Silicon Modulates the Production and Composition of Phenols in Barley under Aluminum Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Plant Growth Traits and Chemical Analyses
2.2.1. Growth Traits
2.2.2. Aluminum and Si Concentration in Barley
2.3. Biochemical Analyses
2.3.1. Total Soluble Phenols in Plants
2.3.2. Identification and Quantification of Phenolic Compounds in Barley
2.3.3. Antioxidant Capacity in Barley Plants
2.3.4. Lipid Peroxidation Assay
2.4. Plant Stretching
2.5. Lignin Accumulation and Composition in Plants
2.6. Data Analysis
3. Results
3.1. Plant Growth and Concentrations of Al and Si
3.1.1. Plant Growth Traits
3.1.2. Aluminum and Si Concentration
3.2. The Effect of Al and Si on Phenol Production and Antioxidant Performance
3.2.1. Total Soluble Phenols and Phenolic Profile
3.2.2. Radical Scavenging Activity
3.2.3. Oxidative Damage
3.3. Silicon Influence on Plant Structure
3.3.1. Plant Stretching
3.3.2. Lignin Content and Composition
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, Y.; Wong, J.W.C.; Wei, L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 2005, 58, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Khan, A.L.; Waqas, M.; Lee, I.J. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Front. Plant Sci. 2017, 8, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Gao, L.; Dong, S.; Sun, Y.; Shen, Q.; Guo, S. Role of silicon on plant–pathogen interactions. Front. Plant Sci. 2017, 8, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Yamaji, N.; Mitani, N.; Konishi, S.; Katsuhara, M.; Yano, M. A silicon transporter in rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Tamai, K.; Konishi, S.; Fujiwara, T. An efflux transporter of silicon in rice. Nature 2007, 448, 209–212. [Google Scholar] [CrossRef]
- Pontigo, S.; Ribera, A.; Gianfreda, L.; Mora, M.D.L.L.; Nikoli, M.; Cartes, P. Silicon in vascular plants: Uptake, transport and its influence on mineral stress under acidic conditions. Planta 2015, 242, 23–37. [Google Scholar] [CrossRef]
- Pontigo, S.; Godoy, K.; Jiménez, H.; Gutiérrez-Moraga, A.; Mora, M.L.; Cartes, P. Silicon-mediated alleviation of aluminum toxicity by modulatin of Al/Si uptake and antioxidant performance in ryegrass plants. Front. Plant Sci. 2017, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, G.; Hausman, J.F.; Legay, S. Silicon and the Plant Extracellular Matrix. Front. Plant Sci. 2016, 7, 463. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, M.; Hausman, J.F.; Lutts, S.; Guerriero, G. Silicon and Plants: Current Knowledge and Technological Perspectives. Front. Plant Sci. 2017, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Abd_Allah, E.F.; Hashem, A.; Alam, P.; Ahmad, P. Silicon alleviates nickel-induced oxidative stress by regulating antioxidant defense and glyoxalase systems in mustard plants. J. Plant Growth Regul. 2019, 38, 1260–1273. [Google Scholar] [CrossRef]
- Lukacova, Z.; Svubova, R.; Janikovicova, S.; Volajova, Z.; Lux, A. Tobacco plants (Nicotiana benthamiana) were influenced by silicon and were not infected by dodder (Cuscuta europaea). Plant Physiol. Biochem. 2019, 139, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Schaller, J.; Heimes, R.; Ma, J.F.; Meunier, J.D.; Shao, J.F.; Fujii-Kashino, M.; Knorr, K.H. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil. 2019, 444, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Ahanger, M.A.; Bhat, J.A.; Siddiqui, M.H.; Rinklebe, J.; Ahmad, P. Silicon and secondary metabolites integration in plants: A Significant association in stress tolerance. J. Exp. Bot. 2020. [Google Scholar] [CrossRef] [PubMed]
