In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla (Miq.) Pax
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explant Preparation
2.2. Culture Establishment and Conditions
2.3. Shoot Multiplication
2.4. In Vitro and Ex Vitro Rooting
2.5. Foliar Micromorphology
2.6. Statistical Analysis
3. Results
3.1. Effect of Plant Growth Regulators (PGRs) on Axillary Bud Induction
3.2. Effects of Different Concentrations of Auxin on Rooting In Vitro
3.3. Effects of Different Concentrations of Auxin on Ex Vitro Rooting
3.4. Comparison of In Vitro and Ex Vitro Rooting
3.5. Comparative Analysis of Leaf Micromorphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yin, S.S.; Gao, W.Y.; Liang, Y.Y.; Wang, J.; Liu, H.; Wei, C.L.; Zuo, B.M. Influence of sucrose concentration and phosphate source on biomass and metabolite accumulation in adventitious roots of Pseudostellaria heterophylla. Acta Physiol. Plant. 2013, 35, 1579–1585. [Google Scholar] [CrossRef]
- Xu, W.Y.; Zhu, H.T.; Tan, N.H.; Tang, J.; Zhang, Y.J.; Cerny Ron, L.; Du, L.C. An in vitro system to study cyclopeptide heterophyllin B biosynthesis in the medicinal plant Pseudostellaria heterophylla. Plant Cell Tissue Organ Cult. 2012, 108, 137–145. [Google Scholar] [CrossRef]
- Yan, P.L.; Wang, Z.H.; Jin, Z.F.; Gao, Y.; Qiu, F.T. Study on tissue culture and rapid propagation of Pseudostellaria heterophylla. Anhui Agri. Sci. Bull. 2016, 22, 50–52. (In Chinese) [Google Scholar]
- Deng, Y.; Han, B.X.; Hu, D.J.; Zhao, J.; Li, S.P. Qualitation and quantification of water soluble non-starch polysaccharides from Pseudostellaria heterophylla in China using saccharide mapping and multiple chromatographic methods. Carbohydr. Polym. 2018, 199, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Liao, L.; Zuo, B.M.; Gao, W.Y. Study on adventitious roots induction and proliferation culture of Pseudostellaria heterophylla. North. Hortic. 2013, 2, 147–149. (In Chinese) [Google Scholar]
- Peng, Y.S.; Chen, R.; Yang, R.D. Analysis of heavy metals in Pseudostellaria heterophylla in Baiyi Country of Wudang District. J. Geochem. Explor. 2016, 176, 57–63. [Google Scholar] [CrossRef]
- Yin, S.S.; Liang, Y.Y.; Gao, W.Y.; Wang, J.; Jing, S.S.; Zhang, Y.; Liu, H. Influence of medium salt strength and nitrogen source on biomass and metabolite accumulation in adventitious root cultures of Pseudostellaria heterophylla. Acta Physiol. Plant. 2013, 35, 2623–2628. [Google Scholar] [CrossRef]
- Ye, Z.Y.; Wang, Y.Y.; Tian, H.Q. Regeneration of plantlets and tetraploidy induction in Pseudostellaria heterophylla. Acta Biol. Cracov. Ser. Bot. 2009, 51, 13–18. [Google Scholar]
- Ma, X.M.; Wu, C.F.; Wang, G.R. Application of artificial seeds in rapid multiplication of Pseudostellaria heterophylla. Afr. J. Biotechnol. 2011, 10, 15744–15748. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, J.S.; Zhang, J.H. Detection and control of Taizishen mosaic virus. Virol. Sin. 1993, 8, 390–393. (In Chinese) [Google Scholar]
