Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Evaluation of Explants
2.3. Induction of Micro-Rhizomes from Mature Node Explants
2.4. Conversion of Micro-Rhizomes to PLB Clumps
2.5. Induction of Adventitious Shoots from PLBs
2.6. Rooting, Transplanting, and Acclimatization
2.7. Data Analysis
3. Results
3.1. Contamination and Bud Break of Four Types of Explants
3.2. Induction of Micro-Rhizomes from Mature Stem Explants
3.3. Conversion of Micro-Rhizomes to Globular-Shaped Clumps with PLBs
3.4. Shoot Induction from PLBs
3.5. Ex Vitro Rooting and Growth in Greenhouse Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, D.; Kai, L. Zingiberaceae. In Flora of China; Wu, Z., Raven, P., Eds.; Science Press: Beijing, China; Missouri Botanical: St. Louis, MO, USA, 2000; Volume 24, pp. 322–377. [Google Scholar]
- Kunnumakkara, A.B.; Ichikawa, H.; Anand, P.; Mohankumar, C.J.; Hema, P.S.; Nair, M.S.; Aggarwal, B.B.; Coronarin, D. A labdane diterpene, inhibits both constitutive and inducible nuclear factor-κB pathway activation, leading to potentiation of apoptosis, inhibition of invasion, and suppression of osteoclastogenesis. Mol. Cancer Ther. 2008, 7, 3306–3317. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; McConnell, D.B.; Norman, D.L.; Henny, R.J. The foliage plant industry. Hort. Rev. 2005, 31, 47–112. [Google Scholar]
- Hartati, R.; Suganda, A.G.; Fidrianny, I. Botanical, phytochemical and pharmacological properties of Hedychium (Zingiberaceae)—A review. Procedia Chem. 2014, 13, 150–163. [Google Scholar] [CrossRef] [Green Version]
- He, E. Study on Hedychium coronarium Koenig’s edibility and its pharmacological experiments. Lishizhen Med. Res. 2000, 11, 1077–1078. [Google Scholar]
- Gao, L.; Liu, N.; Huang, B.; Hu, X. Phylogenetic analysis and genetic mapping of Chinese Hedychium using SRAP markers. Sci. Hortic. 2008, 117, 369–377. [Google Scholar] [CrossRef]
- Pachurekar, P.; Dixit, A. A review on pharmacognostical phytochemical and ethnomedicinal properties of Hedychium Coronarium J. Koenig an endangered medicine. Int. J. Chin. Med. 2017, 1, 49–61. [Google Scholar]
- Biswal, A.; Nair, M. Threatened plants of Orissa and priority species for conservation. In Special Habitats and Threatened Plants of India; Rawat, G., Ed.; ENVIS Bulletin, Wildlife Institute of India, Dehradun: Dehradun, India, 2008; Volume 11, pp. 175–186. [Google Scholar]
- Verma, M.; Bansal, Y.K. Induction of somatic embryogenesis in endangered butterfly ginger Hedychium coronarium J. Koenig. Indian J. Exp. Biol. 2012, 50, 904–909. [Google Scholar] [PubMed]
- Murashige, T. Plant propagation through issue cultures. Annu. Rev. Plant Physiol. 1974, 25, 135–166. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. Plant Propagation by Tissue Culture, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 29–64. [Google Scholar]
- Chen, J.; Wei, X. Thidiazuron in micropropagation of aroid plants. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018; pp. 95–113. [Google Scholar]
- Kane, M.E. Propagation from preexisting meristems. In Plant Tissue Culture Concepts and Laboratory Exercises; Trigiano, R.N., Gray, D.J., Eds.; CRC Press: New York, NY, USA, 1996; pp. 61–71. [Google Scholar]
- Chen, J.; Henny, R.J. Somaclonal variation: An important source for cultivar development of floriculture crops. In Floriculture, Ornamental and Plant Biotechnology II; Da Silva, J.A.T., Ed.; Global Science Books: London, UK, 2006; pp. 244–253. [Google Scholar]
- Shenoy, V.; Vasil, I. Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum). Theor. Appl. Genet. 1992, 83, 947–952. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Zanello, C.A.; Chen, J.T. An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int. J. Mol. Sci. 2020, 21, 985. [Google Scholar] [CrossRef] [Green Version]