- Maksimović, J.; Bogdanović, J.; Maksimović, V.; Nikolic, M. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Soil Sci. Plant Nutr. 2007, 170, 739–744. [Google Scholar] [CrossRef]
- Kidd, P.S.; Llugany, M.; Poschenrieder, C.H.; Gunse, B.; Barcelo, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 2001, 52, 1339–1352. [Google Scholar] [CrossRef] [Green Version]
- Vega, I.; Nikolic, M.; Pontigo, S.; Godoy, K.; Mora, M.D.L.L.; Cartes, P. Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agronomy 2019, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Ribera-Fonseca, A.; Rumpel, C.; Mora, M.L.; Nikolic, M.; Cartes, P. Sodium silicate and calcium silicate differentially affect silicon and aluminium uptake, antioxidant performance and phenolics metabolism of ryegrass in an acid Andisol. Crop. Pasture Sci. 2018, 69, 205–215. [Google Scholar] [CrossRef]
- Filha, M.X.; Rodrigues, F.A.; Domiciano, G.P.; Oliveira, H.V.; Silveira, P.R.; Moreira, W.R. Wheat resistance to leaf blast mediated by silicon. Australas. Plant Pathol. 2011, 40, 28–38. [Google Scholar] [CrossRef]
- Shetty, R.; Fretté, X.; Jensen, B.; Shetty, N.P.; Jensen, J.D.; Jørgensen, H.J.L.; Christensen, L.P. Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol. 2011, 157, 2194–2205. [Google Scholar] [CrossRef] [Green Version]
- Fleck, A.T.; Nye, T.; Repenning, C.; Stahl, F.; Zahn, M.; Schenk, M.K. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J. Exp. Bot. 2010, 62, 2001–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.; Shuxian, L.; Mumtaz, M.; Shafiq, I.; Iqbal, N.; Brestic, M.; Bing, C. Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). J. Hazard. Mater. 2020, 123256. [Google Scholar] [CrossRef]
- Shahnaz, G.; Shekoofeh, E.; Kourosh, D.; Moohamadbagher, B. Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. J. Med. Plant Res. 2011, 5, 5818–5827. [Google Scholar]
- Inanaga, S.; Okasaka, A.; Tanaka, S. Does silicon exist in association with organic compounds in rice plant? J. Soil Sci. 1995, 41, 111–117. [Google Scholar] [CrossRef]
- Watteau, F.; Villemin, G. Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur. J. Soil Sci. 2001, 52, 385–396. [Google Scholar] [CrossRef]
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Lahouar, L.; El Arem, A.; Ghrairi, F.; Chahdoura, H.; Salem, H.B.; El Felah, M.; Achour, L. Phytochemical content and antioxidant properties of diverse varieties of whole barley (Hordeum vulgare L.) grown in Tunisia. Food Chem. 2014, 145, 578–583. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Perkowski, J. Phenolic acids in cereal grain: Occurrence, biosynthesis, metabolism and role in living organisms. Crit. Rev. Food Sci. 2019, 59, 664–675. [Google Scholar] [CrossRef]
- Hammond, K.E.; Evans, D.E.; Hodson, M.J. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 1995, 173, 89–95. [Google Scholar] [CrossRef]
- Balakhnina, T.I.; Matichenkov, V.V.; Wlodarczyk, T.; Borkowska, A.; Nosalewicz, M.; Fomina, I.R. Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regul. 2012, 67, 35–43. [Google Scholar] [CrossRef]
- Cocker, K.M.; Evans, D.E.; Hodson, M.J. The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiol. Plant. 1998, 104, 608–614. [Google Scholar] [CrossRef]
