Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Rooting
2.2. Gene Expression Analysis
2.2.1. Sample Collection and RNA Extraction
2.2.2. qRT-PCR
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kepenek, K.; Karoglu, Z. The effects of paclobutrazol and daminozide on in vitro micropropagation of some apple (Malus domestica) cultivars and M9 rootstock. Afr. J. Biotechnol. 2011, 10, 4851–4859. [Google Scholar]
- da Silva, J.A.T.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.R.; Wang, Q.C.; Dobránski, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, J.W. Local auxin production: A small contribution to a big field. Bioessays 2009, 31, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Koiwai, H.; Akaba, S.; Seo, M.; Komano, T.; Koshiba, T. Functional expression of two Arabidopsis aldehyde oxidases in the yeast. Pichia Pastor. J. Biochem. 2000, 127, 659–664. [Google Scholar]
- Seo, M.; Aoki, H.; Koiwai, H.; Kamiya, Y.; Nambara, E.; Koshiba, T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004, 45, 1694–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Mashiguchi, K.; Chen, Q.; Kasahara, H.; Kamiya, Y.; Ojha, S.; Dubois, J.; Ballou, D.; Zhao, Y. The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA containing flavin monooxygenase. J. Biol. Chem. 2013, 288, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Won, C.; Shen, X.; Mashiguchi, K.; Zheng, Z.; Dai, X.; Cheng, Y.; Kasahara, H.; Kamiya, Y.; Chory, J.; Zhao, Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18518–18523. [Google Scholar] [CrossRef] [Green Version]
- McSteen, P. Auxin and monocot development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001479. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, N.; Han, S.G.; Yoon, T.M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Alvarez, R.; Nissen, S.J.; Sutter, E.G. Relationship between Indole-3-acetic acid levels in apples (Malus pumila mill.) rootstocks cultured in vitro and adventitious root formation in the formation of Indole-3-butyric acid. Plant Physiol. 1989, 89, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Maejima, T.; Otagaki, S.; Shiratake, K.; Matsumoto, S. Efficient rooting system for apple M9 rootstock using rice seed coat and smoked rice seed coat. Int. J. Agric. 2015, 2015. [Google Scholar] [CrossRef]
- Bhusal, N.; Kim, H.S.; Han, S.G.; Yoon, T.M. Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 2020, 176, 104111. [Google Scholar] [CrossRef]
- Pérez, L.P.; Montesinos, Y.P.; Olmedo, J.G.; Rodriguez, R.B.; Sánchez, R.R.; Montenegro, O.N.; Escriba, R.C.R.; Daniels, D.; Gómez-Kosky. Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. Maradol Roja). In Vitro Cell. Dev. Biol. Plant. 2016, 52, 196–203. [Google Scholar] [CrossRef]
- Londe, L.C.N.; Vendrame, W.A.; de Oliveira, A.B.; Costa, A.M. Phloroglucinol is effective for in vitro growth and multiplication of banana shoots and roots. Plant Cell Cult. Micropropag. 2017, 13, 34–40. [Google Scholar]
- Zimmerman, R.H. Rooting apple cultivars in vitro: Interactions among light, temperature, phloroglucinol and auxin. Plant Cell Tiss. Org. Cult. 1984, 3, 301–311. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revise medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Song, H.W.; Liu, Y.X.; Hu, G.B.; Qin, Y.H.; Lin, S.Q. An improved method for total RNA isolation from recalcitrant lo-quat (Eriobotrya japonica Lindl.) buds. Pak. J. Bot. 2011, 43, 1–9. [Google Scholar]
- Greenwood, M.S.; Cui, X.; Xu, F. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiol. Plant. 2001, 111, 373–380. [Google Scholar] [CrossRef]
- De Klerk, G.J. Rooting of microcuttings: Theory and practice. In Vitro Cell. Dev. Biol. Plant. 2002, 38, 415–422. [Google Scholar] [CrossRef]
- Ahkami, A.H.; Lischewski, S.; Haensch, K.T.; Porfirova, S.; Hofmann, J.; Rolletschek, H.; Melzer, M.; Franken, P.; Hause, B.; Druege, U.; et al. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: Involvement of wound response and primary metabolism. New Phytol. 2009, 181, 613–625. [Google Scholar] [CrossRef]
- Gutierrez, L.; Bussell, J.D.; Pacurar, D.I. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 2009, 21, 3119–3132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, L.R.; Troleis, J.; Mastroberti, A.A.; Mariath, J.E.; Fett-Neto, A.G. Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol. 2012, 14, 100–109. [Google Scholar]