- Morel, G. Producing virus-free cymbidiums. Am. Orchid Soc. Bull. 1960, 29, 495–497. [Google Scholar]
- Ishii, Y.; Takamura, T.; Goi, M.; Tanaka, M. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep. 1998, 12, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, L.; Liu, J.; Wang, J. Plant Regeneration by callus-mediated protocorm-like body induction of Anthurium andraeanum. Hort. Agric. Sci. China 2009, 8, 572–577. [Google Scholar] [CrossRef]
- Abo El-Ni, M.; Zettler, F. Callus initiation and organ differentiation from shoot tip cultured of Colocasia esculenta. Plant Sci. Lett. 1976, 6, 401–408. [Google Scholar] [CrossRef]
- Goh, C.J.; Nathan, M.J.; Kumar, P.P. Direct organogenesis and induction of morphogenic callus through thin section culture of Heliconia psittacorum. Sci. Hortic. 1995, 62, 113–120. [Google Scholar] [CrossRef]
- Nhut, D.T.; Le, B.V.; Thanh Van, K.T. Manipulation of the morphogenetic pathways of Lilium longiflorum transverse thin cell layer explants by auxin and cytokinin. Vitro Cell. Dev. Biol.-Plant 2001, 37, 44–49. [Google Scholar] [CrossRef]
- Venkatachalam, L.; Thimmaraju, R.; Sreedhar, R.V.; Bhagyalakshmi, N. Direct shoot and cormlet regeneration from leaf explants of ‘Silk’ banana (AAB). Vitro Cell. Dev. Biol.-Plant 2006, 42, 262–269. [Google Scholar] [CrossRef]
- Tian, C.; Chen, Y.; Zhao, X.; Zhao, L. Plant regeneration through protocorm-like bodies induced from rhizoids using leaf explants of Rosa spp. Plant Cell Rep. 2008, 27, 823–831. [Google Scholar] [CrossRef]
- Cui, J.; Liu, J.; Deng, M.; Chen, J.; Henny, R.J. Plant regeneration through protocorm-like bodies induced from nodal explants of Syngonium podophyllum ‘White Butterfly’. HortScience 2008, 43, 2129–2133. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.I.; Hsu, S.T.; Yeung, E.C. Orchid protocorm like bodies are somatic embryos. Am. J. Bot. 2013, 100, 2121–2131. [Google Scholar] [CrossRef]
- Huang, Y.; Tsai, Y.; Cheng, T.; Chen, J.; Chen, F. Physical wounding and ethylene-stimulated embryogenic stem cell proliferation and plantlet regeneration in protocorm-like bodies of Phalaenopsis orchids. Genet. Mol. Res. 2014, 13, 9543–9557. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-C.; Chen, J.-C.; Wei, M.-J. Protocorms and protocorm-like bodies are molecularly distinct from zygotic embryonic tissues in Phalaenopsis aphrodite. Plant Physiol. 2016, 171, 2682–2700. [Google Scholar] [PubMed] [Green Version]
- Gantait, S.; Sinniah, U.R.; Mandal, N.; Das, P.K. Direct induction of protocorm-like bodies from shoot tips, plantlet formation, and clonal fidelity analysis in Anthurium andreanum cv. CanCan. Plant Growth Regul. 2012, 67, 257–270. [Google Scholar] [CrossRef]
- Salvi, N.; Geoge, L.; Eapen, S. Direct regeneration of shoots from immature inflorescence cultures of turmeric. Plant Cell Tissue Organ Cult. 2000, 62, 235–238. [Google Scholar] [CrossRef]
- Das, A.; Kesar, V.; Rangan, L. Plant regeneration in Curcuma species and assessment of genetic stability of regenerated plants. Biol. Plant. 2010, 54, 423–429. [Google Scholar] [CrossRef]
- Sutarno, H.; Hadad, E.; Brink, M. Zingiber officinale Roscoe. In Plant Resources of South-East Asia No.13: Spices; De Guzman, C., Siemonsma, J., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1999; pp. 238–244. [Google Scholar]
- Verma, M.; Bansal, Y.K. Effect of a Potent Cytokinin Thidiazuron (TDZ) on in vitro regeneration of Hedychium coronarium J. Koenig—A Valuable Medicinal Plant. Int. J. Rec. Biotech. 2014, 2, 38–44. [Google Scholar]