- Khandekar, S.; Leisner, S. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J. Plant Physiol. 2011, 168, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Dorneles, A.O.S.; Pereira, A.S.; Sasso, V.M.; Possebom, G.; Tarouco, C.P.; Schorr, M.R.W.; Tabaldi, L.A. Aluminum stress tolerance in potato genotypes grown with silicon. Bragantia 2019. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.J.; Foy, C.D. Effects of aluminum on the growth and element composition of 20 winter cultivars of Triticum aestivum L. (wheat) grown in solution culture. J. Plant Nutr. 1985, 8, 811–824. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.; Demane, R.; Flores, H.; Grez, R.; Mora, M.L.; Neaman, A. Métodos de análisis de tejidos vegetales. Serie Actas INIA 2007, 40, 140. [Google Scholar]
- Pavlovic, J.; Samardzic, J.; Maksimović, V.; Timotijevic, G.; Stevic, N.; Laursen, K.H.; Nikolic, M. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. N. Phytol. 2013, 198, 1096–1107. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Santander, C.; Ruiz, A.; García, S.; Aroca, R.; Cumming, J.; Cornejo, P. Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. J. Sci. Food Agric. 2020, 100, 1577–1587. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical scavenging activities of peels and pulps from cv. Golden Delicious apples as related to their phenolic composition. J Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef]
- Du, Z.; Bramlage, W.J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric. Food Chem. 1992, 40, 1566–1570. [Google Scholar] [CrossRef]
- Perini, M.A.; Sin, I.N.; Martinez, G.A.; Civello, P.M. Measurement of expansin activity and plant cell wall creep by using a commercial texture analyzer. Electron J. Biotechnol. 2017, 26, 12–19. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Marczak, L.D.F.; Tessaro, I.C. Tracking bioactive compounds with colour changes in foods–A review. Dyes Pigments 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Kögel, I.; Bochter, R. Characterization of lignin in forest humus layers by high-performance liquid chromatography of cupric oxide oxidation products. Soil Biol. Biochem. 1985, 17, 637–640. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- De Freitas, L.B.; Fernandes, D.M.; Maia, S.C.M.; Fernandes, A.M. Effects of silicon on aluminum toxicity in upland rice plants. Plant Soil. 2017, 420, 263–275. [Google Scholar] [CrossRef]
- De Jesus, L.R.; Batista, B.L.; da Silva Lobato, A.K. Silicon reduces aluminum accumulation and mitigates toxic effects in cowpea plants. Acta Physiol. Plant. 2017, 39, 138. [Google Scholar] [CrossRef]
- Vaculík, M.; Lukačová, Z.; Bokor, B.; Martinka, M.; Tripathi, D.K.; Lux, A. Alleviation mechanisms of metal (loid) stress in plants by silicon: A review. J. Exp. Bot. 2020. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Li, Y.; Chen, W.F.; Wang, E.T.; Tian, C.F.; Li, Q.Q.; Chen, W.X. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl. Environ. Microbiol. 2011, 77, 6331–6342. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ali, S.; Hameed, A.; Ishaque, W.; Mahmood, K.; Iqbal, Z. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol. Environ. Saf. 2013, 96, 242–249. [Google Scholar] [CrossRef]
