Homoeologous Recombination: A Novel and Efficient System for Broadening the Genetic Variability in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chromosome Preparations
2.2. Genomic In Situ Hybridization (GISH)
3. Results
3.1. Homoeologous Recombination in the Presence of 5Mg and Absence of Ph1
3.2. Potential Use of Chromosome 5Mg in Wheat Improvement
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, S.; Sirikhachornkit, A.; Su, X.; Faris, J.D.; Gill, B.S.; Haselkorn, R.P.; Gornicki, P. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 2002, 12, 8133–8138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.L.; Friebe, B.; Gill, B.S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 2007, 15, 3–19. [Google Scholar] [CrossRef]
- Jiang, J.; Friebe, B.; Gill, B.S. Recent advances in alien gene transfer in wheat. Euphytica 1994, 73, 199–212. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 1996, 91, 59–87. [Google Scholar] [CrossRef]
- Molnár-Láng, M.; Linc, G.; Szakács, É. Wheat–barley hybridization: The last 40 years. Euphytica 2014, 195, 315–329. [Google Scholar] [CrossRef] [Green Version]
- Sears, E.R. Aneuploids of Common Wheat; Research Bulletin; Missouri Agricultural Experiment Station: Columbia, MO, USA, 1954; Volume 572, p. 59. [Google Scholar]
- Sears, E.R. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 1976, 10, 31–51. [Google Scholar] [CrossRef]
- Riley, R.; Chapman, V. Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature 1958, 182, 713–715. [Google Scholar] [CrossRef]
- Sears, E.R.; Okamoto, M. Intergenomic chromosome relationship in hexaploid wheat. In Proceeding of the 10th International Congress of Genetics, Montreal, QC, Canada, 20–27 August 1958; pp. 258–259. [Google Scholar]
- Mello-Sampayo, T. Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nat. New Biol. 1971, 230, 23–24. [Google Scholar] [CrossRef]
- Sutton, T.; Whitford, R.; Baumann, U.; Dong, C.; Able, J.A.; Langridge, P. The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): Identification of candidate meiotic genes using a comparative genetics approach. Plant J. 2003, 36, 443–456. [Google Scholar] [CrossRef]
- Sears, E.R. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 1977, 19, 585–593. [Google Scholar] [CrossRef]
- Gill, B.S.; Friebe, B.; Raupp, W.J.; Wilson, D.L.; Cox, T.S.; Brown-Guedira, G.L.; Sears, R.S.; Fritz, A.K. Wheat Genetics Resource Center: The first 25 years. Adv. Agron. 2006, 85, 73–135. [Google Scholar]
- Friebe, B.; Qi, L.L.; Wilson, D.L.; Chang, Z.L.; Seifers, D.L.; Martin, T.J.; Fritz, A.K.; Gill, B.S. Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci. 2009, 49, 1221–1226. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Manipulation of homologous and homoeologous chromosome recombination in wheat. Methods Mol. Biol. 2016, 1429, 77–89. [Google Scholar] [PubMed]
- Liu, W.; Rouse, M.; Friebe, B.; Jin, Y.; Gill, B.S.; Pumphrey, M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011, 19, 669–682. [Google Scholar] [CrossRef]
- Koo, D.-H.; Liu, W.; Friebe, B.; Gill, B.S. Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 2017, 126, 531–540. [Google Scholar] [CrossRef]
- Danilova, T.V.; Zhang, G.; Liu, W.; Friebe, B.; Gill, B.S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor. Appl. Genet. 2017, 130, 549–556. [Google Scholar] [CrossRef]
- Koo, D.-H.; Sehgal, S.K.; Friebe, B.; Gill, B.S. Structure and stability of telocentric chromosomes in wheat. PLoS ONE 2015, 10, e0137747. [Google Scholar] [CrossRef] [Green Version]
- Riley, R. The diploidization of polyploid wheat. Heredity 1960, 15, 407–429. [Google Scholar] [CrossRef] [Green Version]
- Dover, G.A.; Riley, R. Prevention of pairing of homoeologous meiotic chromosomes of wheat by an activity of supernumerary chromosomes of Aegilops. Nature 1972, 240, 159–161. [Google Scholar] [CrossRef]
- Dvorak, J.; Deal, K.R.; Luo, M.-C. Discovery and mapping of wheat Ph1 suppressors. Genetics 2006, 174, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.; Chapman, V.; Miller, T.E. The determination of meiotic chromosome pairing. In Proceedings of the 4th International Wheat Genetics Symposium, Columbia, MO, USA, 6–11 August 1973; pp. 713–738. [Google Scholar]
- Dvorak, J. Chromosomal distribution of genes in diploid Elytriga elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome 1987, 29, 34–40. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma 2008, 117, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.S.; Gill, B.S.; Endo, T.R.; Boyko, E.V. Identification and high density mapping of gene-rich regions in chromosome group-1 of wheat. Genetics 1996, 143, 1001–1012. [Google Scholar] [PubMed]