- Mohanty, P.; Behera, S.; Swain, S.S.; Barik, D.P.; Naik, S.K. Micropropagation of Hedychium coronarium J. Koenig through rhizome bud. Physiol. Mol. Biol. Plants 2013, 19, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.L.; Tsai, C.C. Micropropagation of Hedychium coronarium Koenig. via somatic embryogenesis. J. Chin. Soc. Hortic. Sci. 2002, 48, 239–246. [Google Scholar]
- Behera, S.; Kamila, P.K.; Rout, K.K.; Barik, D.P.; Panda, P.C.; Naik, S.K. An efficient plant regeneration protocol of an industrially important plant, Hedychium coronarium J. Koenig and establishment of genetic & biochemical fidelity of the regenerants. Ind. Crops Prod. 2018, 126, 58–68. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Criley, R.A. Zingiberaceae and Costaceae. In Handbook of Flowering; Halevy, Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 542–545. [Google Scholar]
- Tripathi, B.K.; Bitaillon, C. In vitro plant regeneration of Hedychium roxburghii Blume through rhizome-meristem culture. Plant Cell Tissue Organ Cult. 1985, 4, 11–17. [Google Scholar] [CrossRef]
- Xian, Y.L.; Hu, Y.J.; Chen, S.Z.; Chen, Z.Y. Plant tissue culture and regeneration of Hedychium coccineum. Plant Physiol. Commun. 1989, 43–44. [Google Scholar]
- Xiong, Y.H.; Ma, G.H.; Liu, N.; Huang, B.H. In vitro tissue culture and rapid propagation of Hedychium forrestii by seed embroy. Guihaia 2005, 25, 241–244. [Google Scholar]
- Bisht, S.; Bisht, N.; Bhandari, S. In vitro plant regeneration from seedling explants of Hedychium coronarium J Koenig. J. Med. Plant Res. 2012, 6, 5546–5551. [Google Scholar]
- Tu, H.; Xiao, W.; Deng, C.H. Somatic embryogenesis and plant regeneration of Hedychium coccineum. Acta Hortic. Sin. 2014, 41, 2139–2146. [Google Scholar]
- Norstog, K. Embryo culture as a tool in the study of comparative and development morphology. In Plant Cell and Tissue Culture; Sharp, W.R., Ed.; Ohio State University: Columbus, OH, USA, 1979; pp. 179–202. [Google Scholar]
- Yeung, E.C. A perspective on orchid seed and protocorm development. Bot. Stud. 2017, 33, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Soe, K.; Myint, K.; Naing, A.; Kim, C. Optimization of efficient protocorm-like bodies (PLB) formation of Phalaenopsis and Dendrobium hybrids. Curr. Res. Agric. Life Sci. 2014, 32, 179–183. [Google Scholar] [CrossRef]
- Shen, X.; Chen, J.; Kane, M.E.; Henny, R.J. Assessment of somaclonal variation of Dieffenbachia plants regenerated via indirect shoot organogenesis from leaf explants. Plant Cell, Tissue Organ Cult. 2007, 91, 21–27. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J.; Devenand, P.S.; Chao, C.T. AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep. 2006, 24, 743–749. [Google Scholar] [CrossRef]
- Parida, R.; Mohanty, S.; Nayak, S. In vitro propagation of Hedychium coronarium Koen. through axillary bud proliferation. Plant Biosyst. 2013, 147, 905–912. [Google Scholar] [CrossRef]
- Rungjindamai, C.; Chenboonngarm, K. Micropropagation of Hedychium coronarium. Acta Hortic. 2014, 1025, 223–229. [Google Scholar] [CrossRef]
- Ogura-Tsujita, Y.; Tatsumi, A.; Hayashida, S.; Okubo, H. Interconversion between protocorm-like-bodies (PLBs) and rhizomes in Cymbidium. Fac. Agric. Kyushu Univ. 2007, 52, 325–330. [Google Scholar]
- Kou, Y.; Yuan, C.; Zhao, Q.; Liu, G.; Nie, J.; Ma, Z.; Cheng, C.; Teixeira da Silva, J.A.; Zhao, L. Thidiazuron triggers morphogenesis in Rosa canina L. protocorm-like bodies by changing incipient cell fate. Front. Plant Sci. 2016, 7, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.; Chen, J.; Henny, R.J.; Huang, Y.; Caldwell, R.D.; Robinson, C.A. Thidiazuron promotes adventitious shoot regeneration from pothos (Epipremnum aureum) leaf and petiole explants. Vitro Cell. Dev. Biol.-Plant 2002, 38, 268–271. [Google Scholar] [CrossRef]