- Sukumar, P.; Maloney, G.S.; Muday, G.K. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol. 2013, 162, 1392–1405. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, L.; Xu, Y.; Li, J.; Yang, Z.; Huang, H.; Xu, L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 2014, 26, 1081–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Huang, H. Genetic and epigenetic controls of plant regeneration. Curr. Top. Dev. Biol. 2014, 108, 1–33. [Google Scholar] [PubMed]
- James, D.J. Adventitious root formation ‘in vitro’ in apple rootstocks (Malus pumiia). I. Factors affecting the length of the auxin-sensitive phase in M.9. Physiol. Plant. 1983, 57, 149–153. [Google Scholar] [CrossRef]
- Li, S.W.; Xue, L.; Xu, S.; Feng, H.; An, L. IBA induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: The role of H2O2. Environ. Exp. Bot. 2009, 66, 442–450. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, H.; Yu, C.; Ma, L.; Wang, Y.; Zhang, X.Z.; Han, Z.H. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiol. Plant. 2012, 34, 235–244. [Google Scholar] [CrossRef]
- Mashiguchi, K.; Tanaka, K.; Sakai, T.; Sugawara, S.; Kawaide, H.; Natsume, M.; Hanada, A.; Yaeno, T.; Shirasu, K.; Yao, H.; et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18512–18517. [Google Scholar] [CrossRef] [Green Version]
- Liang, U.Y.; Fei, W. Anatomical study on rooting process and rapid propagation of apple rootstock M9. J. Northwest. For. Univ. 2013, 28, 106–110. [Google Scholar]
Primer | Sequence | Product Size |
---|---|---|
AAO1-F | 5′- TTCGGCGTTTATGCAGCCTT -3′ | 110 bp |
AAO1-R | 5′- AGAAAAGAAGAGCACGCCGG -3′ | |
AMI1-F | 5′- CTACAGTTCCAGGGGCTCCA -3′ | 120 bp |
AMI1-R | 5′- TACTCACCTGGCAGAGTCCG -3′ | |
YUC1-F | 5′- CCAAAGTTCAACCAGGCCGT -3′ | 185 bp |
YUC1-R | 5′- CTGGTGTGAAGAACAGGGCC -3′ | |
Actin-F | 5′- CACAGCAAGGGTGAGAAACA -3′ | 166 bp |
Actin-R | 5′- TCAAAGTTCACAACCCCACA -3′ |
Rootstock | IBA Conc. | Fresh Weight | Shoot Length | Leaf | Root | |||
---|---|---|---|---|---|---|---|---|
Length | Number | Length | No. of Main Roots | No. of Lateral Roots | ||||
(mg·L−1) | (mg/plantlet) | (cm) | (cm) | (ea/plantlet) | (cm) | (per plantlet) | (per plantlet) | |
M9 | 0.0 | 48.7 d z | 2.0 bc | 1.2 b | 7.0 b | 0.0 c | 0.0 c | 0.0 d |
0.1 | 158.5 c | 2.9 a | 1.7 a | 10.1 a | 3.2 a | 2.6 a | 8.2 a | |
0.5 | 344.8 a | 2.5 ab | 1.3 b | 9.4 ab | 0.9 b | 1.8 b | 2.6 b | |
1.0 | 364.4 a | 2.3 b | 1.3 b | 7.5 b | 0.7 b | 1.5 b | 0.1 c | |
2.0 | 237.2 b | 1.6 c | 0.8 c | 6.6 c | 0.3 b | 1.8 b | 0.6 bc | |
M26 | 0.0 | 54.8 d | 2.5 a | 1.1 bc | 8.2 a | 0.7 c | 0.1 d | 0.1 d |
0.1 | 168.4 c | 2.5 a | 1.5 a | 8.1 a | 2.2 a | 2.4 b | 2.4 b | |
0.5 | 367.7 a | 2.4 a | 1.3 b | 8.1 a | 1.5 b | 3.5 a | 3.5 a | |
1.0 | 364.4 a | 2.2 b | 1.3 b | 6.6 b | 0.8 c | 2.3 b | 2.3 b | |
2.0 | 248.3 b | 1.5 c | 0.8 c | 5.6 c | 0.3 d | 1.4 c | 1.4 c |
Phloroglucinol Conc. | Rooting | Callus Formation | Fresh Weight | Shoot Length | Leaf Length | No. of Leaves | No. of Roots | Root Length |
---|---|---|---|---|---|---|---|---|
(mM) | (%) | (%) | (mg/plantlet) | (cm) | (cm) | (per plantlet) | (per plantlet) | (cm) |
0.0 | 93.33 ab z | 30.00 a | 226.60 a | 2.88 a | 1.54 a | 10.2 a | 5.30 a | 1.94 a |
0.5 | 86.67 b | 8.44 b | 126.58 ab | 2.17 a | 1.63 a | 7.25 b | 4.06 b | 1.19 ab |
1.0 | 100.0 a | 0.00 b | 168.50 b | 2.82 a | 1.56 a | 11.10 a | 5.00 a | 1.87 a |
2.0 | 80.00 b | 0.00 b | 107.30 c | 2.59 a | 1.17 b | 10.10 a | 3.70 c | 1.32 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Kwon, B.-M.; Ho, T.-T.; Park, S.-Y. Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26. Agronomy 2020, 10, 1079. https://doi.org/10.3390/agronomy10081079
Kim J-H, Kwon B-M, Ho T-T, Park S-Y. Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26. Agronomy. 2020; 10(8):1079. https://doi.org/10.3390/agronomy10081079
Chicago/Turabian StyleKim, Jin-Ho, Bo-Min Kwon, Thanh-Tam Ho, and So-Young Park. 2020. "Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26" Agronomy 10, no. 8: 1079. https://doi.org/10.3390/agronomy10081079
APA StyleKim, J. -H., Kwon, B. -M., Ho, T. -T., & Park, S. -Y. (2020). Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26. Agronomy, 10(8), 1079. https://doi.org/10.3390/agronomy10081079