- Farooq, M.A.; Saqib, Z.A.; Akhtar, J.; Bakhat, H.F.; Pasala, R.K.; Dietz, K.J. Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon 2019, 11, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Stass, A.; Horst, W.J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 2004, 136, 3762–3770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.; Mazzafera, P.; Cesarino, I. Should I stay or should I go: Are chlorogenic acids mobilized towards lignin biosynthesis? Phytochemistry 2019, 166, 112063. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Andrade, P.B.; Valentao, P.; Gil-Izquierdo, A. Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode–array detection-electrospray ionisation mass spectrometry. J. Chromatogr. A 2008, 1182, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. N. Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, M.; Shibamoto, T. Flavonoids with potent antioxidant activity found in young green barley leaves. J. Agric. Food Chem. 2012, 60, 6260–6267. [Google Scholar] [CrossRef]
- Zhang, J.L.; Shi, H. Physiological and molecular mechanisms of plant salt tolerance. Photosynth. Res. 2013, 115, 1–22. [Google Scholar] [CrossRef]
- Yang, Y.F.; Liang, Y.C.; Lou, Y.S.; Sun, W.C. Influences of silicon on peroxidase, superoxide dismutase activity and lignin content in leaves of wheat Tritium aestivum L. and its relation to resistance to powdery mildew. Sci. Agric. Sin. 2003, 36, 813–817. [Google Scholar]
- Ma, J.F.; Yamaji, N.; Mitani, N. Transport of silicon from roots to panicles in plants. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011, 87, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.N.; Davis, E.J.; Ballif, J.; Liang, M.X.; Bushman, E.; Haroldsen, V.; Torabinejad, J.; Wu, Y.J. Mutant identification and characterization of the laccase gene family in Arabidopsis. J. Exp. Bot. 2006, 57, 2563–2569. [Google Scholar] [CrossRef] [Green Version]
- Betz, G.A.; Knappe, C.; Lapierre, C.; Olbrich, M.; Welzl, G.; Langebartels, C.; Ernst, D. Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur. J. For. Res. 2009, 128, 109–116. [Google Scholar] [CrossRef]
- Cabané, M.; Pireaux, J.C.; Léger, E.; Weber, E.; Dizengremel, P.; Pollet, B.; Lapierre, C. Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol. 2004, 134, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finger-Teixeira, A.; Ferrarese, M.D.L.L.; Soares, A.R.; da Silva, D.; Ferrarese-Filho, O. Cadmium-induced lignification restricts soybean root growth. Ecotoxicol. Environ. Saf. 2010, 73, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Frankenstein, C.; Schmitt, U.; Koch, G. Topochemical studies on modified lignin distribution in the xylem of poplar (Populus spp.) after wounding. Ann. Bot. 2006, 97, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitre, F.; Cooke, J.; Mackay, J. Short-term effects of nitrogen availability on wood 1056 formation and fibre properties in hybrid poplar. Trees Struct. Funct. 2007, 1057, 249–259. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [Green Version]
- Thevenot, M.; Dignac, M.F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Abiven, S.; Heim, A.; Schmidt, M.W. Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: Consequences for assessing lignin dynamics in soil. Plant Soil 2011, 343, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Otto, A.; Shunthirasingham, C.; Simpson, M.J. A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org. Geochem. 2005, 36, 425–448. [Google Scholar] [CrossRef]
- Williams, R.J.P. Introduction to Silicon Chemistry and Biochemistry. In Silicon Biochemistry; John Wiley & Sons: Hoboken, NJ, USA, 1986; pp. 24–29. [Google Scholar]
Cultivar | Treatment | Shoot DW (g pot−1) | Root DW (g pot−1) | Shoot Length (cm) | Root Length (cm) | |
---|---|---|---|---|---|---|
Al (mM) | Si (mM) | |||||