Explant Type | No. of Explant Per Source * | Min. of Disinfection with 0.1% HgCl2 | Contamination Frequency (%) | Bud Break Frequency (%) |
---|---|---|---|---|
Mature node explant | 8–10 | 5 | 28.89 ± 2.22 gh | 68.89 ± 2.22 c |
10 | 8.89 ± 2.22 i | 91.11 ± 2.22 b | ||
15 | 4.44 ± 2.22 ijkl | 95.56 ± 2.22 a | ||
Young node explant | 7–8 | 5 | 33.33 ± 0.00 g | 6.67 ± 3.85 fg |
10 | 8.89 ± 4.44 ij | 6.67 ± 3.85 fgh | ||
15 | 6.67 ± 3.85 ijk | 0 ± 0.00 fghij | ||
Mature eye explant | 3–5 | 5 | 100 ± 0.00 a | 0 ± 0.00 fghijkl |
10 | 82.22 ± 2.22 c | 8.89 ± 2.22 f | ||
15 | 48.89 ± 2.22 def | 6.67 ± 3.85 fghi | ||
Young rhizome tip explants | 1–3 | 5 | 93.33 ± 3.85 b | 0 ± 0.00 fghijk |
10 | 57.78 ± 2.22 de | 26.67 ± 3.85 d | ||
15 | 60 ± 3.85 d | 26.67 ± 6.67 de |
Combination of Growth Regulators | Frequency of Micro-Rhizome Induced (%) | Micro-Rhizome Diameter (mm) | No. of Shoots Per Micro-Rhizome | |
---|---|---|---|---|
BA (μM) | TDZ (μM) | |||
13.32 | 0 | 68.89 ± 2.22 hij | 1.60 ± 0.04 kl | 0 |
17.76 | 0 | 77.78 ± 2.22 gh | 1.71 ± 0.06 k | 0 |
22.20 | 0 | 82.22 ± 2.22 g | 2.11 ± 0.06 j | 0 |
13.32 | 0.91 | 91.11 ± 2.22 f | 3.89 ± 0.06 f | 0 |
17.76 | 0.91 | 95.55 ± 2.22 de | 4.33 ± 0.04 d | 0 |
22.20 | 0.91 | 97.78 ± 2.22 abcd | 4.69 ± 0.06 ab | 0 |
13.32 | 9.08 | 100.00 ± 0.00 a | 4.20 ± 0.04 de | 0 |
17.76 | 9.08 | 100.00 ± 0.00 ab | 4.53 ± 0.04 bc | 0 |
22.20 | 9.08 | 100.00 ± 0.00 abc | 4.87 ± 0.04 a | 0 |
13.32 | 19.16 | 71.11 ± 2.22 hi | 2.93 ± 0.04 g | 4.2 |
17.76 | 19.16 | 64.45 ± 2.22 ijk | 2.40 ± 0.04 h | 5.0 |
22.20 | 19.16 | 62.22 ± 2.22 kl | 2.33 ± 0.17 hi | 5.8 |
TDZ (μM) | IBA (μM) | PLB Clump Conversion (%) | PLB Clump Diameter (cm) | No. of PLB Per Clump | Shoot No. Per Clump | Shoot Height (cm) |
---|---|---|---|---|---|---|
0 | 2.46 | 12.00 ± 0.02 d | 0.37 ± 0.01 e | 3.82 ± 0.15 e | 10.76 ± 0.15 a | 4.23 ± 0.02 a |
2.27 | 2.46 | 60.00 ± 0.02 c | 0.87 ± 0.01 d | 10.13 ± 0.20 d | 3.04 ± 0.10 b | 2.49 ± 0.01 b |
4.54 | 2.46 | 82.67 ± 0.02 b | 1.65 ± 0.02 c | 20.11 ± 0.18 b | 0.00 c | 0.00 c |
6.81 | 2.46 | 96.00 ± 0.02 a | 2.04 ± 0.01 a | 26.93 ± 0.12 a | 0.00 c | 0.00 c |
9.08 | 2.46 | 86.67 ± 0.02 b | 1.77 ± 0.02 b | 17.67 ± 0.19 c | 0.00 c | 0.00 c |
BA (μM) | NAA (μM) | Shoot No. | Shoot Base Diameter of Shoot Base (mm) | Shoot Height (cm) | Root No. Per Shoot |
---|---|---|---|---|---|
17.76 | 0 | 7.61 ± 0.13 d | 1.76 ± 0.02 d | 4.78 ± 0.02 a | 1.59 ± 0.01 c |
17.76 | 0.54 | 15.75 ± 0.16 a | 2.63 ± 0.04 c | 3.82 ± 0.04 b | 2.81 ± 0.02 a |
17.76 | 2.69 | 13.64 ± 0.14 b | 2.98 ± 0.02 b | 2.94 ± 0.02 c | 2.53 ± 0.01 b |
17.76 | 5.37 | 9.72 ± 0.16 c | 3.46 ± 0.04 a | 2.39 ± 0.04 d | 1.58 ± 0.02 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Tan, J.; Chen, J.; Li, Y.; Huang, J. Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies. Agronomy 2020, 10, 1068. https://doi.org/10.3390/agronomy10081068
Hu X, Tan J, Chen J, Li Y, Huang J. Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies. Agronomy. 2020; 10(8):1068. https://doi.org/10.3390/agronomy10081068
Chicago/Turabian StyleHu, Xiu, Jiachuan Tan, Jianjun Chen, Yongquan Li, and Jiaqi Huang. 2020. "Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies" Agronomy 10, no. 8: 1068. https://doi.org/10.3390/agronomy10081068
APA StyleHu, X., Tan, J., Chen, J., Li, Y., & Huang, J. (2020). Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies. Agronomy, 10(8), 1068. https://doi.org/10.3390/agronomy10081068