- Yu, C.X.; Zheng, X.F.; Deng, Y.H.; Huang, G. Tissue culture for Pseudostellaria heterophylla. Guizhou Agric. Sci. 2004, 32, 16–17. (In Chinese) [Google Scholar]
- Francis, S.V.; Senapati, S.K.; Rout, G.R. Rapid clonal propagation of Curculigo orchioides Gaertn., an endangered medicinal plant. In Vitro Cell. Dev. Biol. Plant 2007, 43, 140–143. [Google Scholar] [CrossRef]
- Joshi, P.; Dhawan, V. Axillary multiplication of Swertia chirayita (Roxb. Ex Fleming) H. Karst., a critically endangered medicinal herb of temperate Himalayas. In Vitro Cell. Dev. Biol. Plant 2007, 43, 631–638. [Google Scholar] [CrossRef]
- Sivanesan, I.; Jeong, B.R. Direct shoot regeneration from nodal explants of Sida cordifolia Linn. In Vitro Cell. Dev. Biol. Plant 2007, 43, 436–441. [Google Scholar] [CrossRef]
- Offord Catherine, A.; Tyler Joanne, L. In vitro propagation of Pimelea spicata R.Br (Thymelaeaceae), an endangered species of the Sydney region, Australia. Plant Cell Tissue Organ Cult. 2009, 98, 19–23. [Google Scholar] [CrossRef]
- Goncalves, S.; Fernandes, L.; Romano, A. High-frequency in vitro propagation of the endangered species Tuberaria major. Plant Cell Tissue Organ Cult. 2010, 101, 359–363. [Google Scholar] [CrossRef]
- Ali, A.; Afrasiab, H.; Naz, S.; Rauf, M.; Iqbal, J. An efficient protocol for in vitro propagation of carnation (Dianthus caryophyllus). Pak. J. Bot. 2008, 40, 111–121. [Google Scholar]
- Kritskaya, T.A.; Kashin, A.S.; Spivak, V.A.; Firstov, V.E. Features of clonal micropropagation of Silene cretacea (caryophyllaceae) in in vitro culture. Russ. J. Dev. Biol. 2016, 47, 359–366. [Google Scholar] [CrossRef]
- Benmahioul, B.; Dorion, N.; Kaid-Harche, M.; Daguin, F. Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell Tissue Organ Cult. 2012, 108, 353–358. [Google Scholar] [CrossRef]
- Baskaran, P.; Van Staden, J. Rapid in vitro micropropagation of Agapanthus praecox. S. Afr. J. Bot. 2013, 86, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Pate, l.A.K.; Agarwal, T.; Phulwaria, M.; Kataria, V.; Shekhawat, N.S. An efcient in vitro plant regeneration system from leaf of mature plant of Leptadenia reticulata (Jeewanti): A life giving endangered woody climber. Ind. Crop. Prod. 2014, 52, 499–505. [Google Scholar] [CrossRef]
- Liu, B.L.; Fang, H.Z.; Meng, C.R.; Chen, M.; Chai, Q.D.; Zhang, K.; Liu, S.J. Establishment of a rapid and efficient micropropagation system for succulent plant Haworthia turgida haw. HortScience 2017, 52, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Shekhawat Mahipal, S.; Manokari, M.; Kannan, N. Micromorphological response towards altered environmental conditions in subsequent stages of in vitro propagation of Morinda coreia. Environ. Exp. Biol. 2017, 15, 37–46. [Google Scholar]