- Künzel, G.; Korzun, L.; Meister, A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 2000, 154, 397–412. [Google Scholar] [PubMed]
- Saintenac, C.; Falque, M.; Martin, O.C.; Paux, E.; Feuillet, C.; Sourdille, P. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 2009, 181, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.; Wnetrzak, J.; Nibau, C.; Barakate, A.; Ramsay, L.; Wright, F.; Higgins, J.D.; Perry, R.M.; Jenkins, G. Quantitative high resolution mapping of HvMLH3 foci in barley pachytene nuclei reveals a strong distal bias and weak interference. J. Exp. Bot. 2013, 64, 2139–2154. [Google Scholar] [CrossRef] [Green Version]
- Lukaszewski, A.J.; Rybka, K.; Korzun, V.; Malyshev, S.V.; Lapinski, B.; Whitkus, R. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 2004, 47, 36–45. [Google Scholar] [CrossRef]
- Mercier, R.; Mézard, C.; Jenczewski, E.; Macaisne, N.; Grelon, M. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 2015, 66, 297–327. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 2000, 40, 216–225. [Google Scholar] [CrossRef]
- Wijnker, E.; de Jong, H. Managing meiotic recombination in plant breeding. Trends Plant Sci. 2008, 13, 640–646. [Google Scholar] [CrossRef]
- Lambing, C.; Franklin, F.C.H.; Wang, C.-J.R. Understanding and manipulating meiotic recombination in plants. Plant Physiol. 2017, 173, 1530–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambing, C.; Heckmann, S. Tackling plant meiosis: From model research to crop improvement. Front. Plant Sci. 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Copenhaver, G.P. Meiotic recombination: Mixing it up in plants. Annu. Rev. Plant Biol. 2018, 69, 577–609. [Google Scholar] [CrossRef] [PubMed]
- Ziolkowski, P.A.; Underwood, C.J.; Lambing, C.; Martinez-Garcia, M.; Lawrence, E.J.; Ziolkowska, L.; Griffin, C.; Choi, K.; Franklin, F.C.H.; Martienssen, R.A.; et al. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 2017, 31, 306–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, K.W.; Wang, S.; He, F.; Chao, S.; Lun, Y.; Paux, E.; Sourdille, P.; Sherman, J.; Akhunova, A.; Blake, N.K.; et al. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J. 2018, 95, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Seguela-Arnaud, M.; Crismani, W.; Larcheveque, C.; Mazel, J.; Froger, N.; Choinard, S.; Lemhemdi, A.; Macaisne, N.; van Leene, J.; Gevaert, K.; et al. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. USA 2015, 112, 4713–4718. [Google Scholar] [CrossRef] [Green Version]
- Seguela-Arnaud, M.; Choinard, S.; Larcheveque, C.; Girard, C.; Froger, N.; Crismani, W.; Mercier, R. RMI1 and TOP3α limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. 2017, 45, 1860–1871. [Google Scholar] [CrossRef] [Green Version]
- Serra, H.; Lambing, C.; Griffin, C.H.; Topp, S.D.; Nageswaran, D.C.; Underwood, C.J.; Ziolkowski, P.A.; Sequela-Arnaud, M.; Fernandes, J.B.; Mercier, R.; et al. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc. Natl. Acad. Sci. USA 2018, 115, 2437–2442. [Google Scholar] [CrossRef] [Green Version]
- Underwood, C.J.; Choi, K.; Lambing, C.; Zhao, X.; Serra, H.; Borges, F.; Simorowski, J.; Ernst, E.; Jacob, R.; Henderson, I.R.; et al. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res. 2018, 28, 1–13. [Google Scholar] [CrossRef] [Green Version]
Accession | Chromosome Number | Chromosome Constitution | Description |
---|---|---|---|
TA6708 | 42 | DS5Mg#1(5D) | One pair of 5D of wheat substituted by a pair of 5Mg#1 from Ae. geniculata, TA1800 |
TA3809 | 42 | Ph1 mutation | Deletion mutant of Ph1 locus induced by X-ray irradiation |
TA5624 | 42 | T7BS-7S#3L | One pair of wheat-Th. intermedium translocation chromosome, involving 7BS of wheat and 7S#3L of Th. intermedium substituting for chromosome 7B of wheat |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, D.-H.; Friebe, B.; Gill, B.S. Homoeologous Recombination: A Novel and Efficient System for Broadening the Genetic Variability in Wheat. Agronomy 2020, 10, 1059. https://doi.org/10.3390/agronomy10081059
Koo D-H, Friebe B, Gill BS. Homoeologous Recombination: A Novel and Efficient System for Broadening the Genetic Variability in Wheat. Agronomy. 2020; 10(8):1059. https://doi.org/10.3390/agronomy10081059
Chicago/Turabian StyleKoo, Dal-Hoe, Bernd Friebe, and Bikram S. Gill. 2020. "Homoeologous Recombination: A Novel and Efficient System for Broadening the Genetic Variability in Wheat" Agronomy 10, no. 8: 1059. https://doi.org/10.3390/agronomy10081059
APA StyleKoo, D. -H., Friebe, B., & Gill, B. S. (2020). Homoeologous Recombination: A Novel and Efficient System for Broadening the Genetic Variability in Wheat. Agronomy, 10(8), 1059. https://doi.org/10.3390/agronomy10081059