1) | Output(GJ ha−1 y−1) | Energy gain (GJ ha−1 y−1) | Energy Efficiency Ratio | Reference | |
---|---|---|---|---|---|---|
S. hermaphrodita | Combustion | 9–19 | 172–226 | 185 | 12–20 | [29] |
19 | 79–101 | 71 | 4.7 | [22] | ||
22 | 152 | 123 | 7.0 | [42] | ||
19 | 78 | 59 | 4.1 | [37] | ||
- | 51–102 | - | - | [38] | ||
- | 218 | - | - | [31] | ||
8.4 | 177 | - | 7.3–21.8 | [51] | ||
30–36 | 60–75 | 30–40 | 2.0–2.1 | [53] | ||
Combustion: 2 cuts | - | 439 | - | - | [17] | |
Biogas: 1 cut | - | 85 | - | - | [17] | |
Biogas: 2 cuts | - | 136 | - | - | [17] | |
Dual harvest | - | 212 | - | - | [17] | |
Electricity | - | 56 | - | - | [118] | |
S. perfoliatum | Combustion | 7–28 | 188–362 | 180–334 | 12–25 | [104] |
19 | 200–236 | 199 | 11.5 | [22] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy 2020, 10, 928. https://doi.org/10.3390/agronomy10070928
Cumplido-Marin L, Graves AR, Burgess PJ, Morhart C, Paris P, Jablonowski ND, Facciotto G, Bury M, Martens R, Nahm M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy. 2020; 10(7):928. https://doi.org/10.3390/agronomy10070928
Chicago/Turabian StyleCumplido-Marin, Laura, Anil R. Graves, Paul J. Burgess, Christopher Morhart, Pierluigi Paris, Nicolai D. Jablonowski, Gianni Facciotto, Marek Bury, Reent Martens, and Michael Nahm. 2020. "Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge" Agronomy 10, no. 7: 928. https://doi.org/10.3390/agronomy10070928
APA StyleCumplido-Marin, L., Graves, A. R., Burgess, P. J., Morhart, C., Paris, P., Jablonowski, N. D., Facciotto, G., Bury, M., Martens, R., & Nahm, M. (2020). Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy, 10(7), 928. https://doi.org/10.3390/agronomy10070928