- Chen, H.B.; Zheng, Y.J.; Li, F.Z. Flora of Shandong Province; Qingdao Publishing House: Qingdao, China, 1990; Volume 1, pp. 1133–1137. [Google Scholar]
- Johansen, D.A. Plant Microtech.; McGraw Hill Book Co.: New York, NY, USA, 1940; Volume 1, pp. 182–197. [Google Scholar]
- Frello, S.; Venerus, E.; Serek, M. Regeneration of various species of Crassulaceae, with special reference to Kalanchoë. J. Hortic. Sci. Biotechnol. 2002, 77, 204–208. [Google Scholar] [CrossRef]
- Kordi, M.; Kaviani, B.; Hashemabadi, D. In vitro propagation of Kalanchoe blossfeldiana using BA and NAA. Eur. J. Exp. Biol. 2013, 3, 285–288. [Google Scholar]
- Peeters Anton, J.M.; Gerards, W.; Barendse Gerard, W.M.; Wullems George, J. In vitro flower bud formation in tobacco: Interaction of hormones. Plant Physiol. 1991, 97, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Sivanesan, I.; Jana, S.; Jeong, B.R. In vitro shoot regeneration and microcorm development in Crocus vernus (L.) Hill. Pak. J. Bot. 2014, 46, 693–697. [Google Scholar]
- Patel Ashok, K.; Phulwaria, M.; Rai Manoj, K.; Gupta Amit, K.; Shekhawat, S.; Shekhawat, N.S. In vitro propagation and ex vitro rooting of Caralluma edulis (Edgew.) Benth. & Hook. f.: An endemic and endangered edible plant species of the Thar Desert. Sci. Hortic. 2014, 165, 175–180. [Google Scholar]
- Begum, F.; Islam Kazi, M.D.; Paul, R.N.; Mehedi, M.; Rani, S. In vitro propagation of emetic nut Randia dumetorum (Lamb.). Indian J. Exp. Biol. 2003, 41, 1479–1481. [Google Scholar]
- Joshi, A.; Mathur, N. In vitro propagation and conservation of Anthocephalus cadamba through apical bud and nodal explants—A valuable medicinal plant. CIBTech J. Biotechnol. 2015, 4, 8–18. [Google Scholar]
- Deng, Z.C.; Jin, H.; He, H. An efficient micropropagation system for Morinda officinalis How. (Rubiaceae), an Endangered Medicinal Plant. J. Agric. Sci. Technol. 2015, 17, 1609–1618. [Google Scholar]
- Zhang, C.L.; Chen, D.F.; Elliott Malcolm, C.; Slater, A. Efficient procedures for callus induction and adventitious shoot organogenesis in sugar beet (Beta vulgaris L.) breeding lines. In Vitro Cell. Dev. Biol. Plant 2004, 40, 475–481. [Google Scholar] [CrossRef]
- Yan, H.B.; Liang, C.X.; Yang, L.T.; Li, Y.R. In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiol. Plant. 2010, 32, 115–120. [Google Scholar] [CrossRef]
- Drisya Ravi, R.S.; Siril, E.A.; Nair, B.R. The effect of silver nitrate on micropropagation of Moringa oleifera Lam. An important vegetable crop of tropics with substantial nutritional value. Physiol. Mol. Biol. Plants 2019, 25, 1311–1322. [Google Scholar] [CrossRef]
- Xu, Z.H.; Bai, Z.Y.; Lin, Y.; Wang, X.Y.; Zhao, S.P. Anatomical observation on root of test-tube seedlings in Rosa. Acta Hortic. Sin. 1998, 25, 405–407. (In Chinese) [Google Scholar]