Sebastian | 0 | 0 | 3.99 ± 0.07 a | 1.47 ± 0.10 a | 50.2 ± 1.3 b | 27.4 ± 1.3 Aa |
0.2 | 0 | 2.83 ± 0.31 b | 1.05 ± 0.05 b | 47.6 ± 3.1 c | 19.4 ± 1.4 Ac | |
0 | 2 | 4.17 ± 0.48 a | 1.42 ± 0.16 a | 52.4 ± 0.6 a | 27.1 ± 0.9 a | |
0.2 | 2 | 3.19 ± 0.23 b | 1.14 ± 0.07 a | 49.5 ± 1.1 b | 21.3 ± 1.2 Ab | |
Scarlett | 0 | 0 | 3.51 ± 0.50 a | 1.24 ± 0.25 a | 49.2 ± 2.3 a | 23.5 ± 0.2 Ba |
0.2 | 0 | 2.25 ± 0.05 b | 0.59 ± 0.10 b | 45.5 ± 0.3 a | 14.4 ± 1.4 Bb | |
0 | 2 | 3.44 ± 0.06 a | 1.18 ± 0.12 a | 48.3 ± 1.2 a | 22.8 ± 0.8 a | |
0.2 | 2 | 3.00 ± 0.19 a | 1.03 ± 0.98 a | 46.1 ± 0.7 a | 16.8 ± 1.6 Bb | |
Cultivar | * | n.s | *** | *** | ||
Treatment | *** | *** | ** | *** | ||
Cultivar × Treatment | n.s | ** | n.s | *** |
Cultivars | Treatment | Shoot Al (mg kg−1 DW) | Root Al (mg kg−1 DW) | Shoot Si (g kg−1 DW) | Root Si (g kg−1 DW) | |
---|---|---|---|---|---|---|
Al (mM) | Si (mM) | |||||
Sebastian | 0 | 0 | 99.32 ± 13 c | 126.39 ± 13 c | 1.09 ± 0.29 c | 0.11 ± 0.04 c |
0.2 | 0 | 3153.70 ± 417 Ba | 5232.41 ± 417 Aa | 1.12 ± 0.24 c | 0.24 ± 0.11 c | |
0 | 2 | 99.77 ± 19 c | 115.63 ± 19 c | 11.00 ± 0.33 Aa | 8.21 ± 0.64 a | |
0.2 | 2 | 1609.15 ± 506 Bb | 2869.36 ± 506 Ab | 5.84 ± 0.34 b | 3.70 ± 0.67 Bb | |
Scarlett | 0 | 0 | 99.20 ± 65 c | 116.74 ± 199 c | 0.17 ± 0.11 c | 1.10 ± 0.07 c |
0.2 | 0 | 4876.53 ± 581 Aa | 5285.11 ± 167 Bb | 0.25 ± 0.17 c | 1.30 ± 0.25 c | |
0 | 2 | 92.99 ± 42 c | 120.15 ± 104 c | 8.10 ± 0.53 a | 7.30 ± 0.28 Aa | |
0.2 | 2 | 2808.81 ± 334 Ab | 1695.54 ± 185 Bb | 5.10 ± 0.11 Ab | 6.40 ± 0.25 b | |
Cultivar | *** | *** | *** | *** | ||
Treatment | *** | *** | *** | *** | ||
Cultivar × Treatment | *** | *** | *** | *** |
Tr (min) | Tentative Identification | λ max (nm) | [M − H]− | Products-Ions |
---|---|---|---|---|
Roots | ||||
6.4 | Caffeoylquinic acid isomer (Chlorogenic acid) | 306 | 353.1 | 263.1; 219.1 |
Shoots | ||||
10.8 | Isoorientin-7-O-glucoside (Lutonarin) | 349 | 609 | 447.0; 377.0 |
18.1 | Apigenin-pentoxide-hexoside isomer 1 | 336 | 593.3 | 502.8; 472.8; 430.8; 310.9 |
22.9 | Apigenin- pentoxide-hexoside isomer 2 | 338 | 563.9 | 544.8; 472.9; 442.9; 383 |
30.3 | Isoorientin-7-O-[6-sinapoyl]-glucoside | 342 | 815.6 | 446.9; 327.2; 299.1 |
31.1 | Isoorientin-7-O-[6-feruloyl]-glucoside | 338 | 785.6 | 446.9; 327.1 |
34.5 | Isovitexin-7-O-[6-sinapoyl]-glucoside | 319 | 799.6 | 430.4; 311.0; 283 |
35.8 | Isovitexin-7-O-[6-feruloyl]-glucoside | 333 | 769.6 | 430.8; 311.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega, I.; Rumpel, C.; Ruíz, A.; Mora, M.d.l.L.; Calderini, D.F.; Cartes, P. Silicon Modulates the Production and Composition of Phenols in Barley under Aluminum Stress. Agronomy 2020, 10, 1138. https://doi.org/10.3390/agronomy10081138
Vega I, Rumpel C, Ruíz A, Mora MdlL, Calderini DF, Cartes P. Silicon Modulates the Production and Composition of Phenols in Barley under Aluminum Stress. Agronomy. 2020; 10(8):1138. https://doi.org/10.3390/agronomy10081138
Chicago/Turabian StyleVega, Isis, Cornelia Rumpel, Antonieta Ruíz, María de la Luz Mora, Daniel F. Calderini, and Paula Cartes. 2020. "Silicon Modulates the Production and Composition of Phenols in Barley under Aluminum Stress" Agronomy 10, no. 8: 1138. https://doi.org/10.3390/agronomy10081138
APA StyleVega, I., Rumpel, C., Ruíz, A., Mora, M. d. l. L., Calderini, D. F., & Cartes, P. (2020). Silicon Modulates the Production and Composition of Phenols in Barley under Aluminum Stress. Agronomy, 10(8), 1138. https://doi.org/10.3390/agronomy10081138