- Chen, Z.L.; Xue, H.; Feng, Y.; Yan, Z.L.; Qi, L. First probe into of a certain factors affecting the tissue culture seedlings of the Jujuba under outer test-tube root formation. J. Yanan Univ. 1996, 15, 46–49. (In Chinese) [Google Scholar]
- Phulwaria, M.; Shekhawat, N.S.; Rathore, J.S.; Singh, R.P. An efficient in vitro regeneration and ex vitro rooting of Ceropegia bulbosa Roxb.—A threatened and pharmaceutical important plant of Indian Thar Desert. Ind. Crops Prod. 2013, 42, 25–29. [Google Scholar] [CrossRef]
- Rathore, J.S.; Rai Manoj, K.; Phulwaria, M.; Shekhawat, N.S. A liquid culture system for improved micropropagation of mature Acacia nilotica (L.) Del. ssp. indica and ex vitro rooting. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 193–200. [Google Scholar] [CrossRef]
- Kataoka, I. Influence of rooting substrates on the morphology of papaya root formed in vitro. Jpn. J. Trop. Agric. 1994, 38, 251–257. [Google Scholar]
- Karhu, S.T. Rooting of blue honeysuckle microshoots. Plant Cell Tissue Organ Cult. 1997, 48, 153–159. [Google Scholar] [CrossRef]
- Li, H.X. Study on rooting technique of Euphorbia pulcherrima in vitro. Gansu Agric. Sci. Technol. 2000, 11, 46–47. (In Chinese) [Google Scholar]
- Carvalho Luisa, C.; Leonor Osório, M.; Manuela Chaves, M.; Amâncio, S. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tissue Organ Cult. 2001, 67, 271–280. [Google Scholar] [CrossRef]
- Revathi, J.; Manokari, M.; Shekhawat, M.S. Optimization of factors affecting in vitro regeneration, flowering, ex vitro rooting and foliar micromorphological studies of Oldenlandia corymbosa L.: A multipotent herb. Plant Cell Tissue Organ Cult. 2018, 134, 1–13. [Google Scholar] [CrossRef]
- Kozai, T.; Iwabuchi, K.; Watanabe, K.; Watanabe, I. Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tissue Organ Cult. 1991, 25, 107–115. [Google Scholar]
- Gaspar, T.; Franck, T.; Bisbis, B.; Kevers, C.; Jouve, L.; Hausman, J.F.; Dommes, J. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002, 37, 263–285. [Google Scholar] [CrossRef]
- Manokari, M.; Shekhawat, M.S. Comprehensive analysis of in vitro to feld transition of micromorphology and leaf architecture in Passiflora edulis Sims. f. flavicarpa Deg. Ind. J. Plant Physiol. 2017, 22, 240–246. [Google Scholar] [CrossRef]
- Machado, M.P.; Silva, A.L.L.; Biasi, L.A.; Deschamps, C.; Filho, J.C.B.; Zanette, F. Influence of calcium content of tissue on hyperhydricity and shoot tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill. Braz. Arch. Biol. Technol. 2014, 57, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Saez, P.L.; Bravo, L.A.; Latsagne, M.I.; Rios, D.G. Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Sci. Hortic. 2012, 138, 7–16. [Google Scholar] [CrossRef]
6-BA y (mg·L−1) | KT (mg·L−1) | TDZ (mg·L−1) | No. Axillary Bud Per Explant | No. Primary Branches Per Explant | Plant Height (mm) |
---|---|---|---|---|---|
— | — | — | 6.5 ± 0.18 f z | 0.0 ± 0.00 f | 37.8 ± 1.44 b |
0.5 | — | — | 10.5 ± 0.35 ab | 0.9 ± 0.24 bcd | 25.1 ± 1.25 cd |
1.0 | — | — | 10.8 ± 0.83 ab | 2.6 ± 0.20 a | 26.4 ± 0.28 cd |
1.5 | — | — | 11.6 ± 0.35 a | 3.1 ± 0.44 a | 21.9 ± 0.58 d |
2.0 | — | — | 11.5 ± 0.71 a | 1.5 ± 0.27 b | 21.8 ± 1.80 d |
2.5 | — | — | 10.9 ± 0.35 ab | 1.2 ± 0.20 b | 20.3 ± 1.06 d |
— | 0.5 | — | 9.9 ± 0.37 bc | 0.4 ± 0.20 cdef | 34.1 ± 9.88 bc |
— | 1.0 | — | 10.8 ± 0.62 ab | 0.2 ± 0.12 ef | 27.4 ± 2.09 cd |
— | 1.5 | — | 10.6 ± 0.50 ab | 0.9 ± 0.41 bcd | 50.4 ± 1.17 a |
— | 2.0 | — | 7.1 ± 0.08 ef | 0.4 ± 0.12 cdef | 28.7 ± 0.49 cd |
— | 2.5 | — | 6.4 ± 0.12 f | 0.1 ± 0.07 f | 24.8 ± 0.96 d |
— | — | 0.5 | 11.1 ± 0.58 ab | 0.3 ± 0.18 def | 19.6 ± 0.55 d |
— | — | 1.0 | 11.2 ± 0.40 ab | 0.9 ± 0.07 bcde | 22.0 ± 1.71 d |
— | — | 1.5 | 10.7 ± 0.37 ab | 1.5 ± 0.24 b | 22.1 ± 1.23 d |
— | — | 2.0 | 8.9 ± 0.41 cd | 1.1 ± 0.07 bc | 25.8 ± 1.54 cd |
— | — | 2.5 | 8.3 ± 0.24 de | 1.3 ± 0.24 b | 25.1 ± 1.25 cd |
NAA y (mg·L−1) | IBA (mg·L−1) | Rooting (%) | No. Root Per Explant | Length of Root (mm) |
---|---|---|---|---|
— | — | 64.4 ± 8.01 b z | 0.9 ± 0.07 b | 4.7 ± 1.44 b |
0.1 | — | 100 ± 0.00 a | 3.4 ± 0.83 a | 13.9 ± 2.19 a |
0.2 | — | 100 ± 0.00 a | 3.5 ± 0.27 a | 6.3 ± 1.52 b |
0.3 | — | 95.6 ± 2.22 a | 3.1 ± 0.47 a | 3.3 ± 0.83 b |
— | 0.1 | 100 ± 0.00 a | 3.7 ± 0.44 a | 17.3 ± 1.90 a |
— | 0.2 | 100 ± 0.00 a | 3.6 ± 0.31 a | 13.6 ± 1.49 a |
— | 0.3 | 91.1 ± 5.88 a | 3.1 ± 0.37 a | 16.3 ± 1.64 a |
NAA y (mg·L−1) | IBA (mg·L−1) | Rooting Percentage (%) | No.of Root/Explant | Length of Root (mm) | Plant Height (mm) |
---|---|---|---|---|---|
— | — | 73.3 ± 13.33 a z | 2.3 ± 0.48 b | 13.7 ± 3.15 a | 17.7 ± 0.86 a |
100 | — | 86.7 ± 6.67 a | 6.0 ± 0.50 a | 18.8 ± 4.80 a | 19.1 ± 2.76 a |
— | 100 | 80.0 ± 5.77 a | 2.2 ± 0.50 b | 13.5 ± 2.26 a | 16.2 ± 2.70 a |
Treatment | Rooting Percentage (%) | Length of Root (mm) | No. of Root Per Explant | Callus Diameter (mm) |
---|---|---|---|---|
In vitro | 100.0 ± 0.00 a z | 18.6 ± 1.13 a | 3.7 ± 0.44 b | 1.6 ± 0.09 a |
Ex vitro | 86.7 ± 6.67 b | 18.8 ± 4.80 a | 6.0 ± 0.50 a | 0 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xin, X.; Wei, H.; Qiu, X.; Liu, B. In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla (Miq.) Pax. Agronomy 2020, 10, 949. https://doi.org/10.3390/agronomy10070949
Wang F, Xin X, Wei H, Qiu X, Liu B. In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla (Miq.) Pax. Agronomy. 2020; 10(7):949. https://doi.org/10.3390/agronomy10070949
Chicago/Turabian StyleWang, Fengyun, Xiaowei Xin, Hao Wei, Xiaohui Qiu, and Boling Liu. 2020. "In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla (Miq.) Pax" Agronomy 10, no. 7: 949. https://doi.org/10.3390/agronomy10070949
APA StyleWang, F., Xin, X., Wei, H., Qiu, X., & Liu, B. (2020). In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla (Miq.) Pax. Agronomy, 10(7), 949. https://doi.org/10.3390/agronomy10070949